
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2017
Y. N. Patt, Instructor
Chirag Sakhuja, Sarbartha Banerjee, Jonathan Dahm, Arjun Teh, TAs
Exam 2
April 19, 2017

Name:

Problem 1 (20 points):

Problem 2 (15 points):

Problem 3 (20 points):

Problem 4 (20 points):

Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

Please read the following sentence, and if you agree, sign where requested: I have not given nor received any unau-
thorized help on this exam.

Signature:

GOOD LUCK!

Name:

Problem 1 (20 points): Answer the following questions.

Part a (5 points): Vector chaining speeds up execution of vector instructions. Suppose I have back to back (the result
of the first is a source of the second) vector instructions that are executed in pipelined functional units. The first func-
tional unit has 5 pipeline stages, the second functional unit has 6 pipeline stages. Assume the vector length register
contains the value 38. How many cycles are saved by vector chaining?

Part b (5 points): IEEE floating point has four rounding modes. The default is unbiased round to nearest. What
does the word unbiased mean in this context? Why is that word a reasonable description of how rounding is achieved?
Please be specific.

Part c (5 points): The x86 architecture calls it a Task State Segment. The VAX architecture called it a hardware
process control block. What is it used for? Identify three items contained in it.

What it is used for:

Item 1: Item 2: Item 3:

Part d (5 points): What needs to be added to each tag store entry of a cache to make it a ”sector cache”? Why is this
useful for a policy where space in the cache is allocated on a write miss but the line is not loaded from memory.

2

Name:

Problem 2 (15 points): Consider the following 8-bit floating point numbers.

0 1 1 0 0 1 0 1

0 0 1 1 1 0 0 1

0 0 0 0 1 1 0 0

0 0 0 1 1 1 0 1

Part a (6 points): The decimal values represented by the above numbers are as follows, in no particular order:

31
8 , 21, 29

32 , 3
8

Given this information, how many bits specify the exponent and fraction? What is the bias?

BIAS: EXPONENT: FRACTION:

Part b (9 points): Using this scheme, is it possible to represent the value 6 3
8 perfectly? Why or why not? Explain in

fewer than 20 words.

Write down its representation, regardless of whether or not it can be represented perfectly. Use unbiased rounding if
necessary.

3

Name:

Problem 3 (20 points): We have an asynchronous bus as discussed in class. In addition to the processor, a DMA
controller and a byte-addressable memory system are attached to the bus. There is only one bus request level. The BG
line is daisy-chained between devices. There are separate address and data lines. The address and data buses are both
32 bits wide.

The DMA controller can copy an arbitrary amount of contiguous data from one part of memory to another part of
memory without requiring a sequence of instructions that LD from one part and ST to the other part.

For purposes of this problem only, we will assume that the two parts of memory do not overlap. (After the exam, we
can talk about what we would have to do to make this work if they did overlap.)

In order for the DMA controller to do this, it first needs to be told by the processor where the contents of memory to
be copied starts, where it is to be copied to, and how much is to be copied.

The processor stores the starting address of the data to be copied into the DMA Controller’s R ADDR register, the
starting address of the destination into the DMA Controller’s W ADDR register, and the amount to be copied into the
DMA Controller’s COUNT register.

The DMA Controller has a 4th register, the 32-bit DATA register. The transfer is implemented by the DMA controller
sending R ADDR, loading DATA with data it receives from memory, and then outputing W ADDR and DATA. Hint:
We can assume that two controllers do not create a problem if they both gate the same value onto the same bus at the
same time. Each time a transfer occurs, internal logic in the DMA Controller increments R ADDR and W ADDR by
four, and decrements COUNT by 4. The DMA Controller also has a one-bit signal COUNT=0.

There are six relevant bus signals between the DMA controller and memory that must be controlled:

• BBSY: 1 if the bus is busy; 0 if it is free.

• MSYN: 1 if the master wants to continue the transaction; 0 if it is finishing.

• SSYN: 1 if the slave acknowledges MSYN=1; 0 if the slave acknowledges MSYN=0.

• TYPE: READ if the DMA controller wishes to read from the memory system; WRITE if the DMA controller
wishes to write to the memory system.

• DMA: An extra signal you may find useful in your implementation.

• MEM: An extra signal you may find useful in your implementation.

• COUNT=0: A signal indicating that the DMA transfer is complete.

PROBLEM CONTINUES ON NEXT PAGE

4

Name:

Part a (10 points): Complete the transaction diagram below between the DMA Controller and the memory system
when copying 2 32-bit words. When showing the words sent to the DMA Controller from the memory system, use
WORD0 and WORD1 for clarity.

BBSY, MSYN, R_ADDR, READ, DMA

BBSY

SSYN, MEM

DMA Memory Controller

5

Name:

Part b (10 points): Complete the DMA controller’s state diagram below. We have given you the states used to secure
the bus; your job is to complete the states and transitions used to accomplish the transaction. You should be able to do
this in no more than 3 states.

IDLE

BGout

BR SACK

BGin

BBSY

D & BGin BGin BBSY

D

BGin D & BGin

BGin

SSYNC

6

Name:

Problem 4 (20 points): The LC-3b has been augmented with VAX-style virtual memory. Virtual memory is split into
two regions: system space, which consists of addresses x0000 to x2FFF, and user space, which consists of addresses
x3000 to xFFFF. (We will assume, for purposes of this question only, that the memory-mapped addresses of I/O de-
vices are part of user space, even though we all know better.) PTEs are 2 bytes each.

Part a (2 points): Write an expression to compute the number of pages in user space given a page size N .

Part b (3 points): Write an expression to compute the number of pages the user space page table occupies.

Consider the following program: A breakpoint is set at the address of the HALT instruction. Then the program is run
on the LC-3b (augmented with virtual memory). Before execution starts, the only data resident in physical memory is
the system page table. The total number of page faults each instruction generates is listed next to the instruction. You
may assume the first entry of the user space page table is at the beginning of a page.

.ORIG x3000
LEA R0, ADR ; 2 page faults
LDW R0, R0, #0 ; 0 page faults
LDW R1, R0, #0 ; 1 page fault
LDW R2, R0, #2 ; 2 page faults
HALT

ADR .FILL xAFFE
.END

Part c (5 points): Why does the first instruction generate 2 page faults? Please answer in fewer than 20 words.

Part d (10 points): What is the page size?

7

Name:

Problem 5 (25 points): We’ve implemented a 2-way set associative, 512 byte, write back physical cache for the
LC-3b. The line size is 8 bytes, the cache uses perfect LRU replacement, the policy is allocate on write miss, that is,
on a write miss, the cache line is loaded before the write is performed. The machine has 16KB of physical memory.

Consider the following piece of code that carries out component-wise addition of two integer arrays B and C and
stores the result in A.

for (i = 0; i < 128; i++) {
int temp_B = B[i];
int temp_C = C[i];
A[i] = temp_B + temp_C;

}

All arrays consist of 128 16-bit integers, and are resident in physical memory. The arrays are in contiguous memory;
that is, B begins immediately after A, and C begins immediately after B. The first element in each array is aligned with
the beginning of a cache block. Note: temporary variables in the program are stored in processor registers.

Part a (13 points): After the program executes, how many cache misses will have occurred? Assume the cache is
empty when the program begins.

Cache Misses:

A UT student who got A’s in both 460N and 360C decides to speed up the performance of the program by reconstruct-
ing it as follows:

for (i = 0; i < 128; i++) {
A[i] = B[i];

}
for (i = 0; i < 128; i++) {

int temp = A[i] + C[i];
A[i] = temp;

}

Part b (12 points): How many cache misses will occur during execution of the reconstructed program?

Cache Misses:

8

+

+

1

0 00 BaseR 000000

000 111 000000

PCoffset11

BaseR 000000

not used

not used

111111

+

+

+

0

1 imm5

00

LEA

BR

AND

ADD

+

ADD
+

+

AND
+

RET

RTI

JMP

JSR

JSRR

LDB
+

LDW

STB

STW

TRAP

zn p

DR SR1 1 imm50101

0000

DR1110

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

1100

1000 000000000000

1100

0100

0100

BaseRDR boffset6

DR BaseR offset6

0010

0110

PCoffset9

PCoffset9

000

1101 DR SR amount4

1101 DR SR amount4

1101 DR SR amount4

SR BaseR boffset60011

SR BaseR0111

1111 0000 trapvect8

offset6

15 12 11 9 8 6 5 4 3 2 017101314

+

DR1001

+

DR1001 SR

1010

1011

NOT
+

DR1001 SR

XOR

XOR

LSHF

RSHFL

RSHFA

0 0

0 1

1 1

SR2SR1

Figure 1: LC-3b Instruction Encodings

9

Table 1: Data path control signals
Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)

LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)

LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)

GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)

GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)

PCMUX/2: PC+2(0) ;select pc+2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder

DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7

SR1MUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]

ADDR1MUX/1: PC(0), BaseR(1)

ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffset11(3) ;select SEXT[IR[10:0]]

MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder

ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)

MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)

DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals
Signal Name Signal Values

J/6:
COND/2: COND0 ;Unconditional

COND1 ;Memory Ready
COND2 ;Branch
COND3 ;Addressing Mode

IRD/1: NO, YES

10

R

PC<−BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<−SR[7:0]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−MDR

32

1

5

0

0

1

To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

9

DR<−SR1 XOR OP2*

4

22

To 11

1011

JSR

JMP

BR

1010

To 10

21

20

0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<−PC+LSHF(off9, 1)

14

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off9,1)

33

35

DR<−SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<−SR

To 18

R R

M[MAR]<−MDR

16

23

R R

17

To 19

24

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <− PC
PC <− PC + 2

*OP2 may be SR2 or SEXT[imm5]

** [15:8] or [7:0] depending on

 MAR[0]

[IR[11]]

PC<−BaseR

PC<−PC+LSHF(off11,1)

R7<−PC

R7<−PC

13

Figure 2: A state machine for the LC-3b

11

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.

LOGIC

MDR

INMUX

MAR L

L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D

D

.

.

M

MDR

AR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG

FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

Figure 3: The LC-3b data path

12

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure 4: The microsequencer of the LC-3b base machine

13

