
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2021
Yale Patt, Instructor
TAs: Sabee Grewal, Ali Fakhrzadehgan, Ying-Wei Wu, Michael Chen, Jason Math, Adeel Rehman
Final Exam, December 10, 2021

Name:

I would like to enroll in Professor McDermott’s freshman design course in Spring 2022. Circle one: Yes No

I would like to enroll in 319K/312H in Spring, 2022. Circle one: Yes No

Part A:

Problem 1 (10 points):

Problem 2 (10 points):

Problem 3 (10 points):

Problem 4 (10 points):

Problem 5 (10 points): Part A (50 points):

Part B:

Problem 6 (20 points):

Problem 7 (20 points):

Problem 8 (20 points):

Problem 9 (20 points): Parb B (80 points):

Total (130 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space
provided.

Note: Please be sure your name is recorded on each sheet of the exam.

I will not cheat on this exam.

Signature

GOOD LUCK!
(HAVE A GREAT SEMESTER BREAK)



Name:

Problem 1. (10 points):

Part a. (2 points): The instructions in an ISA all have 8 bit opcodes. How many instructions can be specified in this ISA?

Part b. (2 points): An Aggie decided to debug their program by replacing each occurrence of the instruction LD R0, A
with the two instruction sequence

AND R0, R0, #0
LD R0, A

How likely will this fix the problem so the program runs successfully? Explain in 10 words or fewer.

Part c. (6 points): An assemble time error occurs when the assembler fails to generate machine code (0s and 1s). A
runtime error occurs during the actual execution of the program (e.g., an ACV or illegal opcode exception).

Your Job: In the following programs, if an error is present, identify whether it is an assemble time or runtime error, and
specify the line number of the instruction that causes the error. If there is no error in the program, check “No Error” and
leave the line number blank. Since TRAP service routines are part of the operating system, we will assume today that they
contain no errors.

1 .ORIG x3000
2 AND R0, R0, #0
3 LEA R1, #0
4 LDR R2, R0, R1
5 HALT
6 .END

□ Assemble Time Error
□ Runtime Error
□ No Error

Line Number:

1 .ORIG x3000
2 LD R0, TEXT
3 OUT
4 HALT
5 TEXT .STRINGZ "UT ECE"
6 .END

□ Assemble Time Error
□ Runtime Error
□ No Error

Line Number:

1 .ORIG x3000
2 AND R0, R0, #0
3 .FILL xDDDD
4 HALT
5 .END

□ Assemble Time Error
□ Runtime Error
□ No Error

Line Number:

2



Name:

Problem 2. (10 points):

The following LC-3 assembly language program operates on an array containing N elements. The number of elements N
is contained in memory location x3200, and the base address of the array is contained in memory location x3201.

.ORIG x3000
LDI R0, N
BRz DONE
LDI R1, ARRAY

LOOP LDR R2, R1, #0
BRzp SKIP
NOT R2, R2
ADD R2, R2, #1
STR R2, R1, #0

SKIP ADD R1, R1, #1
ADD R0, R0, #-1
BRp LOOP

DONE HALT

N .FILL x3200
ARRAY .FILL x3201

.END

What does this program do? Answer in 15 words or fewer.

3



Name:

Problem 3. (10 points):

A logic circuit is shown below. The logic circuit has three inputs: A, B, and C.

PROBLEM CONTINUES ON NEXT PAGE

4



Name:

Part a. (5 points): Complete the truth table so that it reflects the behavior of the logic circuit.

A B C Z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Part b. (5 points): Implement the logic circuit using the PLA below.

5



Name:

Problem 4. (10 points):

In class, we learned that a pointer is simply a memory address. For example, we say “R1 is a pointer” when the 16-bit
value contained in R1 represents a memory address. We dereference a pointer when we load the contents of the memory
address pointed to by a pointer. We’ve seen this multiple times in class. For example, with linked lists. Each node con-
tained a pointer to the next node. We dereferenced the pointer when we wanted to move on to the next node.

Consider an array of pointers, each of which points to a different element of the array. Assume that this array always
contains a single element that is the null pointer x0000. Also, assume that if you start at the first pointer in the array, you
will always reach the null pointer x0000. An example is shown below.

Below is a program written in LC-3 assembly language that counts the number of pointers we need to dereference until
we hit the null pointer, starting from the first pointer in the array. The LC-3 program assumes that the array starts at
memory location x3200 and stores the answer in the memory location labelled RESULT. Given the example above, the
LC-3 program would store a 5 in the memory location labelled RESULT. Note that some instructions are missing.

Your Job: Fill in the missing instructions.

.ORIG x3000
AND R0, R0, #0
LDI R1, ARRAY

LOOP BRz DONE

BRnzp LOOP
DONE ST R0, RESULT

HALT
ARRAY .FILL x3200
RESULT .BLKW #1

.END

6



Name:

Problem 5. (10 points):

In this problem, we wish to design a finite state machine that detects whether or not the character string UTECE is present
in a sequence of characters.

We will input the sequence of characters to the finite state machine, one character at a time. The finite state machine will
output a 0 every cycle until it detects the sequence UTECE. If it never detects UTECE, it will never output a 1. If the finite
state machine detects the sequence UTECE, it will output a 1 every cycle thereafter.

Your Job: Complete the finite state machine. We have provided twelve states. Use as many as you need. For each state,
you must show the transition for every possible input. Luckily, only a small number of inputs will produce meaningful
transitions. The rest can be combined into an “Everything Else” input (“EE”, for short). For example, from the initial
state, the only relevant transition is if the input is “U” – all the other inputs can be combined into an “Everything Else”
transition. Finally, we have identified the final state (the double-circle) if UTECE is detected.

7



Name:

Problem 6. (20 points):

A student filling in the control store signals needed for each state of the LC-3 made some mistakes with state 1 and state
5. The result is shown in the table below. Some control signals are correct, some are incorrect. Assume all control signals
not shown are correct.

LD.REG LD.CC LD.PC GateALU PCMUX ALUK
State 1 1 1 1 1 0 1 0 0
State 5 1 0 0 1 0 0 0 1

Part a. (5 points): Fill in states 1 and 5, given the control signals specified in the above table.

PROBLEM CONTINUES ON NEXT PAGE

8



Name:

Part b. (15 points): Assume the following program is loaded in the memory of an LC-3 machine with the control signals
specified above and starts executing at x3000.

.ORIG x3000
0 LEA R0, NUM1
1 LDR R0, R0, #0
2 ADD R0, R0, #4
3 ADD R0, R0, #3
4 ADD R0, R0, #2
5 LOC ADD R0, R0, #1
6 AND R0, R0, #0
7 BRnp DONE
8 LD R0, NUM2
9 BRp LOC
A DONE HALT
B NUM1 .FILL x3002
C NUM2 .FILL x3009

.END

Your Job: In the table below, identify the line number of each instruction executed, and write the contents of R0 at the
end of execution of each instruction. Assume that R0 initially contains x0000. Use as many rows in the table as you need.

Line Number Value in R0
1st Instruction
2nd Instruction
3rd Instruction
4th Instruction
5th Instruction
6th Instruction
7th Instruction
8th Instruction
9th Instruction

10th Instruction

9



Name:

Problem 7. (20 points):

The subroutine SETN (shown on the next page) searches a 16-bit bit vector, starting with bit 0, looking for the first occur-
rence of N consecutive 0s, and sets those N bits to 1. R0 contains the address of the bit vector, R1 contains the number of
bits N. The subroutine returns in R2 the bit number of the first bit that is set. If SETN completes this task successfully, it
returns a 0 in R5. If SETN cannot find N consecutive 0s, it fails, and returns a 1 in R5. In the case SETN fails, R2 contains
garbage.

For example, if R0 = x4000, M[x4000] = 0000110000110100, and R1 = 3, SETN will set M[x4000] to 0000110111110100,
R2 to 6, and R5 to 0.

Four subroutines are provided to help you write SETN. (All of them may not be necessary.)

Subroutine One: INIT. INIT clears the bit vector pointed to by R0. For example, if R0 = x4000,
M[x4000] = xEB0A, INIT will set M[x4000] to x0000.

Subroutine Two: SET. SET sets the bit specified by R1 in the bit vector pointed to by R0. For example,
if R0 = x4000, M[x4000] = x0000, and R1 = 4, SET will set M[x4000] to x0010.

Subroutine Three: CLEAR. CLEAR clears the bit specified by R1 in the bit vector pointed to by R0.
For example, if R0 = x4000, M[x4000] = x7A03, and R1 = 0, CLEAR will set M[x4000] to x7A02.

Subroutine Four: EXAMINE EXAMINE sets R2 to the value (0 or 1) of the bit specified by R1 in the
bit vector pointed to by R0. For example, if R0 = x4000, M[x4000] = x8000, and R1 = 15, EXAMINE will
set R2 to 1.

Your Job: Fill in the missing instructions of the subroutine SETN shown on the next page.

PROBLEM CONTINUES ON NEXT PAGE

10



SETN AND R5, R5, #0
ST R3, SAVER3
ST R4, SAVER4

ST R1, N
AND R1, R1, #0
LD R3, N

LOOP1 BRz FOUND
ADD R4, R1, #-16
BRz FAILURE

ADD R2, R2, #0
BRp RESET_N
ADD R3, R3, #-1
BR LOOP1

RESET_N LD R3, N
BR LOOP1

FOUND ADD R1, R1, #-1
LD R3, N

LOOP2 BRz DONE

ADD R3, R3, #-1
BR LOOP2

FAILURE ADD R5, R5, #1
DONE ADD R2, R1, #1

LD R3, SAVER3
LD R4, SAVER4
LD R1, N

RET
N .BLKW #1
LINKAGE .BLKW #1
SAVER3 .BLKW #1
SAVER4 .BLKW #1

11



Name:

Problem 8. (20 points):

We wish to use the unused opcode 1101 to add a MUL instruction to the LC-3 ISA. The format is shown below:

The instruction multiplies the non-negative integers (i.e., integers that are greater than or equal to zero) that are in SR1
and SR2, puts the result in DR, and sets the condition codes (based on the value of the result). SR1, SR2, and DR are LC-3
general purpose registers. You should assume that DR is different from SR1 and SR2. To implement this instruction, we
must also use a special purpose register called TEMP.

Part a. (10 points): Complete the state machine to implement MUL.

PROBLEM CONTINUES ON NEXT PAGE

12



Name:

Part b. (10 points): Complete the data path to implement MUL by adding the necessary structures and control signals in
the spaces within the dotted lines.

13



Name:

Problem 9. (20 points):

A user program executing on an LC-3 computer takes 283 clock cycles to execute. The table below identifies nine of the
283 clock cycles during the execution of the program. Your job is to identify which state the computer is in during each
of the nine clock cycles and what the contents of the PC, PSR, MAR, and MDR are at the END of each of the nine clock
cycles. Assume memory accesses take 5 clock cycles. Assume that user programs run at PL0. Note that a part of this
problem is to figure out the starting address of the user program.

In case you forgot (or don’t have it on your three extra sheets), PSR[15] = 0 means privileged mode, and PSR[15] = 1
means user mode. PSR[10:8] specify the priority level of the program. PSR[2:0] specify the condition codes.

For counting clock cycles, use the complete state machine (i.e., the one that includes the states that test for ACV
exceptions).

Cycle State PC MAR MDR PSR
1 18 x0000
8 xE1FE
12 x0302
33 x01AB
41 x1A30 x103F
51 x8000
68 x3002
76 x6000
80

14



702 appendix C The Microarchitecture of the LC-3

To 18

R

R R

To 18
RR

M[MAR]<−MDR
16

To 18

[BEN]

PC<−PC+off9

0 0

1 22

To 18

set CC

1

To 18 DR<−SR1&OP2*
set CC

To 18
DR<−NOT(SR)

set CC

DR<−PC+off9

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

[ACV]

JSR

MAR<−MDR
set ACV

MAR<−PC+off9

JMP

BR

set ACV

[ACV]

MAR<−MDR
set ACV

MAR<−B+off6
set ACV

3
MAR<−PC+off9

set ACV

To 18

PC<−BaseR

1 0

12

4

21

To 18

20

To 18

[IR[11]]

PC<−PC+off11
R7<−PC

1101

PC<−BaseR
R7<−PC

0

1
0

[ACV]

RTI

1
33

MDR <− M

R

28

30
IR <− MDR

32

MAR<−PC+off9
set ACV

DR<−MDR
set CC

25

27

To 18

MDR<−M[MAR]

MAR<−PC+off9
set ACV

[ACV]

10

17

R

19

MDR<−SR
[ACV]

7

(See figure C.7)

(See figure C.7)

To 8

To 15

To 49
(See figure C.7)

01

To 48

0
To 57

1

R

MDR<−M[MAR]

R

MDR<−M[MAR]

To 56
0 1

R29
01

To 61

5

9

14

2

MAR<−B+off6
set ACV

11

24

6

26 31

35 23

AND
DR<−SR1+OP2*

To 13

ADD

LEA STR ST

[INT]
set ACV

PC <− PC + 1
MAR <− PC

*OP2 may be SR2 or SEXT[imm5]

LDRLD LDI STI
NOT

TRAP

18

NOTES
B+off6 : Base + SEXT[offset6]
PC+off9 : PC + SEXT[offset9]

(Addr<x3000 or Addr>=0xFE00)
ACV=
PC+off11 : PC + SEXT[offset11]

& PSR[15]

To 60

Figure C.2 A state machine for the LC-3.



704 appendix C The Microarchitecture of the LC-3

MEMORY

OUTPUTINPUT

DSR

DDRKBDR

ADDR. CTL.
LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

R

MEM.EN

R.W MIO.EN

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16 16 16

16

16

1616

16

16

16

1616

16

ALU
B A

GateALU

16

SR2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2
OUT

SR1
OUT

REG
FILE

[7:0]

2

PCMUX

LD.CC

GatePC

LD.PC

LD.IR

MARMUX

ALUK

16
16

16

16 3

3 3

2

[4:0]
[5]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

CONTROL

Figure C.3 The LC-3 data path.



656 appendix A The LC-3 ISA

BaseR 000000

DR

DR SR 111111

000000000000

SR

BaseR offset6

0000 trapvect8

0 00 BaseR 000000

1 PCoffset11

PCoffset9

PCoffset9

PCoffset9

PCoffset9STI

STR

TRAP

reserved

0123456789101112131415

zn p

DR SR1 1 imm50101

0000

000

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

DR

DR

1100

1010

0110

1110

1001

1100

1000

0011

BaseR offset6

000 111 000000

SR1011

0111

1111

1101

SR

0100

DR0010

0100

PCoffset9

PCoffset9

BR

AND+

ADD+

ADD+

AND+

JMP

LD+

LDI+

LDR+

LEA

NOT+

RET

RTI

ST

JSRR

JSR

Figure A.2 Format of the entire LC-3 instruction set. Note: + indicates instructions that
modify condition codes



C.7 Interrupt and Exception Control 713

the event that causes the program that is executing to stop. Interrupts are events
that usually have nothing to do with the program that is executing. Exceptions are
events that are the direct result of something going awry in the program that is exe-
cuting. The LC-3 specifies three exceptions: a privilege mode violation, an illegal
opcode, and an ACV exception. Figure C.7 shows the state machine that carries
these out. Figure C.8 shows the data path, after adding the additional structures
to Figure C.3 that are needed to make interrupt and exception processing work.

[INT]
set ACV

PC <− PC + 1
MAR<−PC

[ACV]

IR<−MDR

BEN<−IR[11]&N + IR[10]&Z + IR[9]&P
[IR[15:12]]

49

15

37

45

51 59

18

28

33

To 60

30

32

MDR<−M
R

R

0

0
1

1

Write

R

Write

R

MDR<−M
R

PC<−MDR

41

46

47
43

34

13

52

54

53

55

TRAP

RTI

MDR<−M
R

MDR<−M
R

R

To 18

To 37 To 45

To 18 To 18

To 45

To 45

To 37 To 45

1101
8

48
56

61
60
57

44

36

38

39

40

42

See Figure C.2R

R

R

R

PSR[15] <− 0

PSR[15] <− 0

Vector <− INTV
Table <− x01

Table <− x01Table <− x01

Table <− x01

Vector <− IR[7:0]

Table <− x00

MDR <− PSR

MDR <− PSR

PSR[10:8] <− Priority

PC <− PC+1

MDR <− PC−1

MAR, SP<− SP−1

MAR, SP<−SP−1

MAR<−Table’Vector

PC<−MDR

MAR, SP<−SP + 1

PSR<−MDR

0
0

0

0

0

1

1

1

1

1

Saved_USP<−SP

SP<−SP+1

Nothing Saved_SSP<−SP

MAR<−SP [PSR[15]]

SP<−Saved_SSP

[PSR[15]]

[PSR[15]]

[PSR[15]]

SP<−Saved_USP

[PSR[15]]

Vector <− x00
MDR <− PSR
PSR[15] <− 0

Vector <− x01

Vector <− x02

PSR[15] <− 0

PSR[15] <− 0

MDR <− PSR

MDR <− PSR

[ACV]

Figure C.7 LC-3 state machine showing interrupt control.

Note: we have fixed state 45 
in this handout. State 45 in 
the textbook is not correct.



C.3 The Data Path 705

Table C.1 Data Path Control Signals

Signal Name Signal Values

LD.MAR/1: NO, LOAD
LD.MDR/1: NO, LOAD

LD.IR/1: NO, LOAD
LD.BEN/1: NO, LOAD
LD.REG/1: NO, LOAD

LD.CC/1: NO, LOAD
LD.PC/1: NO, LOAD

LD.Priv/1: NO, LOAD
LD.Priority/1: NO, LOAD

LD.SavedSSP/1: NO, LOAD
LD.SavedUSP/1: NO, LOAD

LD.ACV/1: NO, LOAD
LD.Vector/1: NO, LOAD

GatePC/1: NO, YES
GateMDR/1: NO, YES
GateALU/1: NO, YES

GateMARMUX/1: NO, YES
GateVector/1: NO, YES

GatePC-1/1: NO, YES
GatePSR/1: NO, YES

GateSP/1: NO, YES

PCMUX/2: PC+1(00) ;select pc+1
BUS (01) ;select value from bus
ADDER (10) ;select output of address adder

DRMUX/2: 11.9 (00) ;destination IR[11:9]
R7 (01) ;destination R7
SP (10) ;destination R6

SR1MUX/2: 11.9 (00) ;source IR[11:9]
8.6 (01) ;source IR[8:6]
SP (10) ;source R6

ADDR1MUX/1: PC (0), BaseR (1)

ADDR2MUX/2: ZERO (00) ;select the value zero
offset6 (01) ;select SEXT[IR[5:0]]

;select SEXT[IR[8:0]]
;select SEXT[IR[10:0]]

PCoffset9 (10)
PCoffset11 (11)

SPMUX/2: SP+1 (00) ;select stack pointer+1
SP−1 (01) ;select stack pointer−1
Saved SSP (10) ;select saved Supervisor Stack Pointer
Saved USP (11) ;select saved User Stack Pointer

MARMUX/1: 7.0 (0) ;select ZEXT[IR[7:0]]
ADDER (1) ;select output of address adder

TableMUX/1: x00 (0), x01 (1)

VectorMUX/2: INTV (00)
Priv.exception (01)
Opc.exception (10)
ACV.exception (11)

PSRMUX/1: individual settings, BUS

ALUK/2: ADD (00), AND (01), NOT (10), PASSA (11)

MIO.EN/1: NO, YES
R.W/1: RD, WR

Set.Priv/1: 0 ;Supervisor mode
1 ;User mode



A.3 Interrupt and Exception Processing

Table A.3 Trap Service Routines

Trap Vector Assembler Name Description

x20 GETC Read a single character from the keyboard. The character is not echoed onto the
console. Its ASCII code is copied into R0. The high eight bits of R0 are cleared.

x21 OUT Write a character in R0[7:0] to the console display.
x22 PUTS Write a string of ASCII characters to the console display. The characters are

contained in consecutive memory locations, one character per memory location,
starting with the address specified in R0. Writing terminates with the occurrence of
x0000 in a memory location.

x23 IN Print a prompt on the screen and read a single character from the keyboard. The
character is echoed onto the console monitor, and its ASCII code is copied into
R0. The high eight bits of R0 are cleared.

x24 PUTSP Write a string of ASCII characters to the console. The characters are contained in
consecutive memory locations, two characters per memory location, starting with
the address specified in R0. The ASCII code contained in bits [7:0] of a memory
location is written to the console first. Then the ASCII code contained in bits [15:8]
of that memory location is written to the console. (A character string consisting of
an odd number of characters to be written will have x00 in bits [15:8] of the
memory location containing the last character to be written.) Writing terminates
with the occurrence of x0000 in a memory location.

x25 HALT Halt execution and print a message on the console.


