
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2019
Yale Patt, Instructor
TAs: Sabee Grewal, Arjun Ramesh, Joseph Ryan, Chirag Sakhuja, Meiling Tang, Grace Zhuang
Final Exam, December 13, 2019

Name:

Part A:

Problem 1 (10 points):

Problem 2 (10 points):

Problem 3 (10 points):

Problem 4 (10 points):

Problem 5 (10 points): Part A (50 points):

Part B:

Problem 6 (25 points):

Problem 7 (20 points):

Problem 8 (20 points):

Problem 9 (20 points): Parb B (85 points):

Total (135 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space
provided.

Note: Please be sure your name is recorded on each sheet of the exam.

I will not cheat on this exam.

Signature

GOOD LUCK!

(HAVE A GREAT SEMESTER BREAK)

Solution

Name:

Problem 1. (10 points):

Part a. (2 points): How many of the 15 LC-3 instructions assert the LD.MDR control signal during its instruction cycle?
Explain in 10 words or fewer.

Part b. (2 points): An Aggie is trying to assemble a program but the program won’t assemble. The assemble-time
error reads ”LD R0, A. error: cannot encode as 9-bit 2’s complement integer”. What’s the
issue? Explain in 20 words or fewer.

Part c. (2 points): At the end of the clock cycle in which state 18 is executed, why does the MAR contain the value of the
PC at the start of the clock cycle, and not the value PC+1 since 1 is added to the PC during the clock cycle? Explain in 25
words or fewer. Be specific.

Part d. (4 points): A student decides to design the RLC-1 (Really Little Computer 1). RLC-1 instructions will be 8 bits
wide and use 3 bits for the opcode. Additionally, the RLC-1 will have 4 general purpose registers.

How many instructions are in the RLC-1 ISA?

The student wants the RLC-1 ISA to include an instruction that does the following: DR <-- SR1 + SR2. Can the
RLC-1 have such an instruction? Explain in 20 words or fewer.

2

15 because LD MDR is asserted duringfetch

The label A is too farfromthe instruction

Flipflopsareedgetriggered so PCand MDRchangesimultaneously

cyanbe

23 8

No because each register takes 2 bits to encode so anything
of this formatwould require 9 bits

Name:

Problem 2. (10 points):

Consider the following program written in LC-3 assembly language:

.ORIG x3000
AND R5, R5, #0
LEA R0, ARRAY
LD R1, N
LDR R2, R0, #0
NOT R2, R2
ADD R2, R2, #1

LOOP LDR R3, R0, #0
ADD R3, R3, R2
BRnp DONE
ADD R0, R0, #1
ADD R1, R1, #-1
BRp LOOP

ADD R5, R5, #1
DONE ST R5, OUTPUT

HALT

ARRAY .BLKW #20
N .FILL #20
OUTPUT .BLKW #1

.END

What must be the case for 1 to be stored in OUTPUT? Answer in 15 words or fewer.

3

When all theelements in ARRAY are the same

Name:

Problem 3. (10 points):

In each of the five small programs below, assume M[x4000] has been initialized with a value before the programs are run.
The value may represent a 2’s complement integer, an address, an ASCII code, a bit vector, a floating point number, or
an instruction. For each of the five programs below, put an ⇥ in the box corresponding to what the value in M[x4000]
represents.

Part a. (2 points):

.ORIG x3000
LDI R0, A
OUT
HALT

A .FILL x4000
.END

⇤ 2’s Complement Integer
⇤ Address
⇤ ASCII Code
⇤ Bit Vector
⇤ Floating Point
⇤ Instruction

Part b. (2 points):

.ORIG x3000
LDI R0, B
LDR R1, R0, #0
HALT

B .FILL x4000
.END

⇤ 2’s Complement Integer
⇤ Address
⇤ ASCII Code
⇤ Bit Vector
⇤ Floating Point
⇤ Instruction

Part c. (2 points):

.ORIG x3000
LDI R0, C
NOT R0, R0
ADD R0, R0, #1
HALT

C .FILL x4000
.END

⇤ 2’s Complement Integer
⇤ Address
⇤ ASCII Code
⇤ Bit Vector
⇤ Floating Point
⇤ Instruction

Part d. (2 points):

.ORIG x3000
LDI R0, D
PUTS
HALT

D .FILL x4000
.END

⇤ 2’s Complement Integer
⇤ Address
⇤ ASCII Code
⇤ Bit Vector
⇤ Floating Point
⇤ Instruction

Part e. (2 points):

.ORIG x3000
LD R0, E
JSRR R0
HALT

E .FILL x4000
.END

⇤ 2’s Complement Integer
⇤ Address
⇤ ASCII Code
⇤ Bit Vector
⇤ Floating Point
⇤ Instruction

4

X

X

X

X

X

Name:

Problem 4. (10 points):

Part a. (5 points): A logic circuit and incomplete truth table are shown below. The logic circuit has three inputs: A, B,
and C.

Your job: Complete the truth table so that it reflects the behavior of the logic circuit.

A B C Z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

5

0
I
O
l
O
O
O
I

Name:

Part b. (5 points): A multi-output truth table and a logic circuit are shown below. The logic circuit is missing all the
connections from the outputs of the AND gates to the inputs of the OR gates.

Your job: Draw the connections so that the logic cirucit implements the truth table.

A B C P Q

0 0 0 0 1

0 0 1 0 0

0 1 0 1 0

0 1 1 0 0

1 0 0 1 0

1 0 1 1 1

1 1 0 0 0

1 1 1 0 1

6

Name:

Problem 5. (10 points):

A synchronous finite state machine has a single input and a single output. One input value is provided each cycle. The
output of the finite state machine is 1 each time the input provided is different from the previous value, i.e., from 0 to 1,
or from 1 to 0. The synchronous finite state machine outputs 0 at all other times.

Your job: Complete the synchronous finite state machine.

We have provided twelve states. Use as many as you need. We have also provided the initial state (shown in bold) and a
few of the state transitions and corresponding outputs.

0 1

0

0 0 1

7

D

E O

Name:

Problem 6. (25 points):

Part a. (5 points): Shown below are a main program starting at M[x3000] and a keyboard interrupt routine starting at
M[x1000]. Before the main program was run, the operating system enabled interrupts and loaded M[x0180] with x1000.

.ORIG x3000
LOOP BR LOOP

HALT
.END

.ORIG x1000
ST R0, SaveR0
LDR R0, R6, #0
ADD R0, R0, #1
STR R0, R6, #0
LD R0, SaveR0
RTI

SaveR0 .BLKW #1
.END

A key is pressed. Does the main program halt? Why or why not? Explain in 20 words or fewer.

Part b. (5 points): An Aggie tried to write a recursive subroutine which, when given an integer n, returns the sum of the
first n positive integers. For example, for n = 4, the subroutine returns 10 (i.e., 1 + 2 + 3 + 4). The subroutine takes the
argument n in R0 and returns the sum in R0.

SUM ADD R6, R6, #-1
STR R7, R6, #0
ADD R6, R6, #-1
STR R1, R6, #0

ADD R1, R0, #0
ADD R0, R0, #-1
JSR SUM
ADD R0, R0, R1

LDR R1, R6, #0
ADD R6, R6, #1
LDR R7, R6, #0
ADD R6, R6, #1
RET

Unfortunately, the recursive subroutine does not work. What is the problem? Explain in 15 words or fewer.

8

Yes because the service routine increments the return address
on thestack poppedduring RTI

There is no base case

Name:

Part c. (5 points): The LC-3 contains the following logic.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSR MAR

X

When does X = 1? Answer in 15 words or fewer.

9

Name:

Part d. (10 points): A binary tree is made up of nodes that contain values and pointers to at most two other nodes. An
example is shown below.

ID: 7
Chirag

ID: 5
Meiling

ID: 8
Arjun

ID: 3
Grace

ID: 12
Sabee

ID: 15
Joseph

Each node can point to a node to the left and/or a node to the right. These nodes are referred to as the left child and right
child respectively. In our example above, the node labeled “Sabee” has a left child “Arjun”, a right child “Joseph”, and an
ID 12. If a binary tree has the property that for every node, its value is greater than the value of its left child and less than
the value of its right child, it is called a binary search tree.

Note that the figure shown above is a binary search tree. Specifically, for every node, the ID is greater than the ID of its
left child and less than the ID of its right child.

The binary search tree shown above can be implemented as shown on the following page.

10

Name:

7

5

3 8

12

15

‘H’

‘C’

‘R’

‘I’

‘G’

‘A’

x0000

‘E’

‘M’

‘L’

‘I’

‘N’

‘I’

x0000

‘R’

‘G’

‘C’

‘A’

‘E’

x0000

‘R’

‘A’

‘U’

‘J’

‘N’

x0000

‘O’

‘J’

‘E’

‘S’

‘H’

‘P’

x0000

‘G’

‘A’

‘S’

‘E’

‘B’

‘E’

x0000

x4000

x0000

x0000

x0000

x0000 x0000

x0000

x0000

Each node consists of four contiguous words of memory. The first word contains the ID, the second word is a pointer to a
character string, identifying the person represented by the node, the third word contains a pointer to the left child, and the
fourth word contains a pointer to the right child. If there is no left (or right) child, that word contains x0000. A list head
(in this case location x4000) contains a pointer to (i.e., the address of) the top node (called the root) of the binary search
tree. In this case, the root is the node labeled “Chirag.”

11

Name:

Given an ID in R0, the following subroutine finds the name of the person associated with that ID, and loads the address
of the character string of that person into R5. Note that some instructions in the subroutine are missing.

Your job: Fill in the missing instructions. You can assume that the binary search tree contains the node whose ID is in R0.

.ORIG x3100
SEARCH ST R1, SaveR1

ST R2, SaveR2
ST R3, SaveR3
NOT R0, R0
ADD R0, R0, #1

LOOP LDR R2, R1, #0
ADD R3, R0, R2
BRz A
BRp B

BR LOOP
B

BR LOOP
A

LD R1, SaveR1
LD R2, SaveR2
LD R3, SaveR3
RET

ROOT .FILL x4000
SaveR1 .BLKW #1
SaveR2 .BLKW #1
SaveR3 .BLKW #1

.END

12

IDI RI ROOT

LDR RI RI 3

LDR RI RI 2

LDR RS RI I

Name:

Problem 7. (20 points):

In the following subroutine, arguments are passed in R0 and R1, and the result is returned in R0 and R1.

.ORIG x4000
ST R2, SAVER2
AND R2, R2, #0
NOT R1, R1
ADD R1, R1, #1

LOOP ADD R0, R0, R1
BRn DONE
ADD R2, R2, #1
BRnzp LOOP

DONE NOT R1, R1
ADD R1, R1, #1
ADD R1, R0, R1
ADD R0, R2, #0
LD R2, SAVER2
RET

SAVER2 .BLKW #1

Part a. (10 points): What does the subroutine do? Answer in 15 words or fewer.

13

Divide ROIbyRl andstore quotient in RIOand remainder
in Rl

Name:

Part b. (10 points): Before the program is executed, R0 is initialized to 5, and R1 is initialized to 3.

Your job: Fill in the missing entries. Register values should show the values loaded at the END of the cycle. Control
signals should be represented by “x” if they are “don’t cares.” Memory accesses take five cycles.

GatePC

Bus

1 18

3

11

26

34

66

67

0

GateALU

GateMARMUX

PCMUXLD.MAR

LD.PC

LD.MAR ADDR1MUX

ADDR2MUX

GatePC

GatePCLD.MDR SR2MUX

ALUK

MAR

MDR

MIO.EN

R.W

Bus GatePCLD.MDR SR2MUX

IR GateMDR

GatePC

LD.IR

IR

PC

1

1

0

Clock
Cycle State Information

LD.REG GateALU

GateALULD.REG

1

LD.MDR GateMARMUX

R 1

LD.PC

14

I 1 I O
l O

0

400E O O
lo o l O 1

I 0 X23 I 1
4001

23 28 X5490

0000 O O I5 I 1
927F I I30 O 0

8002
4006

18

Name:

Problem 8. (20 points):

We use the unused opcode to introduce an LSHF instruction to the LC-3 with the instruction encoding shown below.

1 11 0 SR

15 12 6 51113 9 710 814 14 23 0

DR 0 0 amnt4

The LSHF instruction left shifts the value in SR by the number of bits specified by amnt4, and stores the result into DR.
As you recall from Programming Lab 1, when you shift n bits to the left, you insert n 0’s from the right.

The modifications to the data path and state machine to implement the LSHF instruction are shown on the following two
pages.

Part a. (15 points): Fill in the empty boxes in the incomplete state machine to implement the LSHF instruction.

Part b. (5 points): Fill in the control signals for the states labeled B, D, and E on the state machine. If the value of a
control signal does not matter, fill it with an X.

State E

State D

State B

A
M

U
X

A
L
U

K

A
D

D
R

2
M

U
X

A
D

D
R

1
M

U
X

G
a

te
Im

m

G
a

te
IR

G
a

te
M

A
R

M
U

X

G
a

te
A

L
U

G
a

te
P

C

L
D

.P
C

L
D

.C
C

L
D

.R
E

G

L
D

.I
R

L
D

.M
A

R

L
D

.M
D

R

PROBLEM CONTINUES ON NEXT PAGE

15

O O O O I 0 O O O O 1 X x x X X X

0 O O I 0 O O I 0 O O X X X 0 O l

O O I 0 O O O O O I 0 X X X X X X

Name:

The modifications to the data path are shown below in bold.

!"!#$%

#&'(&')*(&'

+,$

++$-.+$

/++$0 1'20
2#3)1

3456!+$

!+$ 2+0!+$

)*!&7

!/$ 2+0!/$

8

-.,$

!)#0"*

$

!"!0"*

$09 !)#0"*

,"7',"7'

,"7'

,"7'
:;<=>

:?<=>

:@=<=>

A@

3456!/$!&7

@B

@B
@B

@B

@B

@B

@B@B

@B

@B

@B

@B@B

@B

/2&

. /

3456/2&

@B

,$8!&7

(1

A

)$

C"7'

$
* C (

2#3)1

,$8
#&'

,$@
#&'

$"3

D)2"

:E<=>

8

(1!&7

2+011

3456(1

2+0(1

2+0)$

!/$!&7

/2&-

@B

@B

@B

@B
F

F F

8

:G<=>
:;>

=

/++$@!&7

8

/++$8!&7

,$@,$8

2+0$"3

+$

1#*'$#2

H@

3456)$

@B

@B

@B

/!&7
= @

3456)II

@B

PROBLEM CONTINUES ON NEXT PAGE

16

Name:

BEN <- IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

32

To

1101

0

1

A

B

C

D

E

17

DR SR

Bus imma
set cc

p 18

DR DR DR

IR IR I

Name:

Problem 9. (20 points):

The LC-3 computer executes a program, starting with the fetch of the first instruction in clock cycle 1. The table below
shows the use of the bus in several clock cycles. Memory accesses take five clock cycles.

Your job: Fill in the missing entries with the values on the bus during those clock cycles.

Clock Cycle Bus
1

8 xE1FF

10

11

18 x3000

20

21 x5020

27

34 x5020

36 x0000

37

40 x2FFF

47

53 x0180

60 x1000

67 x8000

85

18

X5020

5020

X5021

5022

5022

5023

x 2FFE

x 5023

714 appendix C The Microarchitecture of the LC-3

MEMORY

OUTPUTINPUT

DSR

DDRKBDR
ADDR. CTL.

LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

MEM.EN

R MIO.EN

ZEXT

2

16

SEXT
[10:0]

SEXT

SEXT
[5:0]

SEXT
[8:0]

16 16 16 16

16

IR LD.IR

16

8

8

INTV

8

x01

x01

Z PN

R

16

16

16

ACV
LD.ACV

16

PrivLD.Priv

PSRMUX

Set.Priv [15]

2
ALUK

SPMUX

16 16

SR2MUX

Sa
ve

d.
SS

P

Sa
ve

d.
US

P

+1 −1LD
.S

av
ed

US
P

LD
.S

av
ed

SS
P

16

DR
3

16

16161616

16
GateALU GateSP

x00

x00

x02

8

8

VectorMUX

+

MARMUX

LOGIC

CONTROL LOGIC

PCLD.PC

GatePC−1

REG
FILE

SR2 SR1
OUTOUT

LD.REG

SR 2 SR1

GatePSR

[2:0]LD.C C

INT

LOGIC

PSRMUX 3

16 [2:0]
[10:8]

GatePSR[10:8]
PSRMUX

LD.Priority

Interrupt
Priority

GatePSR

A>B
B

A

ALU
AB

[4:0]

ADDR2MUX

2

0

16

[7:0]

16
2 +1

−1

GatePC

PCMUX

GateMARMUX

33

ADDR1MUX

[5]

[15]

3

GateVector

[7:0][15:8]
Table Vector

TableMUX

Priority

2

[7:0]

TableMUX

LD.Vector

Figure C.8 LC-3 data path, including additional structures for interrupt control.

Section C.7.1 describes the flow of processing required to initiate an interrupt.
Section C.7.3 describes the flow of processing required to initiate an exception.

C.7.1 Initiating an Interrupt
While a program is executing, an interrupt can be requested by some external
event so that the normal processing of instructions can be preempted and the con-
trol can turn its attention to processing the interrupt. The external event requests

C.7 Interrupt and Exception Control 713

the event that causes the program that is executing to stop. Interrupts are events
that usually have nothing to do with the program that is executing. Exceptions are
events that are the direct result of something going awry in the program that is exe-
cuting. The LC-3 specifies three exceptions: a privilege mode violation, an illegal
opcode, and an ACV exception. Figure C.7 shows the state machine that carries
these out. Figure C.8 shows the data path, after adding the additional structures
to Figure C.3 that are needed to make interrupt and exception processing work.

[INT]
set ACV

PC <− PC + 1
MAR<−PC

[ACV]

IR<−MDR

BEN<−IR[11]&N + IR[10]&Z + IR[9]&P
[IR[15:12]]

49

15

37

45

51 59

18

28

33

To 60

30

32

MDR<−M
R

R

0

0 1

1

Write

R

Write

R

MDR<−M
R

PC<−MDR

41

46

47
43

34

13

52

54

53

55

TRAP

RTI

MDR<−M
R

MDR<−M
R

R

To 18

To 37 To 45

To 18 To 18

To 45

To 45

To 37 To 45

11018

48
56

61
60
57

44

36

38

39

40

42

See Figure C.2R

R

R

R

PSR[15] <− 0

PSR[15] <− 0

Vector <− INTV
Table <− x01

Table <− x01Table <− x01

Table <− x01

Vector <− IR[7:0]

Table <− x00

MDR <− PSR

MDR <− PSR

PSR[10:8] <− Priority

PC <− PC+1

MDR <− PC−1

MAR, SP<− SP−1

MAR, SP<−SP−1

MAR<−Table’Vector

PC<−MDR

MAR, SP<−SP + 1

PSR<−MDR

0
0

0

0

0

1

1

1

1

1

Saved_SSP<−SP

SP<−SP+1

Nothing Saved_SSP<−SP

MAR<−SP [PSR[15]]

SP<−Saved_USP

[PSR[15]]

[PSR[15]]

[PSR[15]]

SP<−Saved_USP

[PSR[15]]

Vector <− x00
MDR <− PSR
PSR[15] <− 0

Vector <− x01

Vector <− x02

PSR[15] <− 0

PSR[15] <− 0

MDR <− PSR

MDR <− PSR

[ACV]

Figure C.7 LC-3 state machine showing interrupt control.

