EE 306, Fall 2019
Yale Patt, Instructor
TAs: Sabee Grewal, Arjun Ramesh, Joesph Ryan, Chirag Sakhuja, Meiling Tang, Grace Zhuang Exam 1, October 16, 2019

Problem 1 (25 points): 25
Problem $2(15$ points $): \ S$
Problem 3 (15 points): $\quad 5$
Problem 4 (20 points): 20
Problem 5 (25 points): \qquad

Total (100 points): \qquad great job!

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

I will not cheat on this exam.

Signature

Name: \qquad

Problem 1. (25 points):
Part a. (5 points): How many of the 15 LC -3 instructions load the MAR during its instruction cycle?

Part b. (5 points): Write the decimal value 23 in the following representations:

Part c. (5 points): A computer's ALU operates on X-bit operands. When used to add a positive integer Y to the value +21 , the ALU output is -20 . What is the minimum number of bits (ie. X) used to specify each operand that will produce this result? What must Y be to produce this result?

Minimum number of bits: 6

$-20=\overline{20}+1$

Name: \qquad

Part d. (5 points): Many ISAs have a conditional load instruction (LDC), which loads a value from memory into a register based on the condition codes. We could add that instruction to the LC-3 ISA using the unused opcode. Further we could use the BEN bit (BEN = (IR[11] AND N) OR (IR[10] AND Z) OR (IR[9] AND P)) the same way we use BEN to determine whether to take the conditional branch. The LDC instruction has three operands: DR, PC offset, and the nzp bits.

If a program contained an LDC instruction in memory location $x 4000$, what is the largest memory address that can provide the value to be loaded into DR?

Part e. (5 points): Construct the truth table for the function OUT produced by the transistor circuit shown.

A	B	C	OUT
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Name: \qquad

Problem 2. (15 points):
Part a. (5 points): In class we implemented latches with two NAND gates. We can also do it with two NOR gates, as shown below.

For what values of X and Y will the latch be in its 'quiescent state' (i.e. the latch will retain whatever value was previously stored in it)?

What must be done to X and Y in order to store a 1 in the latch?

What must be done to X and Y in order to store a 0 in the latch?

Name: \qquad

Part b. (10 points): Below is the gated D latch we discussed in class.

As you can see, this gated D latch is implemented using only NAND and NOT gates. The inputs are D and WE, and the output is Q .

Your job: Implement a gated D latch, with the same functionality as the gated D latch shown above, using only NOR and NOT gates. Part of it has been completed for you.

Name: \qquad

Problem 3. (15 points):
We want to design a synchronous finite state machine with a single input and a single output. The output is $\mathbf{1}$ if the most recent three inputs are the same.

Recall, outputs are determined solely by the state. Since the state is latched at the end of the clock cycle, the output due to the input in clock cycle n will be present in clock cycle $n+1$.

Here is an example sequence of inputs and the outputs the sequence causes:

Cycle	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Input	1	0	1	1	1	1	1	0	1	0	0	1	0	0	0	1	1	-
Output	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	1	0	0

Your job: Complete the synchronous finite state machine. That is, show the output (0 or 1) for every state, and show the input (0 or 1) that takes the machine from its current state to its next state.

We have provided twelve states. You will not need all of them. Use what you need. We have also provided the initial state, shown in bold, where the sequence begins.

Name: \qquad

Problem 4. (20 points):
The incomplete program shown below starts executing at location x 3000 .

Address Value

x3000	0101000000100000
x3001	0001000000100101
x3002	0001000000111111
x3003	0000 011 11111110
x3004	111100000010010

During the execution of the program, each time an instruction sets condition codes we record the values of those condition codes in the table below. That is, the first row shows the condition codes set by the first instruction in the program that sets condition codes (i.e., the instruction in location x3000). The second row shows the condition codes set by the second instruction in the program that sets condition codes, and so on. If an instruction does not set condition codes, nothing is recorded. The table records the condition codes set by all instructions up to the point just before the instruction in memory location x3004 executes.

Your job: Complete the program by filling in the blanks so that the resulting program produces the condition codes shown in the table.

Name: \qquad

Problem 5. (25 points):
The Hamming distance of two bit vectors of equal length is the number of bits in which the two bit vectors differ. For example, the Hamming distance of 0110 and 0111 is 1 because they differ in only one bit (the right most bit). The Hamming distance of 11110000 and 10010010 is 3 .

We decided to write a program that computes the Hamming distance of two bit vectors. To make life easier for us, we decided to use our unused LC-3 opcode 1101 to form the exclusive-OR (XOR) of two bit vectors. The format of this instruction is shown below.

XOR

That is, bit n of DR is 1 if bit n of SR1 and bit n of SR2 are not the same.

The program uses the contents of memory locations x3100 and x3101 as the two 16-bit bit vectors, computes their Hamming distance, and stores that Hamming distance in memory location x3055. You will note that the program we wrote is incomplete.

Your job: Complete the program by filling in the blanks in the instructions so that the resulting program correctly computes the Hamming distance of the two bit vectors and stores the result in memory location x3055.

Address	Value	Comments
x3000	001001001111111	; $\mathrm{R} 2 \leftarrow \mathrm{M}[\mathrm{x} 3100]$
x3001	0010011011111111	; R3 $\leftarrow \mathrm{M}[\mathrm{x} 3101]$
x3002	$1101100 \quad 010 \quad 000 \quad 011$; XOR
x3003	0101000000100000	; R0 $\leftarrow 0$
x3004	0101001001100000	; R1 $\leftarrow 0$
x3005	0001001001101111	$1 / 1 / 1 / 1 / / / 1 / 1 / 1 / 1 / / 1 / 1 / 1$
x3006	0001100100100000	; $\mathrm{R} 4 \leftarrow \mathrm{R} 4+0$
x3007	0000011000000001	; Branch to x 3009 if Z or P is set
x3008	0001000000100001	$1 / / l / 1 / 1 / 1 / 1 / 1 / 1 / / / 1$
x3009	0001100100000100	; $\mathrm{R} 4 \leftarrow \mathrm{R} 4+\mathrm{R} 4$
x300A	0001001001111111	; $\mathrm{R} 1 \leftarrow \mathrm{R} 1-1$
x300B	0000011111111010	$/ / / / /$
x300C	.0011000001001000	$1 /$ / / / / 1
x300D	1111000000100101	, HALT

Figure C. 2 A state machine for the LC-3.

Figure C. 3 The LC-3 data path.

Figure A. 2 Format of the entire LC-3 instruction set. Note: + indicates instructions that modify condition codes

Table 2.2 ASCII character set

Oct	Dec	Hex	Char												
000	0	0	NLIL	040	32	20	SPACE	100	64	40	1	140	96	60	,
001	1	01	SOH	041	33	21	!	101	65	41	A	141	97	61	a
002	2	02	STX	042	34	22	"	102	66	42	B	142	98	62	b
003	3	03	ETX	043	35	23	\#	103	67	43	C	143	99	63	c
004	4	04	EOT	044	36	24	\$	104	68	44	D	144	100	64	d
005	5	05	ENQ	045	37	25	\%	105	69	45	E	145	101	65	e
006	6	06	$A C K$	046	38	26	$\stackrel{4}{4}$	106	70	46	F	146	102	66	f
007	7	07	BEL	047	39	27	,	107	71	47	G	147	103	67	g
010	8	08	BS	050	40	28	(110	72	48	H	150	104	68	h
011	9	09	HT	051	41	29)	111	73	49	I	151	105	69	i
012	10	0A	$L F$	052	42	2A	*	112	74	4 A	J	152	106	6A	j
013	11	OB	$V T$	053	43	2B	+	113	75	4B	K	153	107	6B	k
014	12	0 C	FF	054	44	2 C	,	114	76	4 C	L	154	108	6 C	1
015	13	OD	$C R$	055	45	2D	-	115	77	4D	M	155	109	6D	m
016	14	OE	SO	056	46	2E	*	116	78	4E	11	156	110	6 E	2
017	15	OF	SI	057	47	2F	/	117	79	4 F	-	157	111	6 F	-
020	16	10	DLE	060	48	30	0	120	80	50	P	160	112	70	P
021	17	11	DC1	061	49	31	1	121	81	51	Q	161	113	71	q
022	18	12	DC2	062	50	32	2	122	82	52	R	162	114	72	r
023	19	13	DC3	063	51	33	3	123	83	53	5	163	115	73	s
024	20	14	DC4	064	52	34	4	124	84	54	T	164	116	74	t
025	21	15	NAK	065	53	35	5	125	85	55	v	165	117	75	u
026	22	16	SYN	066	54	36	6	126	86	56	v	166	118	76	v
027	23	17	ETB	067	55	37	7	127	87	57	W	167	119	77	w
030	24	18	CAN	070	56	38	8	130	88	58	x	170	120	78	x
031	25	19	EM	071	57	39	9	131	89	59	Y	171	121	79	y
032	26	1A	SLIB	072	58	3A	:	132	90	5A	z	172	122	7A	z
033	27	1B	ESC	073	59	3B	;	133	91	5B	[173	123	7B	1
034	28	1 C	FS	074	60	3 C	$<$	134	92	5 C	\checkmark	174	124	7 C	I
035	29	1D	GS	075	61	3D	-	135	93	5D]	175	125	7 D)
036	30	1E	RS	076	62	3E	>	136	94	5E		176	126	7 E	
037	31	1F	US	077	63	3F	$?$	137	95	5 F		177	127	7 F	DEL

