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General Instructions:
1. You are free to use anything in the Handouts section of the course website that is listed under

“Powerpoint Presentations”, “Other Handouts”, “LC-3b Handouts”, and “Spring 2021 Exam 2
Buzzwords.” In particular, Appendix A and Appendix C may be of use. Anything else from the
course website is not allowed. Anything from any textbooks or the Internet is also not allowed
and considered unauthorized access.

2. Use of a calculator is not required but is permitted.
3. If you have any questions, join the class Zoom link and ask a TA. Do not stay on the Zoom call

during the exam unless you have questions.
4. Announcements will be posted here. Check this page periodically throughout the exam.
5. You will take the exam by editing a Google Doc. Unlike exam 1, we will not accept handwritten

answers by either printing the exam or editing a pdf using a tablet.
6. Read the instructions below.
7. You are required to stop working on the exam promptly at 6:30 PM.

Editing a Google Doc:
1. Open the Google Doc version of the exam from here.
2. Save a copy of the document to your Google Drive. Click “File”-> “Make a copy.”
3. While working on the exam, DO NOT expand any boxes that are given to you. Feel free to

show your work in the available space. If you need more space, you are writing too much.
4. When you are ready to submit your exam, click “File”-> “Print” and select “Save as PDF”. Save

the edited PDF as “Exam 1 <your name>”.
5. Upload the PDF to Gradescope by 6:35 PM.
6. If you fail to upload your exam to Gradescope on time, email your exam to the TAs as soon as

possible. Late penalties may apply.
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Problem 1 (20 points): Answer each question in 20 words or fewer. Note: For each of the four answers
below, if you leave the box empty, you will receive one point of the five.

Part a (5 points): A program executes instructions 1,2,3,4,5,6,7,8 out-of-order.  They produce their
results in the cycles shown in the table below.

Instruction Cycle
1 05
2 07
3 16
4 11
5 14
6 15
7 20
8 23

The microarchitecture allows up to 5 instructions to retire each cycle. If we insist on maintaining precise
exceptions, when can instruction 5 retire? Explain.

Cycle 16. To maintain program order, Instruction 5 needs to wait for Instructions 1-4 to execute and
retire first. Since up to 5 instructions can retire at the same time, 5 can retire with 3 and 4 in cycle 16.
If you answered "after cycle 16," I gave you full credit even though the hardware can do it in cycle 16
along with instructions 3 and 4.

Part b (5 points): Every PTE contains an M bit. What information is contained in the M bit, and why is
it useful?

It means that the data in the page is modified. It is useful because if the data is not modified, the page
does not have to be written back to disk if it needs to be paged out.
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Part c (5 points): In the asynchronous I/O system discussed in class, multiple devices requested the bus
at the same priority.  The PAU granted the bus in a daisy chain manner.  Does that say anything about
the relative priorities of the devices that requested the bus all at the identical priority level?  Explain.

The device controllers closer to the PAU in the daisy chain have a higher relative priority since they
will see BG first; i.e., each controller has a higher priority than all controllers further away from the
PAU.

Part d (5 points): A user program generated a virtual address that was on page x83 of process space.
The process page table consists of x81 PTEs.  The hardware's job is to determine the frame of physical
memory containing virtual page x83.  In this case, what does the hardware do?  Explain.

x81 PTEs means process space consists of x81 pages, starting with page x00.
The VA having a page x83 means that the address is not part of process space.
Therefore, the hardware would take an exception since the process is trying to access an unmapped
address.
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Problem 2 (10 points): A student decided to change the asynchronous bus arbitration protocol that we
showed in class. Instead of daisy chaining the devices on the same priority, the student tried to solve the
problem by letting Device 1 read the BR signal produced by Device 0. Only the relevant states in the
state machine are shown.

Unfortunately, this solution does not work because of a race condition.

Part a (3 points): What bad event will be caused as the result of this race condition?

Both devices will go into the SACK state and try to use the bus in the next bus cycle.

Part b (7 points): What events must happen and in which order to cause the race condition? Please be
precise but not wordy.

At the start of arbitration, Device 1 is the only device that wants the bus, goes into the BRout state,
receives the BG and moves into the SACK state. Device 0 decides that it wants the bus after Device 1
asserts SACK but before the time it takes for SACK to propagate to Device 0. So, Device 0 sees BG
and NOT(SACK) and also moves into the SACK state.
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Problem 3 (20 points)
We have the following memory, similar to the one in Problem Set 3, which supports unaligned accesses.
The ISA contains LDByte, LDWord, STByte , and STWord instructions, where a word is 32 bits.

Both byte rotators in the figure are right rotators.

Assume we have an array, products_array, with 2048 elements, where each element is a 5 byte struct
of type Product, made up of a 4 byte field PRICE, and a 1 byte field ON_SALE, as shown below:

typedef struct Product_Struct {

int PRICE; /* 4 bytes */

char ON_SALE; /* 1 byte  */

} Product;

Product products_array[2048]; /* begins at physical address 0x0  */
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The array products_array begins at physical address 0x0.

We wish to read in the entire products_array array from memory. For each of the 2048 array elements,
we will perform a LDWord on the 4 byte field PRICE, and a LDByte on the 1 byte field ON_SALE.

Part a (6 points):
Any 4-byte word which is not aligned (i.e., low two bits of the physical address are not 00) will span
multiple chip addresses and require a 2nd access.
Since each Product struct is 5 bytes:

● products_array[0].PRICE will be at address 0x0, which IS 4-byte aligned (low 2 bits of the
physical address are 00)

● products_array[1].PRICE will be at address 0x5, which IS NOT 4-byte aligned (low 2 bits of
the physical address are 01)

● products_array[2].PRICE will be at address 0xA, which IS NOT 4-byte aligned (low 2 bits of
the physical address are 10)

● products_array[3].PRICE will be at address 0xF, which IS NOT 4-byte aligned (low 2 bits of
the physical address are 11)

● products_array[4].PRICE will be at address 0x14, which IS 4-byte aligned (low 2 bits of the
physical address are 00)

The pattern continues. So for every 4 elements of products_array:
● 1 will have its PRICE field be aligned, while
● the other 3 will not

Hence ¾ of the 2048 LDWord operations will require a 2nd access.
1. Of the 2048 LDWord operations, how many will require a 2nd access?

(¾) * 2048 = 1536

Any byte access whose low two bits of address are 10 will require a right rotate value of 2.
For every 4 elements of products_array:

● 1 will have its ON_SALE field be at an address where the low two bits of the physical address are
10, while

● the other 3 will not (their low two bits of the address will be 00, 01, and 11)
Hence ¼ of the 2048 LDByte operations will require a right rotate value of 2

2. Of the 2048 LDByte operations, how many will require a right rotate value of 2?

(¼) * 2048 = 512
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Part b (4 points):
Instead of an array of structs, suppose we stored the same information in two separate arrays
PRICE_ARRAY and ON_SALE_ARRAY, as shown below:

int PRICE_ARRAY[2048]; /* 4 bytes each element, 8192 bytes total*/

char ON_SALE_ARRAY[2048]; /* 1 byte each element, 2048 bytes total*/

The two arrays are stored in contiguous physical memory, with the array PRICE_ARRAY located at
physical address 0x0. We read in both arrays, performing a LDWord on each of the 2048 elements of
PRICE_ARRAY, and a LDByte on each element of ON_SALE_ARRAY.

Because now we store all the 4 byte words together in the same array, and the start of the array is aligned
at address 0x0, all the 4 byte words will be aligned, and none of them will require a 2nd access.

1. Of the 2048 LDWord operations, how many will require a 2nd access?

0

For every 4 elements of ON_SALE_ARRAY:
● 1 will have have an address where the low two bits of the physical address are 10, while
● the other 3 will not (their low two bits of the address will be 00, 01, and 11)

Hence ¼ of the 2048 LDByte operations will require a right rotate value of 2, as before
2. Of the 2048 LDByte operations, how many will require a right rotate value of 2?

(¼) * 2048 = 512
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Part c (10 points):
Suppose the array PRICE_ARRAY from part b is stored in DRAM memory which is organized as follows:

Note the 8 bits of column address are split into two parts, with the high 4 bits coming from bits [12:9] of
the physical address, and the low 4 bits coming from bits [5:2] of the physical address.

Also note that this physical memory setup is completely independent from that of part a and b.

The array PRICE_ARRAY begins at physical address 0x0. We access all 2048 elements of the array in
sequential order. Assume all row buffers are initially empty.

The PRICE_ARRAY array is 8KB and begins at address 0x0. Since the row address bits only begin at bit 13
of the physical address, we will not toggle any of the row address bits while accessing PRICE_ARRAY.
This means the only possible source of row buffer misses come from the initial access to each bank,
since the problem assumes row buffers are initially empty.
Hence the last row buffer miss will be the first access to the last bank, bank 7. This will be at address:
00000000 0000 111 0000 00
Which in hex is address x1C0

1. What is the address of the last array element that causes a row buffer miss?

x1C0

There are 2 byte on bus bits. So the width of the bus is 2^2 = 4
2. What is the width of the bus in bytes?

2^2 = 4

There are 8 column address bits total, meaning there are 2^8 = 256 columns per row per bank. However,
each column refers to an entire bus width’s worth of data (i.e., 4 bytes). Hence the size of the row buffer
is the product of the two:

3. What is the size of the row buffer (of a bank across all chips) in bytes?

(2^8) * 4 = 1024B (1KB)
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4. If we used DRAM chips with 16 bit data interfaces, as shown in the figure below:

The width of the bus is 32 bits (4 bytes). Since each DRAM chip can provide 16 bits of data, we need
two DRAM chips to provide a full bus width’s worth of data.

How many DRAM chips in total are there in the system?

2

There are two ways to approach this problem:
1. Since there are two DRAM chips in total in the system, the capacity per chip is simply the

capacity of the entire physical memory divided by two. Since there are 21 physical address bits
([20:0]), the entire physical memory is 2MB, meaning each DRAM chip is 1MB (1048576 B)

2. In total, our memory has
○ 2^3 = 8 banks (since there are 3 bits of bank address)
○ 2^8 = 256 rows (since there are 8 bits of row address)
○ 2^8 = 256 columns (since there are 8 bits of column address)

Each specific (bank, row, column) address tuple refers to a full bus width’s worth of data, which
is 4 bytes (32 bits). However, of the 4 bytes, 2 of them come from the first DRAM chip, and 2 of
them come from the second DRAM chip.
That is to say, given a (bank, row, column) address tuple, each DRAM chip will provide 2 bytes
of data. This makes sense, because we said the DRAM chips have 16 bit (2 byte) data interfaces.
Hence the capacity per DRAM chip is:
8 banks * 256 (rows/bank) * 256 (columns/row) * 2 bytes = 1048576 B = 1MB
What is the capacity per DRAM chip in bytes?

1048576 B (1MB)
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Problem 4 (25 points): We wish to enhance the LC-3b ISA by adding virtual memory support. Virtual
memory will be implemented by a VAX-like scheme as we studied in class. The 16-bit addresses you
are familiar with are virtual addresses. Physical memory is 16KB. Page size is 256 bytes.

The memory management system uses the two-level page table scheme. Virtual memory is partitioned
into two halves. User space starts at x0000, System space starts at x8000. The TLB contains 8 entries
and is fully-associative. The TLB is only used for storing user process PTEs. A PTE is 16 bits. For
purposes of this question only, we will assume the PTE has the following form:

V 000000000 PFN

We wish to execute the following two instructions sequentially in a program fragment:
At address x3000:        LDW R0, R1, #0          (instruction encoding: x6040)
At address x3002:        STW R0, R2, #0          (instruction encoding: x7080)

Before the execution of the two instructions, R1 = x4000, R2 = x5002, and the TLB is initially empty.
After the execution of the two instructions, R0 = xA000.

The execution of the two instructions leads to the following physical address accesses in an unspecified
order. This means that the order of the list of physical addresses is not necessarily the order in which
they are accessed. Note that address x0240 is accessed three times.

Physical addresses: x0240, x0240, x0240, x0360, x0380, x03A0, x0400, x0402, x0502, x0600

Assume SBR points to the starting address of a frame.

Part a (3 points): How many TLB hits do we observe?

1

The program fragment will access 4 virtual addresses in the user space: 2 instruction fetches, and 2 data
accesses. All we have to do is to look at the page numbers of the addresses and see which pages  we
access more than once. Note that system page accesses do not matter since the question states that we
use the TLB for storing only user pages.

x3000: page number = x30 (first time access -> TLB miss)
x4000: page number = x40 (first time access -> TLB miss)
x3005: page number = x30 (second time access -> TLB hit)
x5002: page number = x50 (first time access -> TLB miss)
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Part b (16 points): Specify the 2-byte word at each physical address after the two instructions are
executed.

Address x0240 x0360 x0380 x03A0 x0400 x0402 x0502 x0600

Content x8003 x8004 x8006 x8005 x6040 x7080 xA000 xA000

Let’s first list all translation steps and the accesses to physical memory:
---- 1st, 2nd, and 4th user access ---------
Since they’re TLB misses, they each need 3 physical accesses: 1) system page PTE access, 2) user page
PTE access, 3) the data access.
---- 2nd user access ---------
Since it’s a TLB hit , it’s just one 1) the data access.

Since access x0240 is repeated 3 times, x0240 must be the system page PTE address that happens to be
the same for all the three translations. Note that it cannot be the user page PTE because the three
translations correspond to three different user pages, so the address of their PTEs would be different.

Since the user page numbers are x30, x40, and x50, the virtual addresses for the user page PTEs are:
PBR + x60, PBR + x80, PBR + xA0. The only physical addresses with the same distance interval are
x0360, x0380, and x03A0, so they should correspond to user page PTEs.

Now that we have accounted for the PTE accesses, x0400, x0402, x0502, x0600 must be the remaining
data accesses. Virtual addresses x3000, and x3002 have the same page number, therefore they must also
have the same frame number, so they correspond to physical addresses x0400, and x0402 respectively.
By matching their offsets, we know that virtual address x4000 corresponds to physical address x600,
and virtual address x5002 corresponds to physical address x502.

To determine the contents of the physical addresses corresponding to PTEs, we add the PFN that they
correspond to x8000 (for the valid bit).
Content of x0240 = x8000 + x03 (frame number of x0360, x0380, and x03A0) = x8003
Content of x0360  = x8000 + x04 (frame number of x0400, and x0402) = x8004
Content of x0380  = x8000 + x06 (frame number of x0600) = x8006
Content of x03A0  = x8000 + x05 (frame number of x0502) = x8005

Content of x400 = x6040 (instruction at VA = x3000)
Content of x402 = x7080 (instruction at VA = x3002)
Content of x502 = Content of x600 = xA000 (value of R0 at the execution of the two instructions)
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Part c (3 points): What is the value of the System Base Register (SBR)?

x0200

The size of the system page table = (number of system pages) * (PTE size) = (2^7) * 2 = 256B.

Since the question states that SBR points to the start of a frame, the only valid SBR within 256B
distance of x0240 is x0200, so SBR = x0200.

Part d (3 points): What is the value of the User Process Base Register (PBR)?

xA000

x0240 = SBR + 2 * Page number of (user page PTE)
Therefore,
Page number of (user page PTE) = (x0240 - SBR)/2 = (x0240 -x0200)/2 = x20.

Therefore, the virtual addresses corresponding to PA x0360, x0380, and x03A0 are xA060, xA080, and
xA0A0 (the offset bits in VAs and PAs are the same).

As discussed earlier, user page PTE addresses are PBR + x60, PBR + x80, PBR + x0A0,
therefore PBR = xA000.
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Problem 5 (25 points):
Consider the following two-level cache memory system.

We know the following:
- The memory is byte addressable.
- A virtual address is 16 bits, and a physical address is 14 bits.
- The size of a page is 256 bytes.
- The L1 cache has a capacity of 1 KB and is virtually indexed, virtually tagged.
- The L2 cache has a capacity of 4 KB and is physically indexed, physically tagged.
- The L1 and L2 caches have the same cache block size and the same number of sets.
- The L2 is inclusive of L1
- Both caches begin with a cold start.
- The TLB hit rate is 100%.

The processor is executing part of a program that needs to read five values from memory in the sequence
shown below. Note that six cells in the L2 cache sequence table are left blank for you to fill in.

L1 Cache Access Sequence

Address Hit/Miss

x3020 Miss

x3040 Miss

x3000 Hit

x3440 Miss

x3050 Miss

L2 Cache Access Sequence

Address Hit/Miss

x0120 Miss

x0140 Miss

x0940 Miss

x0150 Hit
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Part a (12 points):
1. What is the size of a cache block?

64 Bytes

Accesses 1,2,3 are miss, miss, hit respectively. Since access 3 is a hit, it must be on the same
block as access 1 (if it was on the same block as 2, then they would all be on the same block
because 3020 is between 3000 and 3040, and access 2 would have hit). Since access 1 and 3
differ only by bit 5 and access 2 and 3 differ only by bit 6, bits [0:5] represent the offset. Thus, a
cache block is 26 = 64 bytes.

2. What is the associativity of the L1 cache?

Direct Mapped

Access 5 has the same high 10 bits as access 2, meaning it is in the same cache block. However,
it misses. This must be because access 4 kicked out the block.

3. What is the associativity of the L2 cache?

4-Way

We know the L1 and L2 caches have the same number of index bits, but the L2 cache as 4x the
capacity. Thus, it must have 4 ways per set.

4. How many bits are required for tag, index, and offset?

Cache # Tag Bits # Index Bits # Offset Bits

L1 6 4 6

L2 4 4 6

We already found the offset bits, which applies to both L1 and L2 since they have the same cache
block size. The L1 cache is 1 KB (210), and a block is 26. Thus, there are 24 sets, meaning that we
have 4 index bits. The tag bits can be calculated from the difference.

5. Is it possible to access the TLB in parallel with the L2 cache? Why or why not?

Not possible. The index bits of the physical address [9:6] do not fit inside the
offset on the page [7:0]. Thus, we must perform a TLB lookup first.
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Part b (5 points): Fill out the six empty cells in the L2 Cache Access Sequence table.
Address Explanation:
A page is 256 bytes, or 8 bits. Since x30 translates to x01, we know the other two are x0140 and x0150
by just adding the offset.

Hit/Miss Explanation:
The first miss is compulsory due to the cold start.
We know that the second access is in a different cache block than the first (else, the second access would
have hit in L1). Thus, L2 misses here also.
Same reasoning as 2.
We know that L2 is 4-way set associative. Even though accesses 2 and 3 map to the same index, access
4 will be a hit because it is in the same block as access 2.

16



Part c (8 points):
Now consider a different two-level cache system of a byte-addressable memory. In this system:

- The L1 cache is 1 KB and is 2-way set associative.
- The L2 cache is 2 KB and is 4-way set associative.
- Both caches are physically indexed, physically tagged; physical addresses are still 14 bits.
- The replacement policy is LRU.
- Both caches have 16-byte blocks.
- The L2 is inclusive of L1

We would like to execute the following C-code snippet. You may assume that the caches are empty
before the program’s execution, and that the values of integers i and x are always stored in a register. A,
B, and C are arrays of 32-bit integers.

for (int i = 0; i < 128; i ++) {
x += A[i]*B[i] + C[i];

}

In each iteration of the loop, the following operations occur in order: A[i] is read, then B[i], then C[i],
then x and i are updated. Array A begins at physical address x0400, B begins at physical address x0800,
and C begins at physical address x0C00.

For the questions below, consider only data accesses (i.e., ignore instruction accesses).

1. What is the L1 cache hit ratio when executing this snippet?

0

This is a constant pattern of miss A → miss B → miss C (kick A out) → miss A (kick B out) →
miss B (kick C out) …

2. What is the L2 cache hit ratio when executing this snippet?

3/4

The higher associativity allows us to store A, B, and C without conflict. At the start of each
block, we miss A, B, and C once, and then hit them each 3 times after that (since a block can fit 4
integers).

3. What is the L1 cache hit ratio if we execute this snippet again, immediately after executing it the
first time, with a warm cache?

0

A full cache does not help, since the pattern will continue.
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4. What is the L2 cache hit ratio if we execute this snippet again, immediately after executing it the
first time, with a warm cache?

1

The full cache with the higher associativity means that the entirety of A, B, and C will be in the
cache.
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