Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2019

Yale Patt, Instructor

TAs: Sabee Grewal, Arjun Ramesh, Joseph Ryan, Chirag Sakhuja, Meiling Tang, Grace Zhuang
Final Exam, December 13, 2019

Name:

Part A:

Problem 1 (10 points):
Problem 2 (10 points):
Problem 3 (10 points):

Problem 4 (10 points):

Problem 5 (10 points): Part A (50 points):

Part B:
Problem 6 (25 points):
Problem 7 (20 points):

Problem 8 (20 points):

Problem 9 (20 points): Parb B (85 points):

Total (135 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space
provided.

Note: Please be sure your name is recorded on each sheet of the exam.

I will not cheat on this exam.

Signature

GOOD LUCK!
(HAVE A GREAT SEMESTER BREAK)

Name:

Problem 1. (10 points):

Part a. (2 points): How many of the 15 LC-3 instructions assert the LD.MDR control signal during its instruction cycle?
Explain in 10 words or fewer.

Part b. (2 points): An Aggie is trying to assemble a program but the program won’t assemble. The assemble-time
error reads "D RO, A. error: cannot encode as 9-bit 2’s complement integer”. What’s the
issue? Explain in 20 words or fewer.

Part c. (2 points): At the end of the clock cycle in which state 18 is executed, why does the MAR contain the value of the
PC at the start of the clock cycle, and not the value PC+1 since 1 is added to the PC during the clock cycle? Explain in 25
words or fewer. Be specific.

Part d. (4 points): A student decides to design the RLC-1 (Really Little Computer 1). RLC-1 instructions will be 8 bits
wide and use 3 bits for the opcode. Additionally, the RLC-1 will have 4 general purpose registers.

How many instructions are in the RLC-1 ISA?

The student wants the RLC-1 ISA to include an instruction that does the following: DR <-- SR1 + SR2. Can the
RLC-1 have such an instruction? Explain in 20 words or fewer.

Name:

Problem 2. (10 points):

Consider the following program written in LC-3 assembly language:

.ORIG x3000
AND R5, R5, #0
LEA RO, ARRAY
ID R1, N

LDR R2, RO, #0
NOT R2, R2

ADD R2, R2, #1

LOOP LDR R3, RO, #0
ADD R3, R3, R2
BRnp DONE
ADD RO, RO, #1
ADD R1, R1, #-1
BRp LOOP

ADD R5, R5, #1

DONE ST R5, OUTPUT
HALT
ARRAY .BLKW #20
N .FILL #20
OUTPUT .BLKW #1
.END

What must be the case for 1 to be stored in OUTPUT? Answer in 15 words or fewer.

Name:

Problem 3. (10 points):

In each of the five small programs below, assume M[x4000] has been initialized with a value before the programs are run.
The value may represent a 2’s complement integer, an address, an ASCII code, a bit vector, a floating point number, or
an instruction. For each of the five programs below, put an X in the box corresponding to what the value in M[x4000]

represents.

Part a. (2 points):

.ORIG %3000 O 2’s Complement Integer
1LDI RO, A OJ Address
ouT O ASCII Code
HALT O Bit Vector
A .FILL x4000 O Floating Point
-END O Instruction
Part b. (2 points):
.ORIG %3000 0J 2’s Complement Integer
1LDI RO, B [Address
LDR R1, RO, #0 O ASCII Code
HALT 0 Bit Vector
B .FILL x4000 O Floating Point
-END O Instruction
Part c. (2 points):
.ORIG x3000 O 2’s Complement Integer
LDI RO, C 0 Address
NOT RO, RO OO ASCII Code
ADD RO, RO, #1 O Bit Vector
HALT O Floating Point
C FILL x4000 [Instruction
.END
Part d. (2 points):
.ORIG x3000 O 2’s Complement Integer
LDI RO, D 0 Address
PUTS O ASCII Code
HALT O Bit Vector
D .FILL x4000 O Floating Point
-END O Instruction
Part e. (2 points):
.ORIG %3000 O 2’s Complement Integer
LD RO, E] Address
JSRR RO O ASCII Code
HALT 0 Bit Vector
E .FILL x4000 O Floating Point
-END O Instruction

Name:

Problem 4. (10 points):

Part a. (5 points): A logic circuit and incomplete truth table are shown below. The logic circuit has three inputs: A, B,
and C.

Your job: Complete the truth table so that it reflects the behavior of the logic circuit.

A— 0
B —a

A B C Z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Name:

Part b. (5 points): A multi-output truth table and a logic circuit are shown below. The logic circuit is missing all the
connections from the outputs of the AND gates to the inputs of the OR gates.

Your job: Draw the connections so that the logic cirucit implements the truth table.

A [B [C [P JQ
0 o |0 Jo |1
0 |0 |1 0 [0
0 |1 |0 T |0
0 |1 |1 0 |0
T |0 |o T |0
T |0 |1 T |1
T |1 o fo |o
T |1 |1 0 |1

jo]e]e]

I
VYU UUUUY

oo

Name:

Problem 5. (10 points):

A synchronous finite state machine has a single input and a single output. One input value is provided each cycle. The
output of the finite state machine is 1 each time the input provided is different from the previous value, i.e., from O to 1,
or from 1 to 0. The synchronous finite state machine outputs O at all other times.

Your job: Complete the synchronous finite state machine.

We have provided twelve states. Use as many as you need. We have also provided the initial state (shown in bold) and a
few of the state transitions and corresponding outputs.

OO O
OO C
OO C

Name:

Problem 6. (25 points):

Part a. (5 points): Shown below are a main program starting at M[x3000] and a keyboard interrupt routine starting at
M[x1000]. Before the main program was run, the operating system enabled interrupts and loaded M[x0180] with x1000.

.ORIG x1000
ST RO, SaveRO
LDR RO, R6, #0

.ORIG x3000
* ADD RO, RO, #1
LOOP BR TOOP

STR RO, R6, #0
HALT

LD RO, SaveRO
.END

RTT

SaveR0 .BLKW #1
.END

A key is pressed. Does the main program halt? Why or why not? Explain in 20 words or fewer.

Part b. (5 points): An Aggie tried to write a recursive subroutine which, when given an integer n, returns the sum of the
first n positive integers. For example, for n = 4, the subroutine returns 10 (i.e., 1 + 2 + 3 + 4). The subroutine takes the
argument 1 in RO and returns the sum in RO.

SUM ADD R6, R6, #-1
STR R7, R6, #0
ADD R6, R6, #-1
STR R1, R6, #0

ADD R1, RO, #0
ADD RO, RO, #-1
JSR SUM

ADD RO, RO, R1

LDR R1, R6, #0
ADD R6, R6, #1
LDR R7, R6, #0
ADD R6, R6, #1
RET

Unfortunately, the recursive subroutine does not work. What is the problem? Explain in 15 words or fewer.

Name:

Part c. (5 points): The LC-3 contains the following logic.

PSR MAR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
[—

When does X = 1? Answer in 15 words or fewer.

Name:

Part d. (10 points): A binary tree is made up of nodes that contain values and pointers to at most two other nodes. An
example is shown below.

ID: 5
Meiling

Each node can point to a node to the left and/or a node to the right. These nodes are referred to as the left child and right
child respectively. In our example above, the node labeled “Sabee” has a left child “Arjun”, a right child “Joseph”, and an
ID 12. If a binary tree has the property that for every node, its value is greater than the value of its left child and less than
the value of its right child, it is called a binary search tree.

Note that the figure shown above is a binary search tree. Specifically, for every node, the ID is greater than the ID of its
left child and less than the ID of its right child.

The binary search tree shown above can be implemented as shown on the following page.

10

Name:

x4000

(BN

@ﬁ@-atd<J

x0000

®
<
mmm>m<—|

—@ x0000

x0000

—
|
[
|
N
G

x0000
x0000

x0000 x0000
x0000 x0000

I

X0000 .——* &—
w
=
)
u
N

Ivmm0~<—|

x0000 x0000

x0000

Each node consists of four contiguous words of memory. The first word contains the ID, the second word is a pointer to a
character string, identifying the person represented by the node, the third word contains a pointer to the left child, and the
fourth word contains a pointer to the right child. If there is no left (or right) child, that word contains x0000. A list head
(in this case location x4000) contains a pointer to (i.e., the address of) the top node (called the roor) of the binary search
tree. In this case, the root is the node labeled “Chirag.”

11

Name:

Given an ID in RO, the following subroutine finds the name of the person associated with that ID, and loads the address
of the character string of that person into R5. Note that some instructions in the subroutine are missing.

Your job: Fill in the missing instructions. You can assume that the binary search tree contains the node whose ID is in RO.

.ORIG x3100
SEARCH ST R1l, SaveRl

ST R2, SaveR2

ST R3, SaveR3

NOT RO, RO

ADD RO, RO, #1

LOOP IDR R2, R1, #0
ADD R3, RO, R2
BRz A
BRp B
BR LOOP

B
BR LOOP

A

LD R1, SaveR1l
LD R2, SaveR2
LD R3, SaveR3
RET
ROOT LFILL x4000
SaveRl .BLKW #1
SaveR2 .BLKW #1
SaveR3 .BLKW #1
.END

12

Name:

Problem 7. (20 points):

In the following subroutine, arguments are passed in RO and R1, and the result is returned in RO and R1.

.ORIG x4000
ST R2, SAVER2
AND R2, R2, #0
NOT R1, RI1
ADD R1, R1, #1
LOOP ADD RO, RO, R1
BRn DONE
ADD R2, R2, #1
BRnzp LOOP
DONE NOT R1, R1
ADD R1, R1, #1
ADD R1, RO, R1
ADD RO, R2, #0
LD R2, SAVER2
RET
SAVER2 .BLKW #1

Part a. (10 points): What does the subroutine do? Answer in 15 words or fewer.

13

Name:

Part b. (10 points): Before the program is executed, RO is initialized to 5, and R1 is initialized to 3.

Your job: Fill in the missing entries. Register values should show the values loaded at the END of the cycle. Control
signals should be represented by “x” if they are “don’t cares.” Memory accesses take five cycles.

Clock
Cycle State Information

LDMAR [] GatePC [_] pcmux [1]
1| 18 opc [] GateALU [_]

GateMARMUX [_]

, B[] omar GaterC [_] ApDRIMUX []
] LoMDR [] Gatemarmux [] aporamux [|

LomDR [] GateeC [] sremux []
LDREG [_] GateALU Ak []

v — w [o]
;

Bus[_____] tomor [] GaterC] sramux []

11

% LDREG [] GateALU [_]
34 R[] wr[] GateMDR [_]
opc [] GatePC [_]
6 R[]
i
67

- 00 00

14

Name:

Problem 8. (20 points):

We use the unused opcode to introduce an LSHF instruction to the LC-3 with the instruction encoding shown below.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T T [T T T

1 1 0 1 DR SR 0|0 amnt4
| |

The LSHF instruction left shifts the value in SR by the number of bits specified by amnt4, and stores the result into DR.
As you recall from Programming Lab 1, when you shift n bits to the left, you insert n 0’s from the right.

The modifications to the data path and state machine to implement the LSHF instruction are shown on the following two
pages.

Part a. (15 points): Fill in the empty boxes in the incomplete state machine to implement the LSHF instruction.

Part b. (5 points): Fill in the control signals for the states labeled B, D, and E on the state machine. If the value of a
control signal does not matter, fill it with an X.

X
D
S S 3
s 5 g . 3§, 85 5
Q@
§§f s &8s Tz EFFES S s §
3 9 § 935 9 ¢& & & & & & S
I I
State B
| 1
| |
State D
1 1
T |
State E
| |

PROBLEM CONTINUES ON NEXT PAGE

15

Name:

The modifications to the data path are shown below in bold.

|2ex7 |

GateMARMUX —/\

GatePC

16

4«7/MARMUX LDPC”EC] Y
))
+1 3 REG
16 16 yas
%=/ PCMUX o FILE
T Y LD.REG —
© 16 16 SR2 SRI
3 3
SR2—4> QUT OUT <~4SR1
i
16
[7:0] + j 16
3
ADDR2MUX ADDRTMUX KMUX 7
2
I i f 16 e
16 [16 416 16 16
[10:0] 0 16
' SEXT A~ SEXT {
(8:0] N E)
|89 -SEXT SR2MUX
[5:0] b pgeee | 16
¢ SEXT |——— ! Y
[SExT | CONTROL 2\ B AL A
I Frig ALUK
7~ R Y
16 * LD.CC—{N|Z P | A16 16
IR |~1DR [
2 LOGIC
16 :
\/-GatelR ” Gatelmm \/~GateALU
/\— GateMDR

| MDR]<+—LDMDR

MAR k+—LD.MAR

/ <+ MIOEN

R <+

1Y "

MEMORY

MEMEN

RW MIOEN :’l,’\lp’u} ””””””
\/ 47 | | KBDR '
<J ADDR. CTL. ‘
LOGIC ‘ > KBSR_|
|
%2 ; [S [
INMUX :1

PROBLEM CONTINUES ON NEXT PAGE

16

7T

Name:

Problem 9. (20 points):

The LC-3 computer executes a program, starting with the fetch of the first instruction in clock cycle 1. The table below
shows the use of the bus in several clock cycles. Memory accesses take five clock cycles.

Your job: Fill in the missing entries with the values on the bus during those clock cycles.

Clock Cycle Bus

1

8 xE1FF
10

11

18 x3000
20

21 x5020
27

34 x5020
36 x0000
37

40 x2FFF
47

53 x0180
60 x1000
67 x8000
85

18

714

appendix C The Microarchitecture of the LC-3

GateMARMUX —/\ GatePC /\—GatePC-1
16
16 16 H
/ LD.PC —&> PC
MARMUX
A A
2 + REG
16 16 16 m . LD.REG — FILE
3
DR—4+
3 |SR2 SR1| 3
[ZExT | + SR2—> OUT OUT[<7SR!
[7:0] {
%—ADDNMUX
. Y 6 16 16
7[10.0] <] ? . jﬁe ¥ [} ; ¢
o o
[8:0] 0 16 2 @
P T o a| o
’ - ! g |9 5
[5:0] Zf % Zf' .o L \sramux ‘g‘% 5 gg‘%
— % - - % =
[4:01 CONTROL LOGIC y L [8.
[5] ALUK B A
2 ALU 6 6 6 6
INT 3
2
Interrupt 3~ —
IR <—LD.IR Priority A>B
I: ACV - SPMUX
LD.ACV LD.Priority Priority
LD.Priv—| . 5 -
LOGIC
o o] , i
PSRMUX
e " \/GateALU \/-Gatesp
Set Priv 5] CatePSR [10:8] V GatePSR }4o 112:0]
/\— GateMDR g TableMUX /\~GateVector—/\ [7:0]
x00 I [15:8] [7:0]
[MDR |<+LD.MDR| [MAR k—LD.MAR Y01 & Table |- || LD.Vector
/" \<—MIOEN | R Mlj:EN ONPUT iodefPUT o 3 J‘ TableMUX
Y . [kBOR] v | | eFVectorMUX
ADDR.CTL. | | ' Y ector
MEMORY LOG ke DSR_| 8
J(z ‘ ‘ I R N [R L INTV
8
MEM.EN <1—‘ %00
8
x01
U3 A0z
Figure C.8 LC-3 data path, including additional structures for interrupt control.

Section C.7.1 describes the flow of processing required to initiate an interrupt.
Section C.7.3 describes the flow of processing required to initiate an exception.

C.7.1 Initiating an Interrupt

While a program is executing, an interrupt can be requested by some external
event so that the normal processing of instructions can be preempted and the con-
trol can turn its attention to processing the interrupt. The external event requests

C.7 Interrupt and Exception Control

the event that causes the program that is executing to stop. Interrupts are events
that usually have nothing to do with the program that is executing. Exceptions are
events that are the direct result of something going awry in the program that is exe-
cuting. The LC-3 specifies three exceptions: a privilege mode violation, an illegal
opcode, and an ACV exception. Figure C.7 shows the state machine that carries
these out. Figure C.8 shows the data path, after adding the additional structures
to Figure C.3 that are needed to make interrupt and exception processing work.

MAR<-PC
PC <-PC+1
set ACV
[INT]

30

IR<-MDR
8 + 32

MAR<—-SP RTUBEN<—IR[11]&N + IR[10]&Z + IR[9]&P
[PSR[15]] [IR[15:12]]
| =TTV ELVNN

See Figure C.2

Table <— x01

Vector <— INTV

PSR[10:8] <— Priority
MDR <— PSR
PSR[15]<-0

[PSR[15]]
0

44 15

Table <— x01 Table <— x00 Table <— x01
Vector <— x00 PC <— PC+1 Vector <— x01
A 39 | MDR <— PSR MDR <- PSR MDR <- PSR R

PSR[15] <=0 PSR[15] <-0

[PSR[15]]

Vector <— IR[7:0]
PSR[15] <-0
[PSR[15]]

4 40 To 45

' 4 [ACV] 5
SP<—SP+1 v
[PSR[15]] MAR<—Table’ Vector
0 48
56
57| Vector < v 53
51 A 59 60/ MDR <
Nothing Saved_SSP<—SP 61| PSR[15] <— 0 MDR@
othing SP<—Saved_USP X
‘ To 45 A 55
e o PC<—MDR

To 18

Figure C.7 LC-3 state machine showing interrupt control.

