
Richard L. Sites, April 2022

What your mother didn't teach
you about fast memcpy

Dick Sites
April 2022

1

Richard L. Sites, April 2022

Talk outline
Goal: Move 16 bytes per cycle
Copy-in-RAM fail, DMA engine fail
What the caches have to do
Load/Store partial
Prefetching
Memory organization for fast row access
Cache pollution
Summary

2

Richard L. Sites, April 2022

Move 16 bytes per cycle

3

Richard L. Sites, April 2022

Gedankenexperiment: Move 16 bytes per cycle

Factoid: at Google, about 25-35% of all active CPU time is spent moving bytes.

Here is a thought experiment,
to reveal some insights about microarchitecture

The goal: Move 16 bytes per cycle on a load/store machine with 64-bit addresses
and some 16-byte data registers (e.g. ARM, x86).

What are the consequences of this goal in a chip design?

4

Richard L. Sites, April 2022

Move 16 bytes per cycle
memcpy(dest, src, len);

Some moves are short, ~10 bytes: words, tags, headers, compress/decompress

Some moves are medium, ~100 bytes: paragraphs, control blocks, structs

Some moves are long, ~1000+ bytes: web pages, images, video frames, packets

We want all three categories to be close to 16 bytes per cycle.
Memcpy does not know ahead of time which len is involved.

5

Richard L. Sites, April 2022

Copy-in-RAM fail
DMA engine fail

6

Richard L. Sites, April 2022

Fails
Who does the shift?

After copying the <html> tag to a destination buffer, the next dest
starts at 6 (mod 16) but the next src may well be at 0 (mod 16).

Copy-in-RAM does not do the alignment shift

A separate "mover" DMA engine could, but for an N-core chip with just one DMA
engine, software must take out a lock to use it, too slow for a 6-byte move.
If there are multiple users, the others wait, making them uncontrollably too slow.

<html>
0 6

7

Richard L. Sites, April 2022

Generic alignment shift (little-endian picture)

8

dest aligned 16-byte
memory word

shift right

src low aligned 16-byte
memory word

src high aligned 16-byte
memory word... next

src

dest

Richard L. Sites, April 2022

What the caches have to do

9

Richard L. Sites, April 2022

L1 data cache
What does the L1 data cache have to do every cycle?

L1-data
cache

CPU

10

Richard L. Sites, April 2022

L1 data cache
What does the L1 data cache have to do every cycle?

What else?

L1-data
cache

CPU

Load 16 bytes Store 16 bytes

11

Richard L. Sites, April 2022

L1 data cache
What does the L1 data cache have to do every cycle?

Your microarchitecture needs to support all this data movement.

L1-data
cache

CPU

Load 16 bytes Store 16 bytes

Fill 64 bytes/4cy Evict 64 bytes/4cy

L2
cache and so on ...

12

Richard L. Sites, April 2022

CPU instruction stream

13

Richard L. Sites, April 2022

CPU instruction stream
What does the CPU have to do every cycle?

L1-data
cache

CPU

14

Richard L. Sites, April 2022

CPU instruction stream
What does the CPU have to do every cycle?

Seven instructions per cycle?

L1-data
cache

CPU
load 16 bytes
store 16 bytes
increment src += 16
increment dest += 16
decrement len -= 16
test
loop: branch if not done

15

Richard L. Sites, April 2022

CPU instruction stream
What does the CPU have to do every cycle, with loop unrolling and better test?

Your microarchitecture needs to issue 4 instructions per cycle, including two
cache accesses

L1-data
cache

CPU
load 16 bytes
store 16 bytes
increment src += 32
increment dest += 32

load 16 bytes
store 16 bytes
test (against ending src addr)
loop: branch if not done

16

Richard L. Sites, April 2022

CPU instruction stream
Oops, sorry. Also have to do the shift...

Your microarchitecture needs to have a byte shifter that takes two 16-byte inputs

L1-data
cache

CPU

load next 16 bytes
byte shift 32 bytes to align
store 16 bytes
increment src += 64

load 16 bytes
store 16 bytes
byte shift 32 bytes to align
increment dest += 64

load 16 bytes
store 16 bytes
byte shift 32 bytes to align
test

load 16 bytes
store 16 bytes
byte shift 32 bytes to align
loop: branch if not done

17

Richard L. Sites, April 2022

New instruction, 32-byte shift
Byte Shift Double

SHRBD R1, R2, R3

Shift the register pair R1,R2 right by 0..15 bytes, specified by R3<3:0>.
Place the result in R1.

Better design:
Shift the register pair R2,R2^1 right by 0..15 bytes, specified by R3<3:0>.
Place the result in R1.

18

Richard L. Sites, April 2022

Short moves

19

Richard L. Sites, April 2022

Short moves, ~10 bytes
Standard code, byte at a time (software or microcode):

while (0 < len--) {*dest++ = *src++;}

loop:
 compare len to 0
 decrement len -= 1
 branch if equal
 load byte 0(src)
 increment src += 1
 store byte 0(dest)
 increment dest += 1
 branch to loop

Too slow, at least two cycles per byte, 20 cycles for 10 bytes
20

Richard L. Sites, April 2022

New instructions
Load Partial

LDP R1, R2, R3
Load and zero extend 0..15 bytes from 0(R2) into R1, length specified by
R3<3:0>. Length 0 does no load and takes no traps.

Store Partial
STP R1, R2, R3

Store 0..15 bytes from R1 to 0(R2), length specified by R3<3:0>.
Length 0 does no store and takes no traps.

Chips with normal unaligned loads have all the hardware to do this.

21

Richard L. Sites, April 2022

Short moves
With load/store partial, short memcpy becomes simply:

memcpy:
LDP R1, src, len ; move 0..15 bytes
STP R1, dst, len ; move 0..15 bytes
ANDNOT R1, len, 15 ; mask out low four length bits
BNZ medium ; if not zero, more to move
RET ; if zero, we are DONE

medium:
...

Just one cycle plus call/ret. Could inline and only do a call/ret if medium or larger

22

Richard L. Sites, April 2022

Medium moves

23

Richard L. Sites, April 2022

Medium moves
After LDP/STP for 0..15 bytes, the remaining length is a multiple of 16.
medium:

AND Rx, len, 15 ; length (mod 16)
ADD src, Rx ; increment past the 0..15 bytes
ADD dest, Rx ; increment past the 0..15 bytes

AND Rx, len, 0x10 ; does length have a 16 bit?
BZ 1f
LD ; yes, move 16 bytes
ST ; yes, move 16 bytes
ADD src, src, 16 ; increment past the 16 bytes
ADD dest, dest, 16 ; increment past the 16 bytes

1: <same pattern for bit 0x20 and move 32 bytes: LD/ST LD/ST ADD ADD>
2: <same pattern for bit 0x40 and move 64 bytes: LD/ST LD/ST LD/ST LD/ST ... >
4: <same pattern for bit 0x80 and move 128 bytes: 8x LD/ST ... >

Very close to 16 bytes per cycle, plus extra for hardware unaligned accesses.
24

Richard L. Sites, April 2022

Long moves

25

Richard L. Sites, April 2022

Long moves
If more than 255 bytes, we end up here with a multiple of 256 in len<63:8>.

Time to take a few cycles to switch strategy and align both src and dest on
16-byte boundaries. (If desired, test and branch to special-case perfectly aligned code.)

Use LDP/STP to advance dest to the next higher multiple of 16 . Also back up
src to the next lower multiple of 16, and calculate as shift the right-shift needed
to align src to dest.

Load R2 with the aligned 16 bytes containing the low src bytes that will go to
dest. Increment src. Adjust remaining len. The high src goes to R3 next.

26

Richard L. Sites, April 2022

Long moves
This loop moves 64 bytes at a time. We saw it earlier. Note alternating R2,R3 use
to avoid register-register moves.
longloop:

LD R3, 0(src) ; next aligned 16 bytes of src
SHRBD R1, R2, shift ; The R2,R2^1 design, R2 low, R3 high
ST R1, 0(dest)
xx

LD R2, 16(src) ; next aligned 16 bytes of src
SHRBD R1, R3, shift ; The R3,R3^1 design, R3 low, R2 high
ST R1, 16(dest)
xx

<again, incrementing src and dest by 64, and then loop>

16 bytes per cycle exactly !
27

r2r3

r3r2

Richard L. Sites, April 2022

Long moves, tail end
After moving multiples of 64 bytes to aligned dest addresses, there will be a tail of
0..63 bytes remaining to move. Use the medium then short patterns to finish up.

The overall design comes very close to moving 16 bytes per cycle over the entire
range of short, medium, and long memcpy.

But we aren't done yet ...

28

Richard L. Sites, April 2022

Prefetching

29

Richard L. Sites, April 2022

Prefetching
With L3 cache about 40 cycles away from the CPU and main memory 200-500
cycles away, prefetching becomes important for long moves. We can't do much
about getting the initial bytes quickly, but we can prefetch subsequent bytes.

Moving 1KB at 16 bytes/cycle takes 64 cycles. This is enough time while moving
1KB to prefetch the next 1KB from L3 cache. Similarly, moving 4KB takes about
256 cycles, enough time to prefetch the next 4KB from a 200cy main memory.

But today's computers only prefetch single cache lines, often 64 bytes each.

30

Richard L. Sites, April 2022

New instructions
Prefetch_r, Prefetch_w

PRE_R --, R2, R3 (possibly also PRE_I I-cache prefetching)
PRE_W --, R2, R3

Prefetch data for reading from 0(R2), length min(R3, 4096).
Prefetch data for writing from 0(R2), length min(R3, 4096).

The 4KB upper bound on the length is important. It prevents describing a prefetch
of megabytes, and it guarantees that the prefetch will need no more than two TLB
lookups for 4KB or bigger pages. It is big enough to give code time to start
subsequent prefetches as needed, pacing prefetching to data use.

31

Richard L. Sites, April 2022

New instructions
Prefetch_r, Prefetch_w

PRE_R --, R2, R3
PRE_W --, R2, R3

The desired implementation of PRE_W does allocation of exclusive cache lines but
defers filling them with any data, except any partial first and last cache lines. If the
entire PRE_W range is then written, avoiding the unnecessary fills cuts the needed
memory bandwidth in half for pure writes and by 1/3 for memcpy.

The long move loop can be built as a pair of nested loops, the inner one issuing
read and write prefetches and then moving 4KB at a time.

32

Richard L. Sites, April 2022

DRAM row access

33

Richard L. Sites, April 2022

DRAM row access
DRAMs internally copy bits out of very weak transistors to a row buffer and then
serve bytes to a CPU chip from there. Row buffers are typically 1KB. Accessing
bytes from an already-filled row buffer is three times faster than starting from
scratch, approximately 15ns vs. 45ns. This hasn't changed much in 40 years.

If an implementation gets a prefetch address and length to the memory
controller logic at the beginning of a long prefetch, the memory controller has
enough information to optimize doing row-buffer fetches, even in the presence of
competing memory requests.

34

Richard L. Sites, April 2022

Cache pollution

35

Richard L. Sites, April 2022

Cache pollution
Quickly moving many kilobytes of data through the caches normally has the
downside of evicting other data belonging to other programs. Cache isolation
remains an unsolved problem in the datacenter part of our industry.

Preventing cache pollution could be done by assigning a few bits of "ownership" to
each cache line fetched and using that to keep track of how many lines each
CPU/etc. owns in the cache. For an L1 cache in a hyperthreaded chip, each
logical CPU is an owner. In a cache shared across many cores, each physical
core might be an owner. To prevent kernel code from polluting user data while
doing disk and network bulk moves, "kernel" could by an owner unto itself.

36

Richard L. Sites, April 2022

Cache pollution
Giving owners a limit on how many cache lines they can use allows an
implementation to switch allocation strategies for owners that are over their limit,
preferentially replacing their own lines or placing their new fills near the
replacement end of a pseudo-LRU replacement list. A loose limit of 60% of all
cache lines might be good enough.

This approach is superior to fixed way partitioning of an N-way associative cache
because it does not leave as many resources stranded.

An alternate approach requiring no extra ownership bits is to essentially rate-limit
each owner's fills. Those over their limit get the alternate allocation strategy.

37

Richard L. Sites, April 2022

Summary

38

Richard L. Sites, April 2022

Summary
Our simple "Move 16 bytes per cycle" quest for memcpy and its ilk reveals a
nuanced set of instruction-set and microarchitecture issues:

● Fail: Copy-in-RAM and DMA engines
● Pay attention to both the CPU side and the memory side of caches
● Double-width shift and Load/Store Partial significantly improve memcpy
● Prefetching can make a big difference
● Letting the memory controller know about prefetch length can be 3x faster
● Invent a way to control cache pollution

There are surely some thesis topics buried here...

39

Richard L. Sites, April 2022

References

40

Richard L. Sites, April 2022

Shameless plug: KUtrace every core, every nanosecond, 1% overhead

41

Richard L. Sites, April 2022

References
Richard L. Sites, "Understanding Software Dynamics."
Addison-Wesley, December 2021.

Matching code and HTML at
https://www.informit.com/store/understanding-software-dynamics-9780137589739
(Downloads tab partway down)

p.s. I would like some help finding long address traces

42

https://www.informit.com/store/understanding-software-dynamics-9780137589739

Richard L. Sites, April 2022

"What your mother didn't teach you about fast memcpy"
I'll go through ideas on helpful instructions and implementation details to make memcpy and other memory movement really fast on a
machine with a few 16-byte registers (e.g. x86 or ARM). For short lengths ~10 bytes, and medium ~100 bytes, and long ~1000+ bytes.
- copy-in-RAM design fail, DMA engine design fail
- Load/store partial instructions to do 0..15 bytes without branching and without byte at a time loop. For short, and for leaving remaining
length a multiple of 16 for medium and long
- Hardware prefetch prediction saturating 2-bit counters per load/store PC (similar to branch prediction per cond. branch PC) -- on miss
fetch 1/2/4/8 cache lines; counter increment/decrement details
- Prefetch for read/write up to 4KB for long
- Cache pollution considerations for long
- Memory organization to take advantage of multiple row accesses in DRAM (CAS only is 3x faster than precharge, RAS, CAS) for long
and for hardware prefetch of 4 and 8 cache lines.

A student with access to good memory-address traces could probably make a master's thesis out of one of these ideas (I don't know
which one).

43

