Department of Electrical and Computer Engineering

The University of Texas at Austin

EE 306, Fall 2021
Yale Patt, Instructor
TAs: Sabee Grewal, Ali Fakhrzadehgan, Ying-Wei Wu, Michael Chen, Jason Math, Adeel Rehman Exam 1, October13, 2021

Name: Sfudent
Problem 1 (25 points): 25
Problem 2 (15 points): 15
Problem 3 (15 points): 15
Problem 4 (20 points): 20
Problem 5 (25 points): 25
Total (100 points) \qquad

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

I will not cheat on this exam.

Signature

Name: \qquad

Problem 1. (25 points):
Part a. (5 points): Which of the 15 opcodes in the LC-3 set condition codes?

$$
A N D, A D D, N O T, L D, L D R, L D I
$$

Part b. (5 points): In class we learned that a bit is a number with one of two possible values: 0 or 1 . Similarly, a trit is a number with one of three possible values: 0,1 , or 2 . Given n trits, how many unique items can we represent?

Part c. (5 points): 42 is a base- 5 number. We want you to convert it to binary, decimal, and hexadecimal. Fill the boxes below.

Part d. (5 points): For the transistor-level circuit below, fill in the truth table.

A	B	C	OUT
0	0	0	1
0	0	1	0
0	1	0	।
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Name: \qquad

Part e. (5 points): We want to design a logic function with three 1-bit inputs (A, B, C) and two 1-bit outputs (Even, Odd) with the following behavior:

- Even $=1$ if an even number of input bits are set to 1 .
- $\operatorname{Odd}=1$ if an odd number of input bits are set to 1 .

Complete the truth table for this logic function. (Note: zero is an even number.)

A	B	C	Even	Odd
0	0	0	1	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	।	0
1	1	0	1	0
1	1	1	0	1

We can implement this logic function with a PLA. Complete the PLA shown below by connecting the necessary outputs of the AND gates to the appropriate inputs of the OR gates.

Name: \qquad

Problem 2. (15 points):
An LC-3 program is stored in memory locations x 4000 to x 4005 . Note that the branch instruction in memory location x 4002 has an unspecified PCoffset 9 , denoted as X.

Address	Instruction				
x 4000	0101	000	000	1	00000
x 4001	00001	000	000	1	00001
x 4002	0000	011	X		
x 4003	0001	000	000	1	00010
x 4004	00001	000	000	1	00011
x 4005	1111	0000	0010	0101	

The program starts executing with $\mathrm{PC}=\mathrm{x} 4000$.
Your job: In the table below, for each value of X, answer the question: "Does the program halt?" (Yes or No). If your answer is "Yes", answer the question: "What value is stored in R0 immediately after the instruction at x4004 completes execution?" If your answer is "No", put a dash in the column labeled "Value stored in R0".

\mathbf{X}	Does the program halt?	Value stored in R0
000000010	Yes	1
000000001	Yes	4
000000000	Yes	6
111111111	N_{0}	-
111111110	Yes	$\times 8005\left(=-2^{15}+5\right)$

Name: \qquad

Problem 3. (15 points):
Rock/paper/scissors is a two-person game which most of you played in your childhood. During each round of the game, the two players simultaneously form one of three SHAPES (rock, paper, or scissors) with an outstretched arm. If one player shows rock and the other shows scissors, the player showing rock wins (since rock crushes scissors). Similarly paper covers rock, and scissors cuts paper. If both players choose the same shape, the round ends in a draw. The players continue to play rounds as long as they wish to play the game.

Dr. Patt has devised a strategy for rock/paper/scissors. The strategy is as follow:

- He always plays "rock" in the first round.
- He plays the same shape again unless he lost the last two rounds. In that case, he plays the shape his opponent played in the previous round.

Your job: Construct a finite state machine for what Dr. Patt should play in the current round. The input is the shape that his opponent plays in the current round. On your finite state machine designate "rock" as "R", "paper" as "P", and "scissors" as "S". (We have provided 12 states. You will not need all of them. Use as many as you need.)

Note: Your finite state machine will not provide any signals to designate the winner or loser of a round. It will also not designate when the players stop playing the game.

Hint: If Dr. Patt plays the same shape as his opponent, the round ends in a draw (i.e., Dr. Patt did not lose that round).

Name: \qquad

Problem 4. (20 points):
The program below sets the nth bit of the 16 -bit bit vector stored in x30A0. Before the program executes, a separate program stores n into R0, which designates the bit in the bit vector that this program is asked to set. The program loads the bit vector into a register, sets the nth bit, and stores the bit vector back into x30A0. You will note that the program is missing four instructions.

For example, if R0 contains the value " 2 " and the bit vector 0101000001010000 is contained in memory location x30A0, then the program will store the bit vector 0101000001010100 in memory location x30A0.

Your job: Complete the program by filling in the instructions needed in memory locations x3002, x3007, x300A, and x300B to make the program work as specified above.

Alternative solutions for $\times 3007$:
(2) 0000001111111100
(3) 0000101111111100
(4) 0000011111111100
(5) 0000111111111100
(b) 0000001111111011
(7) 0000101111111011
$0000 \quad 011111111011$
0000111111111011

These could be any register, as
long as they are the same.

Note: at $\times 3003$, it is also acceptable to have put $R O E \operatorname{NOT}\left(R_{2}\right)$. In that case, the answer to part b would
Name: \qquad

Problem 5. (25 points): be "No, since the program does not have a Halt instruction."

Memory locations x3000 to x 3005 contain six instructions. Note they are partially filled in.

Also acceptable at $\times 3002$:

 0101000010000001| Address | Instruction | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| x 3000 | 0010 | 0010 | -1111 | 1111 | |
| x 3001 | 0010 | 0100 | $\ldots 11$ | 111 | |
| x 3002 | 0101 | 000 | 001 | 000 | 010 |
| x 3003 | 1001 | 000 | 000 | 11111 | |
| x 3004 | 0011 | 0000 | 0000 | 0000 | |
| x 3005 | 0000 | 0000 | 0000 | 0000 | |

If memory location $x 3100$ is the only memory location that contains $x 0 F F F$ and memory location x3101 contains xCFDA and the program starting at location x3000 starts executing, the contents of the PC, MAR, MDR, IR, R0, R1, and R2 AFTER each instruction is executed are shown below:

Part a. (20 points): Fill in the remaining entries in both tables above.
Part b. (5 points): If the program starts executing with the initial value of the $\mathrm{PC}=\mathrm{x} 3000$, will the program halt (Yes /No)? Explain in 15 words or fewer. Overly-generic answers will earn zero points.

Yes, the instruction at $\times 3004$ stares HALT to $\times 3005$, which is then executed.

