
Department of Electrical and Computer Engineering
University of Texas at Austin

EE460N Spring 2021
Y. N. Patt, Instructor
Siavash Zangeneh, Ben Lin, Juan Paez, TAs
Final Exam
May 14th, 2021

Name:

EID:

Part A:
Problem 1: 10 points
Problem 2: 10 points
Problem 3: 10 points
Problem 4: 10 points
Problem 5: 10 points

Part B:
Problem 6: 20 points
Problem 7: 20 points
Problem 8: 20 points
Problem 9: 20 points

Total: 130 points

Note: Please be sure that your answers to all questions (and all supporting work that is required) are
contained in the space provided.

Please read the following sentence, and if you agree, sign/print your name where requested: I have not
given or received any unauthorized help on this exam.

Signature:

Good Luck!

1

General Instructions:
1. You are free to use anything in the Handouts section of the course website that is listed under

“Powerpoint Presentations”, “Other Handouts”, “LC-3b Handouts”. In particular, Appendix A
and Appendix C may be of use. Anything else from the course website is not allowed. Anything
from any textbooks or the Internet is also not allowed and considered unauthorized access.

2. Use of a calculator is not required but is permitted.
3. If you have any questions, join the class Zoom link and ask a TA. Do not stay on the Zoom call

during the exam unless you have questions.
4. Announcements will be posted here. Check this page periodically throughout the exam.
5. You will take the exam by editing a Google Doc. Unlike exam 1, we will not accept handwritten

answers by either printing the exam or editing a pdf using a tablet.
6. Read the instructions below.
7. You are required to stop working on the exam promptly at 10:00 PM.

Editing a Google Doc:
1. Open the Google Doc version of the exam from here.
2. Save a copy of the document to your Google Drive. Click “File”-> “Make a copy.”
3. While working on the exam, DO NOT expand any boxes that are given to you. Do not

change the font size. Feel free to show your work in the available space. If you need more
space, you are writing too much.

4. When you are ready to submit your exam, click “File”-> “Print” and select “Save as PDF”.
5. Upload the PDF to Gradescope by 10:05 PM.
6. If you fail to upload your exam to Gradescope on time, email your exam to the TAs as soon as

possible. Late penalties may apply.

2

http://users.ece.utexas.edu/~patt/21s.460n/handouts.html
http://users.ece.utexas.edu/~patt/21s.460n/handouts/appA.pdf
http://users.ece.utexas.edu/~patt/21s.460n/handouts/appC.pdf
https://utexas.zoom.us/j/96851628088
https://docs.google.com/document/d/1NmyWabE3SaG2q3p00gV7iHrm41tOHZOoG1Fvy82BKZQ/edit?usp=sharing
https://docs.google.com/document/d/180sGv5Ghw_O1ywyrqKWNJdLjk7rgi1ooL2ADxWgq-tI/edit?usp=sharing

Problem 1 (10 points): Answer each question below. Use as many words as needed, but your answer
must fit in the box without expanding it.

Note: On the final exam, you will get no points for any part of Problem 1 that you leave blank.

Part a (2 points): In the LC-3b, what register is used for the Stack Pointer?

Part b (2 points): Does the stack grow towards 0x0000 or towards 0xFFFF?

Part c (2 points): Does the Stack Pointer have to be changed before pushing a value on the stack? If
yes, what is the change?

Part d (4 points): The PSR contains state information of the executing process. The LC-3b PSR
contains the privilege mode bit, priority bits, and condition codes.

Why are the condition codes stored in the PSR? Explain, using a concrete example. If you do not show
a concrete example, you will get no credit for your answer.

3

Problem 2 (10 points): A byte-addressable machine with a 64KB physical memory has an 8-way
physically addressed, set associative cache. The cache is write-through, and it uses a pseudo-LRU
replacement policy that uses 2 bits per way. The cache has 32 sets. The line size is 16 bytes.

Your job: Provide the following information. Show your work in the boxes provided. You get no points
if you get the correct answer without showing how you got it.

The capacity of the data store:

Number of index bits:

Number of tag bits:

Number of bits in each tag store entry:

4

Problem 3 (10 points): You have just written a new program, but you are unhappy with its long
runtime on a single processor. You know that the program has the property that part of the algorithm is
parallelizable and the rest has no parallelism at all, i.e., it can only make use of one processor. The
parallelizable part can make use of all the processors in your machine, working concurrently. So you run
your program on a 16-processor machine and get a 4x speedup. For this problem, assume no
communication delay between processors. Show your work.

1. What percent of your program is parallelizable?

2. What is the maximum speedup we can achieve with an infinite number of processors?

3. Since you are not satisfied with the performance, you modify the program so that half of the
previously serial portion of the program is now parallelizable. Now what is the maximum
speedup we can achieve with an infinite number of processors?

5

Problem 4 (10 points): We want to multiply 47 (the multiplicand) by 23 (the multiplier) using Booth’s
algorithm.

How many operations (additions and subtractions) are necessary to perform this multiplication using
Booth’s algorithm? Show your work.

What is the intermediate result in the accumulator after doing the first operation? Show your work.

6

Problem 5 (10 points): An out-of-order processor executes instructions based on the original Tomasulo
algorithm without in-order retirement. The processor implements a 4-stage pipeline: Fetch, Decode,
Execute, Writeback. The Execute stage of the pipeline contains one pipelined adder and one pipelined
multiplier.

● Fetch and Decode take one cycle each.
● The result of a functional unit is broadcast during the writeback stage and is ready for use in the

next cycle immediately after writeback.
● Fetch, Decode, and Write Back stages can only operate on one instruction at a time.
● An ADD takes 2 cycles to execute, and a MUL takes 4 cycles.
● Both functional units have three-entry reservation stations that are initially empty.
● Instructions with no dependencies can start executing immediately after Decode.

The following snippet of code is executed.

Instruction 1: ADD R0, R0, R0
Instruction 2: MUL R3, R1, R2
Instruction 3: MUL R4, R0, R3
Instruction 4: ADD R5, R2, R4
Instruction 5: ADD R0, R0, R0

Complete the dynamic timing diagram below for the execution of the program snippet, as we have done
in class, from the Decode (D) of Instruction 1 to the Write Back (W) of Instruction 5. We already filled
in the Fetch (F) of all five instructions for you.

● Each row corresponds to one instruction.
● Use F, D, M (for MUL), A (for ADD), and W (for write back) to indicate what is going on with

each instruction during each clock cycle.
● Use * to indicate a clock cycle when an instruction is waiting to continue processing.
● Use as many columns as needed.

Inst 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Instruction 1 F

Instruction 2 F

Instruction 3 F

Instruction 4 F

Instruction 5 F

7

Problem 6 (20 points):
We will use the unused opcode 1010 to create a new instruction, Save Regs (SREG), that saves LC-3b
general purpose registers R0-R4 to 5 contiguous memory words specified by PCoffset11.

MEM[PC† + LSHF(SEXT(PCoffset11),1)] = R0
MEM[PC† + LSHF(SEXT(PCoffset11),1) + 2] = R1
MEM[PC† + LSHF(SEXT(PCoffset11),1) + 4] = R2
MEM[PC† + LSHF(SEXT(PCoffset11),1) + 6] = R3
MEM[PC† + LSHF(SEXT(PCoffset11),1) + 8] = R4

where PC† is the incremented PC. This instruction can be very useful to subroutines that have to save the
registers it will need to perform its function before performing the actual function.

Datapath additions needed to make the instruction work are shown below in red. Note that we added
three new control signals: MAR_IN_MUX, CLEAR, INCREMENT, and modified 1 existing control
signal: SR1MUX. In addition, the signal NOT_DONE is computed and used by the microsequencer.

8

Additions to the microsequencer are shown below:

The state machine to complete the instruction is shown below.
REG[COUNTER] denotes the value of SR1OUT out when SR1 is equal to the 3 bit COUNTER.

9

Part a (5 points): Fill in the two missing parts (A and B) of their corresponding states of the state
machine.
Fill in A:

Fill in B:

Part b (3 points): Identify the state numbers C, D, E, and F.

C D E F

Part c (5 points):
Complete the table with the values of the control signals for each state. If the value does not matter, put
an X in the corresponding entry. For example, we have put an X for MAR_IN_MUX for state D.

State
#

CLEAR
(0 or 1)

INCREMENT
(0 or 1)

MAR_IN_MUX
(BUS or +2)

SR1MUX
(11.9,

8.6,
COUNTER)

ADDR2MUX
(ZERO,
offset6,

PCoffset9,
PCoffset11)

LD.MAR
(0 or 1)

COND
(0 - 7)

C

D X

E

38

Part d (2 points):
What is the LOGIC in the datapath required to compute the NOT_DONE signal used by the
microsequencer?

10

Part e (5 points):
One can use the Save Regs instruction to save the caller register values on a subroutine call. However,
the current method of using PCoffset11 in the instruction to specify where in memory to save the
registers will not work for recursive subroutine calls. Why?

How can we fix this?

After the fix, how many explicit operands will the Save Regs instruction require? Explain.

11

Problem 7 (20 points): We wish to enhance the LC-3b ISA by providing VAX-like virtual memory
support as we studied in class. The 16-bit LC-3b addresses you are familiar with are virtual addresses,
BUT user space and system space will follow the VAX model in this problem. That is, user space starts
at address x0000, system space starts at address x8000, and we use a two-level page table scheme.

Physical memory is 32KB. Page size is 16B. The TLB contains 8 entries and is fully-associative. The
TLB is used only for storing user process PTEs. A PTE is 2 bytes. For purposes of this question only, we
will assume the PTE has the following form:

V 0000 PFN

We wish to execute the following three instructions sequentially in a program fragment:
At address x3000: LDW R0, R1, #0 (instruction encoding: x6040)
At address x3002: ADD R0, R0, #2 (instruction encoding: x1022)
At address x3004: STW R0, R2, #0 (instruction encoding: x7080)

Before the execution of the three instructions, R1 = x6000, R2 = x6002, and the TLB is initially empty.
After the execution of the three instructions, R0 = x4002.

Part a (3 points): Part a (3 points): To execute the three instructions, what user virtual addresses are
accessed? Which ones are TLB hits?

Virtual Address TLB Hit?
(Yes/No)

The execution of the three instructions leads to the following physical address accesses. Note that the
physical addresses are listed in numerical order, and NOT in the order they are accessed.

Physical addresses: x0400, x0500, x0502, x0504, x0600, x0800, x0802, x10C0, x1180

12

Part b (5 points): Specify the virtual address corresponding to each physical address. Write “N/A” if a
physical address does not correspond to any virtual address. Two entries are given to you.

Physical
Address

x0400 x0500 x0502 x0504 x0600 x0800 x0802 x10C0 x1180

Virtual
Address

x8600 x8C00

Part c (3 points): What is the value of the User Process Base Register (PBR)? Show your work.

Part d (3 points): What is the value of the System Base Register (SBR)? Show your work.

Part e (6 points): What is the 2-byte word stored in each of the corresponding physical memory
locations after the three instructions are executed?

Physical
Address

x0400 x0500 x0502 x0504 x0600 x0800 x0802 x10C0 x1180

Content

13

Problem 8 (20 points): Consider the following addressing scheme for a byte addressable, 12-bit
physical memory:

● PA[1:0]: Byte on Bus
● PA[4:2]: Bank
● PA[8:5]: Column
● PA[11:9]: Row

Assume it takes a fixed 20 cycles to open a DRAM row, regardless of whether something was
previously in the row buffer, and that it takes 10 cycles to access (read or write) a column in an open
row. The memory controller will always issue accesses in order; that is, if the next access targets a busy
bank, the controller will wait until the bank becomes idle.

The following for loop operates on 32-bit integer arrays, A and B:
for (int i = 0; i < 24; i ++) {

A[i] = B[i] / 2;
}

Part a (7 points): We execute this for loop using a scalar in-order processor. We know the following:
● Array A begins at physical address x400, and array B begins at physical address x600.
● “Divide by 2” takes 1 cycle to complete (using a right shift).
● Iteration control takes 1 cycle at the end of each iteration.
● There is no caching, and all local variables for iteration control are stored in registers.
● Each iteration of the loop: (1) reads an element of B, (2) right shifts it one bit, (3) stores the

result in the corresponding element of A, and (4) performs iteration control.
● Since the processor is in-order, memory accesses are sent to memory one at a time, and a new

access can only be initiated after the previous one has completed, even if there is opportunity for
interleaving.

1. What is the size of a single DRAM chip in bytes, assuming the DRAM chips have an 8-bit data
interface?

2. If all the row buffers are initially empty, how many times will a new row be opened during the
execution of this for loop?

14

3. How many cycles will it take to execute the for loop?

Part b (13 points): Now consider a vector processor with 256-element 32-bit vector registers. We use
this vector processor to perform the same task as the serial example above using the following vector
code:

LVS 4 ; load vector stride (1 element is 4 bytes)
LVL X ; load vector length
VLD V0, B ; load vector B into vector register 0
VSHFR V0, V0, 1 ; shift every element in V0 right one bit
VST V0, A ; store V0 into A

LVS and LVL each take 1 cycle. Vector loads and stores go directly to physical memory (i.e., no cache).
1. What numerical value should replace X in the line “LVL X”?

2. If all the row buffers are initially empty, how many times will a new row be opened during the
execution of this program?

3. How many cycles will the instruction “VLD V0, B” take?

4. How many cycles will the entire program take, assuming no vector chaining?

15

Problem 9 (20 points)
A student has figured out that Dr. Patt uses a computer grader program to compute the final course grade
of each student using the following four arrays:
int FINAL_EXAM_GRADE_ARRAY[64]; /* 4 bytes each element, 256 bytes total*/

int EXAM1_GRADE_ARRAY[64]; /* 4 bytes each element, 256 bytes total*/

int EXAM2_GRADE_ARRAY[64]; /* 4 bytes each element, 256 bytes total*/

int LAB_AVG_GRADE_ARRAY[64]; /* 4 bytes each element, 256 bytes total*/

The arrays store the {final exam, exam 1, exam 2, lab average} grade for each of the 64 students in the
class.

The student strongly suspects that not all four grades are actually used in determining the students'
grades. To test this, the student wrote the following dummy program that processed four dummy arrays
(DUMMY1, DUMMY2, DUMMY3, DUMMY4), identical in size to the four grade arrays that Dr. Patt says he is using.

The dummy program simply adds all 256 values stored in the four dummy arrays. What is important is
not what is computed, but rather which memory locations are accessed. We will explain how the student
will use this dummy program on the next page.

int DUMMY1[64]; /* 4 bytes each element, 256 bytes total*/

int DUMMY2[64]; /* 4 bytes each element, 256 bytes total*/

int DUMMY3[64]; /* 4 bytes each element, 256 bytes total*/

int DUMMY4[64]; /* 4 bytes each element, 256 bytes total*/

int x = 0;

for(int i = 0; i < 64; i++) {

x = x + DUMMY1[i];

}

for(int i = 0; i < 64; i++) {

x = x + DUMMY2[i];

}

for(int i = 0; i < 64; i++) {

x = x + DUMMY3[i];

}

for(int i = 0; i < 64; i++) {

x = x + DUMMY4[i];

}

16

To test his conjecture the student runs the dummy program on Dr. Patt's computer before Dr. Patt runs
his grader program. Assume the computer's memory has a 16-bit physical address space, and no virtual
memory (all addresses are physical). Assume the computer has a data cache that is:

● physically indexed, physically tagged
● 2KB in capacity
● direct mapped
● with a line size of 256 bytes

The dummy program fills the cache with data from the four DUMMY arrays. Assume the student knows
where Dr. Patt's four grade arrays will be stored, and so he stores the dummy arrays exactly aligned with
the four grader arrays in the cache.

Later, when Dr. Patt runs his grader program, the four grading arrays will evict the student's dummy
arrays if and when the grader program accesses them. After Dr. Patt finishes computing final grades, the
student sneaks back into Dr. Patt's lab and executes each of his four dummy for loops, timing their
individual execution times. If a loop's dummy array had been kicked out of the cache by Dr. Patt's
grader program, the running time for that loop would be long. If a loop's dummy array had not been
kicked out of the cache, the running time would be fast, indicating that the corresponding grader array
had never been accessed in computing student grades. Shame on Dr. Patt!

For the student’s scheme to work, the four dummy arrays (DUMMY1, DUMMY2, DUMMY3, and DUMMY4) have to
properly line up with the four grade arrays (FINAL_EXAM_ARRAY, EXAM1_ARRAY, EXAM2_ARRAY, and
LAB_AVG_ARRAY) in the cache. The student can control this by carefully choosing the starting address for
DUMMY1. He knows that:

● The four grade arrays are stored in one contiguous sequence of 1KB of physical memory.
● The first grade array FINAL_EXAM_GRADE_ARRAY is located at physical address 0x4000.
● The dummy arrays are also stored in one contiguous sequence of 1KB of physical memory, but

not necessarily next to the grade arrays.
● Each int is 4 bytes, meaning each array is 256 bytes.

17

Part a (5 points): Suppose the student picks 0x4400 as the starting address for DUMMY1. Will he be able
to tell which of the four grade arrays has been accessed? Why or why not?

Part b (5 points): Suppose the student picks 0x6000 as the starting address for DUMMY1. Will he be able
to tell which of the four grade arrays has been accessed? Why or why not?

Part c (5 points): In general, what condition needs to be satisfied in order for the two sets of arrays to
properly line up in the cache so the student would be able to tell which of the four grade arrays has been
accessed?

Part d (5 points): How will the student’s scheme be affected if the cache had the same capacity (2KB)
and line size (256B), but is 2-way set associative instead of direct mapped? Will he still be able to tell
which of the four grade arrays has been accessed? Why or why not?

18

