

Department of Electrical and Computer Engineering
University of Texas at Austin

EE460N Spring 2021
Y. N. Patt, Instructor
Siavash Zangeneh, Ben Lin, Juan Paez, TAs
Exam 1
March 10th, 2021

Problem 1: 20 points
Problem 2: 15 points
Problem 3: 15 points
Problem 4: 25 points
Problem 5: 25 points

Total: 100 points

Note: Please be sure that your answers to all questions (and all supporting work that is required) are
contained in the space provided.

Please read the following sentence, and if you agree, sign/print your name where requested: I have not
given or received any unauthorized help on this exam.

Good Luck!

1

Name: Solutions

EID: Extra explanations in green

Signature:

General Instructions:
1. You are free to use anything in the Handouts section of the course website that is listed under

“Powerpoint Presentations”, “Other Handouts”, “LC-3b Handouts”, and “Spring 2021 Exam 1
Buzzwords.” In particular, Appendix A and Appendix C may be of use. Anything else from the
course website is not allowed. Anything from any textbooks or the Internet is also not allowed
and considered unauthorized access.

2. Use of a calculator is not required but is permitted.
3. If you have any questions, join the class Zoom link and ask a TA. You do not need to stay on the

Zoom call during the exam unless you have questions.
4. Announcements will be posted here. Check this page periodically throughout the exam.
5. You may take the exam by printing it, editing a PDF, or editing a Google Doc. Read the

instructions for your preferred method below.
6. You are required to stop working on the exam promptly at 6:30 PM.

Printing or editing a PDF:

1. Download and save the PDF from Gradescope.
2. Edit the PDF to fill in answers with a software of your choice. Feel free to show your work in the

available space. You may also choose to print the exam and solve it on paper.
3. When you are ready to submit your exam, save the edited PDF as “Exam 1 <your name>”; if you

printed your exam, scan in your written answers as a PDF with the same name. You may use a
scanner or an app such as CamScanner.

4. Upload the PDF to Gradescope by 6:45 PM.
5. If you fail to upload your exam to Gradescope on time, email your exam to the TAs as soon as

possible. Late penalties may apply.

Editing a Google Doc:

1. Open the Google Doc version of the exam from here.
2. Save a copy of the document to your Google Drive.
3. While working on the exam, DO NOT expand any boxes that are given to you. Feel free to

show your work in the available space. If you need more space, you are writing too much.
4. When you are ready to submit your exam, click “File”-> “Print” and select “Save as PDF”. Save

the edited PDF as “Exam 1 <your name>”.
5. Upload the PDF to Gradescope by 6:45 PM.
6. If you fail to upload your exam to Gradescope on time, email your exam to the TAs as soon as

possible. Late penalties may apply.

2

http://users.ece.utexas.edu/~patt/21s.460n/handouts.html
http://users.ece.utexas.edu/~patt/21s.460n/handouts/appA.pdf
http://users.ece.utexas.edu/~patt/21s.460n/handouts/appC.pdf
https://utexas.zoom.us/j/96851628088
https://docs.google.com/document/d/1btsMMXbBtyW4Xd8mlR5Ss97knct98jjAFqJr0ZkCR5g/edit?usp=sharing
https://docs.google.com/document/d/1IdcX_Wk3mvN9i7rPzobtr0MH61wpnuw9wGfsYZ9uzTg/edit?usp=sharing

Problem 1 (20 points): Answer each question in 20 words or fewer. Note: For each of the four answers
below, if you leave the box empty, you will receive one point of the five.

Part a (5 points): The Tomasulo Algorithm replaces the register file with a Register Alias Table. Each
Register Alias Table entry consists of three items, let's call them X, Y, Z. X is a binary variable, takes on
two values 0 and 1. What are Y and Z? Be specific. Either Y or Z is relevant, but not both. Under what
conditions is each relevant?

Part b (5 points): We wish to design a processor that can decode 4 instructions at a time. Is it easier to
do this for the x86 ISA or for the LC-3b ISA? Explain.

Part c (5 points): Profiling is a compile-time technique for determining at compile-time the best
schedule (or order) to execute instructions. Sometimes profiling can produce worse results than doing
nothing. When is this the case?

Part d (5 points): The LC-3b is a 3-address machine since each operate instruction explicitly identifies
both source registers and the destination register. For example, ADD R1,R2,R3.

A zero-address ISA is an ISA that does not explicitly mention the source registers or the destination
register for an operate instruction. For example, ADD. Only the opcode is explicitly identified. How
does the microarchitecture know where to get the two source operands and where to store the sum?

3

Y, Z are tag and value.
Tag is relevant if the register is waiting to be updated.
Value is relevant if the register contains the value to be used.

LC-3b ISA because it has fixed length instructions, so it is easy to know the addresses of all 4
instructions.

- When the profiling data is not representative of the real run
- When the program has phase behavior

It gets the sources by popping from the stack and pushes the result back into the stack.

Problem 2 (15 points): We want to execute a program on an in-order pipelined processor.
● It takes 1 cycle to fetch, 1 cycle to decode, 3 cycles to execute an ADD, and 1 cycle to write back

the result.
● The adder is pipelined.
● Results (including condition codes) become available the cycle after the instruction writes back.
● Branches are predicted during their fetch phase, so the target instruction can be fetched in the

next clock cycle.
● If the branch predictor mispredicts, the pipeline is flushed in the cycle after the condition codes

are written back. The pipeline fetches the correct path in the cycle after the wrong-path
instructions are flushed.

● Branch instructions do not stall the execution of subsequent ADD instructions.
The processor supports conditional execution (predication) using an ADDz instruction. ADDz always
executes like a normal ADD instruction but it only writes back the result if the z condition code is 1.
ADDz does not update the condition codes.

We can write the program using two approaches.

Answer the following questions about the two approaches:

Part a (4 points): Using approach A, suppose the branch is taken and the branch predictor correctly
predicts taken. Complete the pipeline timing diagram.

How many cycles does it take to execute the program?

4

Approach A (with branch instructions) Approach B (with predication)

 ADD R0, R0, #0

 BRnp SKIP

 ADD R1, R1, #1

 ADD R2, R2, #1

SKIP ADD R3, R3, #1

 ADD R0, R0, #0

 ADDz R1, R1, #1

 ADDz R2, R2, #1

 ADD R3, R3, #1

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 F D E E E W

 F D B

 F D E E E W

8

Part b (4 points): Using approach A, suppose the branch is taken but the branch predictor always
incorrectly predicts not taken. Complete the pipeline timing diagram. Do not show the flushed
instructions.

How many cycles does it take to execute the program?

Part c (4 points): Using approach B, complete the pipeline timing diagram.

How many cycles does it take to execute the program?

Part d (3 points): Suppose the branch is always taken, what is the minimum branch prediction accuracy
such that approach A is faster than approach B? Assume we execute the program fragment many times
and we care about the execution latency on average.
Hint: the average number of cycles to execute the program fragment using approach A is:
 p × (cycles if correctly predicted) + (1 - p) × (cycles if incorrectly predicted)
 where p = branch prediction accuracy

5

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 F D E E E W

 F D B

 F D E E E W

13

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 F D E E E W

 F D E E E W

 F D E E E W

 F D E E E W

9

Branch prediction should be more than 80% accurate
A execution time = 8p + (1-p)13 <= 9
 4 <= 5p
 p > 4/5 = 80%

Problem 3 (15 points): In class we mentioned we sometimes wish to profile the branch behavior of
programs. Modern machines have special dedicated hardware registers, called performance counters,
that count hardware related activities like the number of taken branches encountered during program
execution.

In this problem we will add a new memory-mapped I/O device register, the Total Taken Branches
Register (TTBR), which gets incremented by the datapath on every taken BR instruction.

To use the TTBR, we

● First clear it at the start of the program by storing 0 to the memory address assigned to the
TTBR. We chose the address 0xFE08 for TTBR.

● Then run the rest of the program normally. The TTBR will be incremented on every taken BR
instruction

● Upon completion of the computation, the content of TTBR is stored into the memory location
labeled TAKEN.

The program below is an example to help you visualize the process.

.ORIG x3000

AND R0, R0, #0

LEA R1, TTBR

LDW R1, R1, #0

STW R0, R1, #0 ; clear the Total Taken Branches Register (TTBR)

...the actual program ; TTBR is incremented automatically as taken BR

 ; instructions are executed

LEA R0, TAKEN

LEA R1, TTBR

LDW R1, R1, #0

LDW R1, R1, #0 ; read out the value of the TTBR and

STW R1, R0, #0 ; store it to user space memory location TAKEN

HALT

TAKEN .BLKW #1

TTBR .FILL 0xFE08

.END

6

Datapath modifications needed to support the TTBR are shown below:

Explanation:
The TTBR is updated in two different ways:

1. When a store instruction writes to TTBR. This is analogous to writes to other memory mapped
devices such as KBSR, DSR, and DDR. In this case, TTBR needs to be updated with the content
of MDR. The signal Y from the Address Control Logic detects this case when we are storing to
TTBR.

2. When a BR instruction is taken. In this case, TTBR needs to be updated with TTBR + 1. The
logic block ‘X’ detects this case when a taken BR instruction is being executed.

Together, the two combinational logic blocks ‘X’ and ‘TTBR Load Logic’ should ensure that:

● LD.TTBR is set only in the two cases above when TTBR needs to be updated, and is 0 otherwise
● the mux selects the MDR when TTBR is being stored to (case 1), and selects TTBR + 1 when

TTBR is being incremented on a taken BR (case 2).

Part a (4 points):
The box labelled ‘X’ in the figure above contains combinational logic. Fill out its truth table. If the value
does not matter, leave it blank.

7

COND BEN X

00 0 0

00 1 0

01 0 0

Explanation:
As the select signal for the mux, ‘X’ needs to select TTBR + 1 on a taken BR.
Hence when COND==10 and BEN==1, X = 1.

In all other cases X should be 0; otherwise, the TTBR Load Logic will not be able to differentiate the
taken BR case from all other cases.

Part b (4 points):
The signal labelled ‘Y’ in the figure above is computed by the Address Control Logic. List all the
possible inputs which results in ‘Y’ being a 1. You may not need all the rows provided.

Explanation:
The signal Y is used to identify when we are storing to the TTBR. It should only be set when
MIO.EN==1, MAR==0xFE08, and R.W==WR.
It should NOT be set when MIO.EN==1, MAR==0xFE08, and R.W==RD, because then we cannot
distinguish stores to TTBR from loads. We need to be able to differentiate between stores to TTBR from
loads, because only stores should update the TTBR.

Part c (4 points):
The box labelled ‘TTBR Load Logic’ in the figure above contains combinational logic. Fill out its truth
table. If the value does not matter, leave it blank.

8

01 1 0

10 0 0

10 1 1

11 0 0

11 1 0

MIO.EN

MAR R.W
(RD or WR)

Y

1 0xFE08 WR 1

 1

 1

 1

X Y LD.TTBR

Explanation:
● X==0, Y==0: neither a store to TTBR nor a taken BR, so we should not update the TTBR.

LD.TTBR = 0
● X==0, Y==1: storing to TTBR, so TTBR should be updated with the MDR.

LD.TTBR = 1
● X==1, Y==0: taken BR, so TTBR should be updated with TTBR + 1

LD.TTBR = 1
● X==1, Y==1: since it’s impossible for an instruction to be both a taken BR and and a store to

TTBR, this is a don’t care
Part d (3 points):
In which state(s) is the TTBR incremented?

Explanation:
TTBR is incremented when COND==10 and BEN==1, which only occurs in state 0 of the state diagram.

9

0 0 0

0 1 1

1 0 1

1 1

State 0

Problem 4 (25 points):

Multiply-Accumulate, often called a MAC operation, refers to an operation that multiplies two operands
and subsequently adds the product to a third operand, as follows: MAC(x, y, z) = x + (y*z)

We will implement a MAC instruction for positive integers in the LC-3b as follows:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

After the execution of this operation, DR should contain the result of DR + (SR1 * SR2) and the
condition codes should be set. To enable this functionality, we will update the LC-3b datapath and state
machine as shown below. For the datapath, only the relevant portions are actually shown, and our
additions are shown in bold. ‘X’ is a logic block and ‘Y’ is a constant value.

10

1 0 1 1 DR SR1 0 0 0 SR2

Part a (8 points):
Fill out state A:

Fill out state B:

What is state number C?

What is state number D?

Part b (6 points):
What does operation X represent? Explain.

What constant value should input Y be? Explain.

11

ACC ← ACC + SR1
TMP ← TMP - 1

DR ← DR + ACC
setCC

11

44

X is a decrement operation, so the output is TMP-1. This allows us to have the second operand serve
as a counter for how many times to add the first operand to itself.

Y should be 0 so that we can initialize the ACC register to 0.

Part c (11 points): To support the branch in state 63, we need to modify the microsequencer to
condition on signal S shown in the datapath and the state diagram.

Explain what signal S is:

Complete the following table demonstrating the values taken by control signals in different states. If the
value does not matter, leave it blank.

12

S is TMP==0. If TMP is 0, then we should stop looping because the multiplication portion is
complete.

State # LD.TMP
(0 or 1)

LD.ACC
(0 or 1)

MUX A
(Y or Bus)

MUX B
(SR2 or
ACC)

MUX C
(SR2 or X)

SR1MUX
(IR[11:9] or
IR[8:6])

COND[2:0]
(000, … , 111)

C 1 1 Y SR2 0

63 0 0 100

36 1 1 Bus ACC X IR[8:6] 0

D 0 0 ACC IR[11:9] 0

Problem 5 (25 points): An out-of-order processor executes instructions based on the original Tomasulo
algorithm without in-order retirement. The processor implements a 4-stage pipeline: Fetch, Decode,
Execute, Writeback. The Execute stage of the pipeline contains one pipelined adder, one pipelined
multiplier, and one branch unit.

● Fetch and Decode take one cycle each.
● The result of a functional unit is broadcast during the writeback stage and is ready for use the

cycle immediately after writeback.
● An ADD takes 3 cycles to execute, a MUL takes 5 cycles, and a BR takes 1 cycle.
● The branch predictor predicts all the branches correctly, i.e., the processor will start fetching the

correct target of the branch in the cycle immediately after it fetches the branch instruction.
● All three functional units have three-entry reservation stations that are initially empty, and are

allocated in a top-to-bottom manner.
● Entries are put into reservation stations at the end of Decode and removed at the end of

Writeback.
● Instructions with no dependencies can start executing immediately after Decode.

The following snippet of code is executed until the instruction at I5 has completed.

13

Instr # Label Instruction

I1 LOOP MUL R1 , R1 , R0

I2 ADD R2 , R1 , R7

I3 BRnp LOOP

I4 ADD R5 , R3 , R4

I5 ADD R7 , R1 , R1

Solution strategy:
- Look at the reservation stations at cycle 9, there’s only 1 multiply and 3 adds (The first

multiply has already finished at cycle 8, so the top MUL RS is empty). The only way that
is possible is: 2nd and 4th instructions are ADD instructions, and BR is taken once and
not taken the second time.

- In the reservation station, we see a value 8 as one of the operands for the MUL. Since
there’s no value 8 in the register alias table, it must be the result of I1. So, I1 both reads
and writes to R1.

- Note that we know the only instruction that is finished by cycle 9 is I1 because the
I2 depends on I1 and if you fill in the timing diagram, later instructions cannot
finish by cycle 9 even if they have no dependencies.

- Now that we know the first instance of I1 produces an 8 and reads from R1, the other
operand has to be R0 = 2

- We see in the reservation stations that an operand of the second ADD has the value -16.
This has to be R7 since the value is ready at cycle 9.

- Now, we confirm that after the 2nd iteration of the loop, R1 = 16, and R2 = 0. Therefore,
the branch is not taken.

- The operands of the last ADD instruction in the RS are both ready (-1 and 9) at cycle 9,
so they have to be R3 and R4. Since the valid of R5 is 0 in the register alias table at cycle
9, the destination register has to be R5

- Now, all the missing entries in the register alias table and reservation stations entries
could be filled by following the Tomasulo algorithm step by step. You could have also
done this as you figured out individual pieces of information.

- The only missing instruction is the last one. Note that the value of R7 changes by the end
of execution, so it must be I5 that writes to R7. There are two ways to produce a 32:
ADD R7, R1, R1 and MUL R7, R1, R0. However, if I5 was a MUL, it would have shown
up in the reservation station at cycle 9. Since it does not show up, it must be an ADD that
has been stalled at decode because the ADD reservation station entries are full.

- The timing diagram could now be filled in.

14

The state of the register alias table (RAT) is partially shown before the code starts executing,
after cycle 9, and after the code completes execution.

The state of the ADD and MUL reservation stations are partially shown at the end of cycle 9.

 ADD RS MUL RS

15

 Before Cycle 1 After Cycle 9 After Completion

 V Tag Value

R0 1 - 2

R1 1 - 4

R2 1 - 6

R3 1 - -1

R4 1 - 9

R5 1 - 10

R6 1 - -8

R7 1 - -16

 V Tag Value

R0 1 - 2

R1 0 𝛒 -

R2 0 𝛃 -

R3 1 - -1

R4 1 - 9

R5 0 𝞬 -

R6 1 - -8

R7 1 - -16

 V Tag Value

R0 1 - 2

R1 1 - 16

R2 1 - 0

R3 1 - -1

R4 1 - 9

R5 1 - 8

R6 1 - -8

R7 1 - 32

 Valid Tag Value Valid Tag Value Valid Tag Value Valid Tag Value

𝛂 1 - 8 1 - -16 𝞹

𝛃 0 𝛒 - 1 - -16 𝛒 1 - 8 1 - 2

𝞬 1 - -1 1 - 9 𝞼

Your job:

1. Fill in the missing entries in the program snippet, RATs, and ADD and MUL reservation stations.
You might find it helpful to fill in the timing diagram until cycle 9.

2. Complete the dynamic timing diagram below for the execution of the program snippet, as we have
done in class.

● Each row corresponds to one dynamic instruction. The leftmost column identifies the static
instruction as I1, I2, etc.

● Use F, D, M (for MUL), A (for ADD), B (for Branch), and W (for write back) to indicate what is
going on with each instruction during each clock cycle. Branch instructions do not write back.

● Use * to indicate a clock cycle when an instruction is waiting to continue processing.

● Use as many rows/columns as needed.

16

Inst 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

I1 F D M M M M M W

 F D * * * * * A A A W

 F D * * * * * * * * B

 F D * * * M M M M M W

 F D * * * * * * * * A A A W

 F D * * * * * * * * * * * B

 F D * A A A W

 F * * * D * * * A A A W

