
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2013
Yale Patt, Instructor
Ben Lin, Mochamad Asri, Ameya Chaudhari, Nikhil Garg, Lauren Guckert,
Jack Koenig, Saijel Mokashi, Sruti Nuthalapathi, Sparsh Singhai, Jiajun Wang
Exam 2, November 13, 2013

Name:

Problem 1 (20 points):

Problem 2 (20 points):

Problem 3 (20 points):

Problem 4 (20 points):

Problem 5 (20 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space
provided.

Note: Please be sure your name is recorded on each sheet of theexam.

I will not cheat on this exam.

Signature

GOOD LUCK!

Name:

Problem 1. (20 points):
Part a. (5 points):

A student is debugging his program. His program does not haveaccess to memory locations x0000 to x2FFF. Why that
is the case we will discuss before the end of the semester. Theterm is ”privileged memory” but not something for you to
worry about today.

He sets a breakpoint at x3050, and then starts executing the program. When the program stops, he examines the contents
of several memory locations and registers, then hits singlestep. The simulator executes one instruction and then stops. He
again examines the contents of the memory locations and registers. They are as follows:

Before After

PC x3050 x3051
R0 x2F5F xFFFF
R1 x4200 x4200
R2 x0123 x0123
R3 x2323 x2323
R4 x0010 x0010
R5 x0000 x0000
R6 x1000 x1000
R7 x0522 x0522
M[x3050] x6??? x6???
M[x4200] x5555 x5555
M[x4201] xFFFF xFFFF

Complete the contents of location x3050

x3050 0 1 1 0

Part b. (5 points):
A student is writing a program and needs to subtract the contents of R1 from the contents of R2, and put the result in R3.
Instead of writing:

NOT R3,R1
ADD R3,R3,#1
ADD R3,R3,R2

he writes:

NOT R3,R1
.FILL x16E1
ADD R3,R3,R2

He assembles the program and attempts to execute it. Does thesubtract execute correctly? Why or why not?

Circle one: YES/NO. Explain in not more than fifteen words.

2

Name:

Part c. (5 points):
An assembly language program contains the following subroutine, which the LC-3 assembler stores in memory, starting
at location x3070.

Construct the symbol table entries for the subroutine.Hint: I am asking you to ONLY construct the symbol table
entries for this subroutine, and nothing more.

INPUT ST R7 SAVER7
LD R1, MINUS
LEA R5, BUFFER
LD R0, LF
TRAP x21
LEA R0, PROMPT
TRAP x22
LD R0, LF
TRAP x21

AGAIN TRAP x20
STR R0, R5, #0
ADD R0,R0,R1
BRz NEXT
ADD R5, R5, #1
BRnzp AGAIN

NEXT LD R7, SAVER7
RET

SAVER7 .BLKW 1
MINUS .FILL xFFDD
BUFFER .BLKW x21
PROMPT .STRINGZ "Type a word, then type #"
LF .FILL x0A

Label Address

3

Name:

Part d. (5 points):
An Aggie (always an Aggie!) modified the service routine thatthe operating system executes as a result of a user program
executing the TRAP x20 instruction. The modification consists of inserting three lines of code into the trap service routine:

1. Adding the following instruction to the beginning of the service routine:

LD R2,MASK

2. Inserting the instruction AND R0,R1,R2 in the place shownin the original service routine:

AGAIN LDI R1,KBSR
AND R0,R1,R2
BRzp AGAIN
LDI R0, KBDR

3. Inserting the following pseudo-op immediately after RET:

MASK .FILL x7FFF

The complete TRAP service routine after adding the three changes:

ST R1, SaveR1
ST R2, SaveR2

;
LD R2,MASK

;
AGAIN LDI R1,KBSR

AND R0,R1,R2
BRzp AGAIN
LDI R0, KBDR

;
LD R1, SaveR1
LD R2, SaveR2

;
RET

MASK .FILL x7FFF
KBSR .FILL xFE00
KBDR .FILL xFE02
SaveR1 .BLKW 1
SaveR2 .BLKW 1

Your job: Answer the question: Will the trap service routinestill work, and explain why or why not in fifteen words or
fewer.

4

Name:

Problem 2. (20 points):
The following program pushes elements onto a stack with JSR PUSH and pops elements off of the stack with JSR POP.

.ORIG X3000
LEA R6, STACK BASE

X TRAP x20 ;GETC
TRAP x21 ;OUT
ADD R1, R0, x-0A ;x0A is ASCII code for line feed,

;x-0A is the negative of x0A
BRz Y
JSR PUSH
BRnzp X

Y LEA R2, STACK BASE
NOT R2, R2
ADD R2, R2, #1
ADD R3, R2, R6
BRz DONE
JSR POP
TRAP x21 ;OUT
BRnzp Y

DONE TRAP x25 ;HALT
STACK .BLKW 5
STACK BASE .FILL x0FFF

PUSH ADD R6, R6, #-1
STR R0, R6, #0
RET

POP LDR R0, R6, #0
ADD R6, R6, #1
RET

.END

What will appear on the screen if a user, sitting at a keyboard, typed the three keys a, b, c, followed by the<Enter> key?

What will happen if a user, sitting at a keyboard, typed the eight keys a, b, c, d, e, f, g, h, followed by the<Enter> key?
(Please, no more than fifteen words in the box.)

5

Name:

Problem 3. (20 points):

An aggressive young engineer decides to build and sell the LC-3, but is told that if he wants to succeed, he really needs a
SUBTRACT instruction. Given the unused opcode 1101, he decides to specify the SUBTRACT instruction as follows:

15 8 6 5 2 01112 9 3

1101 000DR SR1 SR2

The instruction is defined as: DR← SR2 - SR1, and the condition codes are set.

To accomplish this, the engineer needs to add three states tothe state machine and a mux and register A to the data path.
The modified state machine is shown below and the modified datapath is shown on the next page. The mux is controlled
by a new control signal SR2SEL which selects one of its two sources.

SR2SEL/1: SR2OUT, REGISTERA

Your job:

For the state machine shown below, fill in the empty boxes withthe control signals that are needed in order to implement
the SUBTRACT instruction.

For the data path, fill in the value in register A.

R

18

PC <− PC + 1
MAR <− PC

[INT]

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

0

MDR <− M

R

IR <− MDR

32

35

33

1

To 49
(See figure C.7)

State 13

State A

State B

SR1MUX = IR[8:6]

LD.REG = 1

DRMUX = IR[11:9]

GateALU = 1

ALUK =

SR1MUX = IR[11:9]

ALUK = ADD

DRMUX = IR[11:9]

SR2SEL =

LD.REG = 1

SR1MUX = IR[11:9]

LD. = 1

GateALU = 1

LD. = 1

ALUK =

DRMUX = IR[11:9]

SR2SEL = SR2OUT

To 18

1101

6

MEMORY

OUTPUTINPUT

DSR

DDRKBDR

ADDR. CTL.
LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

R

MEM.EN

R.W MIO.EN

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16
16

16

16

16

1616

16

16

16

1616

16

ALU
B A

GateALU

16

SR2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2
OUT

SR1
OUT

REG
FILE

[7:0]

2

PCMUX

LD.CC

GatePC

LD.PC

LD.IR

MARMUX

ALUK

16

16

16

16
3

3 3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

CONTROL

16

16

SR2SEL

A

7

Name:

Problem 4. (20 points):
In class we talked about stacks, which are LIFO (Last In, First Out) mechanisms that allow us to push (insert) and pop
(remove) elements from the top. Another data structure is a queue. It operates as a FIFO (First In, First Out) mechanism.
Elements are removed from the front and inserted in the rear,much like the way a queue works in our daily lives.

Our queue is implemented as a linked list. Each element consists of two words: a pointer to the next element that entered
the queue and a value. We need two pointers, one to the front ofthe queue which we use to remove elements, and one to
the last element of the queue which we use to add another element. The last element points to NULL (x0000).

The figure below shows a queue with three elements, the first isA, the second is B, the last is C. M[x3100] contains the
address of the front of the queue. M[x3101] contains the address of the last element of the queue.

x3100 x4200

x4200

A

x4000
x4000

B

x4150
x4150

C

x0000

x3101 x4150

Pointer to the

first element

Pointer to the

 last element

First element

 in the queue

Last element

 in the queue

x4201 x4001 x4151

If we add an element D and we remove the elements A and B, the queue looks like this:

x3100 x4150

x4150

C

x3400
x3400

D

x0000

x3101 x3400

Pointer to the

first element

Pointer to the

 last element

First element

 in the queue

Last element

 in the queue

x4151 x3401

8

Name:

Your job: Complete the subroutines to dequeue (remove) the front element of the queue and enqueue (insert) a new ele-
ment to the back of the queue. After the DEQUEUE subroutine isexecuted, R3 should contain the address of the element
that was just dequeued; before the ENQUEUE subroutine is executed, R3 should contain the address of the new element
to be enqueued. You do NOT have to worry about the case when thequeue is(or becomes) empty; that is, you can assume
the queue will always have at least one element before and after any operation.

DEQUEUE ST R0, A
LDI R3, B

LD R0, A
RET

A .BLKW 1
B .FILL x3100

ENQUEUE ST R0, C
LDI R0, D

LD R0, C
RET

C .BLKW 1
D .FILL x3101

9

Name:

Problem 5. (20 points):

During the execution of an LC-3 program, an instruction in the program starts executing at clock cycle T and requires 15
cycles to complete.

The table below listsALL five clock cycles during the processing of this instruction which require use of the bus. The
table shows for each of those clock cycles: which clock cycle, the state of the state machine, the value on the bus, and the
important control signals that are active during that clockcycle.

Note: In class on Monday, I gave an example where it took 18 clock cycles for memory to read or write. Part (d) of this
problem asks you how many clock cycles it takes for memory to read or write in this example.

Cycle State Bus Important Control Signals For This Cycle

T 18 x3010 LD.MAR = 1, LD.PC =1, PCMux = PC + 1, GatePC = 1
T + 4
T + 6 x3013
T + 10 x4567
T + 14 x0000 LD.REG = 1, LD.CC = 1, GateMDR = 1, DR = 001

a. Fill in the missing entries in the table.

b. What is the instruction being processed?

c. Where in memory is that instruction?

d. How many clock cycles does it take memory to read or write?

e. There is enough information above for you to know the contents of three memory locations. What are they and
what are their contents?

Memory address Contents

10

R

R R

R R

To 18

To 18

To 18

To 8
(See figure C.7)

RTI

MAR <− PC
PC <− PC + 1

[INT]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−PC+off9

PC<−MDR

MAR<−PC+off9

MDR<−M[MAR]

RR

MAR<−MDR

MAR<−PC+off9

MDR<−M[MAR]

MAR<−MDR

MAR<−B+off6

MAR<−PC+off9

MAR<−B+off6

MAR<−PC+off9

MDR<−SR

DR<−MDR
set CC M[MAR]<−MDR

18

32

1

5

76

11

3

0

0

1
22

29

3126

23

24

25

27

To 18

To 18

To 18 To 18

To 18

0

R R

MDR<−M[MAR]

[IR[15:12]]

To 49
(See figure C.7)

28

30

2

10

NOTES

16

R7<−PC
MDR<−M[MAR]

B+off6 : Base + SEXT[offset6]
PC+off9 : PC + SEXT{offset9]
PC+off11 : PC + SEXT[offset11]

*OP2 may be SR2 or SEXT[imm5]

set CC
DR<−NOT(SR) 9

NOT

14

set CC
DR<−PC+off9

LEA LD LDR LDI STI STR ST

JSR

ADD

AND

JMP

BR

1

RR

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P 1101

To 13

33

35

MAR<−ZEXT[IR[7:0]]
15

TRAP

To 18

PC<−BaseR

1 0

12

4

21

To 18

20

To 18

[IR[11]]

PC<−PC+off11
R7<−PC

PC<−BaseR
R7<−PC

11

MEMORY

OUTPUTINPUT

DSR

DDRKBDR

ADDR. CTL.
LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

R

MEM.EN

R.W MIO.EN

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16
16

16

16

16

1616

16

16

16

1616

16

ALU

B A

GateALU

16

SR2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2
OUT

SR1
OUT

REG

FILE

[7:0]

2

PCMUX

LD.CC

GatePC

LD.PC

LD.IR

MARMUX

ALUK

16

16

16

16
3

3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

3

CONTROL

12

Logic BEN

P
Z
N

IR[11:9]

(c)

IR[11:9]

111

DR

DRMUX

110

IR[11:9]

(b)(a)

IR[8:6]

110

SR1MUX

SR1

13

“app-c” — 2004/5/21 — page 572 — #8

Table C.1 Data Path Control Signals

Signal Name Signal Values

LD.MAR/1: NO, LOAD

LD.MDR/1: NO, LOAD

LD.IR/1: NO, LOAD

LD.BEN/1: NO, LOAD

LD.REG/1: NO, LOAD

LD.CC/1: NO, LOAD

LD.PC/1: NO, LOAD

LD.Priv/1: NO, LOAD

LD.SavedSSP/1: NO, LOAD

LD.SavedUSP/1: NO, LOAD

LD.Vector/1: NO, LOAD

GatePC/1: NO, YES

GateMDR/1: NO, YES

GateALU/1: NO, YES

GateMARMUX/1: NO, YES

GateVector/1: NO, YES

GatePC-1/1: NO, YES

GatePSR/1: NO, YES

GateSP/1: NO, YES

PCMUX/2: PC+1 ;select pc+1

BUS ;select value from bus

ADDER ;select output of address adder

DRMUX/2: 11.9 ;destination IR[11:9]

R7 ;destination R7

SP ;destination R6

SR1MUX/2: 11.9 ;source IR[11:9]

8.6 ;source IR[8:6]

SP ;source R6

ADDR1MUX/1: PC, BaseR

ADDR2MUX/2: ZERO ;select the value zero

offset6 ;select SEXT[IR[5:0]]

PCoffset9 ;select SEXT[IR[8:0]]

PCoffset11 ;select SEXT[IR[10:0]]

SPMUX/2: SP+1 ;select stack pointer+1

SP−1 ;select stack pointer−1

Saved SSP ;select saved Supervisor Stack Pointer

Saved USP ;select saved User Stack Pointer

MARMUX/1: 7.0 ;select ZEXT[IR[7:0]]

ADDER ;select output of address adder

VectorMUX/2: INTV

Priv.exception

Opc.exception

PSRMUX/1: individual settings, BUS

ALUK/2: ADD, AND, NOT, PASSA

MIO.EN/1: NO, YES

R.W/1: RD, WR

Set.Priv/1: 0 ;Supervisor mode

1 ;User mode

