
Richard L. Sites, April 2022

Making the Invisible Visible
Observing Complex Software Dynamics

Dick Sites
April 2022

1

Richard L. Sites, April 2022

Talk Outline

Complex Software Dynamics
 Executing Too Much Code
 Executing Too Slowly
 Waiting for CPU
 Waiting for Memory
 Waiting for Disk
 Waiting for Network
 Waiting for Locks
Summary

2

Available at Yale Bookstore
77 Broadway (run by Barnes & Noble)

DRM-Free PDF, EPUB, & MOBI eBook files available at

informit.com/dsites. Use code DSITES to save 35%.

Also Available
Booksellers including Amazon and bn.com, and in
O’Reilly’s Online Learning subscription service (aka Safari).

*Discount code DSITES is only good at informit.com and cannot be used on the already
discounted book + eBook bundle or combined with any other offer.

**Outside the U.S. print books. Please check your local or online store where you purchase
technical related books. If your order print books from InformIT, your order is subject to
import duties and taxes, which are levied once the package reaches the destination country.

*

Available at the MIT COOP
80 Broadway, Kendall Square

DRM-Free PDF, EPUB, & MOBI eBook files available at

informit.com/dsites. Use code DSITES to save 35%.

Also Available
Booksellers including Amazon and bn.com, and in
O’Reilly’s Online Learning subscription service (aka Safari).

*Discount code DSITES is only good at informit.com and cannot be used on the already
discounted book + eBook bundle or combined with any other offer.

**Outside the U.S. print books. Please check your local or online store where you purchase
technical related books. If your order print books from InformIT, your order is subject to
import duties and taxes, which are levied once the package reaches the destination country.

*

Available at University Co-op
 2246 Guadalupe St

DRM-Free PDF, EPUB, & MOBI eBook files available at

informit.com/dsites. Use code DSITES to save 35%.

Also Available
Booksellers including Amazon and bn.com, and in
O’Reilly’s Online Learning subscription service (aka Safari).

*Discount code DSITES is only good at informit.com and cannot be used on the already
discounted book + eBook bundle or combined with any other offer.

**Outside the U.S. print books. Please check your local or online store where you purchase
technical related books. If your order print books from InformIT, your order is subject to
import duties and taxes, which are levied once the package reaches the destination country.

*

Richard L. Sites, April 2022

Complex Software
Dynamics

6

Richard L. Sites, April 2022

Complex Software Dynamics

Simple software: Single thread, CPU bound (e.g. benchmarks)

7

Richard L. Sites, April 2022

Complex Software Dynamics

Simple software: Single thread, CPU bound (e.g. benchmarks)

Complex software: Multiple threads blocking and waking each other up,
 interrupts, system calls, page faults

8

Richard L. Sites, April 2022

Our focus

Time-sensitive application code that is
 debugged
 has good design and algorithms
 normally has the desired performance

BUT has sporadic unexpected serious delays in a production environment

9

Richard L. Sites, April 2022

When repetitive code sometimes runs too slowly

There are only three possibilities:
1. Executing more code
2. Executing same code more slowly
3. Not executing -- waiting for something

10

Richard L. Sites, April 2022

When repetitive code sometimes runs too slowly

There are only three possibilities:
1. Executing more code
2. Executing same code more slowly
3. Not executing -- waiting for something:

a. CPU
b. Memory
c. Disk
d. Network
e. Lock

11

Richard L. Sites, April 2022

When repetitive code sometimes runs too slowly

There are only three possibilities:
1. Executing more code
2. Executing same code more slowly
3. Not executing -- waiting for something:

a. CPU
b. Memory
c. Disk
d. Network
e. Lock

As an industry, we generally have poor tools for observing what is
really happening in time-sensitive production code.

12

Richard L. Sites, April 2022

When repetitive code sometimes runs too slowly

We use KUtrace to show the invisible

KUtrace is a small set of Linux kernel patches that record every transition between
kernel-mode execution and user-mode execution, on every CPU core.

Its overhead is less than 1% in a busy production datacenter environment, and
much less than that in simpler environments.

Postprocessing produces the dynamic HTML behind the pictures here.

13

Richard L. Sites, April 2022

KUtrace: visibility

Running: All execution time of all threads is captured

Not-running: Threads do not spontaneously stop or start.

There is always a reason; there is no magic.

What are some reasons?
How do we find out which one?

14

Richard L. Sites, April 2022

KUtrace: visibility

Not-running: Threads do not spontaneously stop or start.

There is always a reason; there is no magic.

The reason is always in a kernel-user trace produced by KUtrace.

This is what makes the invisible visible -- seeing causality in action.

15

wakeup

blocks running again

reason to stop

reason to
re-start

Richard L. Sites, April 2022

When repetitive code sometimes runs too slowly

The following slides show
"black box" execution times of some sample programs, the invisible

and then show
detailed observations of all of that execution time, the visible

revealing the root causes for slowdowns.

16

Richard L. Sites, April 2022

1. Executing Too Much Code

17

Richard L. Sites, April 2022

Executing Too Much Code

Invisible: Five nominally-similar transactions. Why 16x slowdown?

18

Richard L. Sites, April 2022

Executing Too Much Code

Invisible: Five nominally-similar transactions. Why 16x slowdown?

Visible: PC-sample profile
Checksum 50.8%
memcpy 33.3
DecryptingChecksum 12.2
FreeRpc 1.7
__tls_get_addr 0.7
 finish_task_switch 0.7
 get_page_from_freelist 0.6

19

Richard L. Sites, April 2022

Invisible: Five nominally-similar transactions. Why 16x slowdown?

Where is the slow transaction
in this profile?

Executing Too Much Code

20

Richard L. Sites, April 2022

Executing Too Much Code

Invisible: Five nominally-similar transactions. Why 16x slowdown?

Visible: PC-sample profile USELESS
Checksum 50.8
memcpy 33.3
DecryptingChecksum 12.2
FreeRpc 1.7
__tls_get_addr 0.7
 finish_task_switch 0.7
 get_page_from_freelist 0.6

21

X

Richard L. Sites, April 2022

Executing Too Much Code

Invisible: Five nominally-similar transactions. Why 16x slowdown?

Visible: All timer-interrupt PC samples traced in context

22

Richard L. Sites, April 2022

Executing Too Much Code

Invisible: Five nominally-similar transactions. Why 16x slowdown?
Visible: All timer-interrupt PC samples traced in context

Long transaction executes different, slower,
DecryptingChecksum code, which programmer
"knew" was just as fast as Checksum. But it isn't.

23

Richard L. Sites, April 2022

Executing Too Much Code, summary

Too much code comes from unexpected ...
● Branching
● Calls
● Callbacks

Profiles merge together many fast cases with a few slow cases, hiding what is
different about the slow ones. Useless.

Traces reveal what is different.

24

Richard L. Sites, April 2022

2. Executing Too Slowly

25

Richard L. Sites, April 2022

Executing Too Slowly

Invisible: Two runs of same identical benchmark. Why 40% slowdown?

26

Richard L. Sites, April 2022

Executing Too Slowly

Invisible: Two runs of same identical benchmark. Why 40% slowdown?

Visible: Some but not all loops get 35-65% slower

27

Richard L. Sites, April 2022

Executing Too Slowly

The same code but sometimes executing slowly means that there is some form of
interference --

which can only come from use of shared hardware resources or shared software
critical sections.

Interference comes from what else is running.

28

Richard L. Sites, April 2022

Executing Too Slowly

Invisible: Two runs. Why 40% slowdown?
Visible: What else is running?

The long run executes slowly because of another program.
(Interference is at the floating divide execution unit.
 Loops m2 to m6 do not use much floating-point.)

29

Richard L. Sites, April 2022

Executing Too Slowly

Instructions per cycle (IPC) speedometer

30

4.0 IPC

1.0 IPC

2.0 IPC0.5 IPC

1/8 IPC

Richard L. Sites, April 2022

Executing Too Slowly

Invisible: Two runs. Why 40% slowdown?
Visible: What else is running?

The long run executes slowly because of another program.
When it runs, the benchmark IPC drops (speedometer triangles).
1.4x for m9 loop, 3x for m11 loop.

31

Richard L. Sites, April 2022

Executing Too Slowly, summary

Executing too slowly comes from ...
● Other-thread, other-program, or operating-system interference from

use of some shared resource: CPU, memory, disk, network, locks
● Power-saving slow CPU clock frequency
● Slow exit from power saving

Microsecond-scale IPC reveals the interference between tasks.

32

Richard L. Sites, April 2022

3 Waiting for something

33

Richard L. Sites, April 2022

Waiting for CPU, memory, etc.

When a program is waiting for something, it is not executing.

Profiles only sample during execution. They reveal nothing about waiting. Useless.

34

Richard L. Sites, April 2022

3a. Waiting for CPU

35

Richard L. Sites, April 2022

Waiting for CPU

Invisible: Three threads wait on a fourth, then resume. Why longer wait?

36

Richard L. Sites, April 2022

Waiting for CPU

Invisible: Three threads wait on a fourth, then resume. Why longer wait?

Visible: Long one is waiting almost 2 msec to get a CPU assigned

37

Richard L. Sites, April 2022

Waiting for CPU

Invisible: Why longer wait?
Visible: Long one is waiting almost 2 msec to get a CPU assigned

 At (1), fourth thread does a write that wakes up gmain
 (Gnome display), and then restarts first three
 threads. Not enough CPUs to go around, so last
 wakeup waits. Linux scheduler fail: waits until a
 timer interrupt 1.77 msec later to restart.

38

Richard L. Sites, April 2022

Heisenbug !

Without the debugging write: no fifth thread and no performance bug.

Debugging write to local disk: no fifth thread and no performance bug.

Without the scheduler screwup: no performance bug.

All 3: debug write and ssh access and scheduler screwup = performance bug.

If you can't see it, you can't fix it.

(A combination of causes is typical for difficult bugs)

39

Richard L. Sites, April 2022

Waiting for CPU, summary

Waiting for CPU comes from ...
● Busy CPUs
● Scheduler's too-strong affinity to task's last-used core
● Delays coming out of power-saving states
● Complex interactions between user code, kernel code, and the scheduler

Wakeup events tell us what a thread was waiting for.
KUtrace has such low overhead that it does not disturb Heisenbugs.

40

Richard L. Sites, April 2022

3b. Waiting for Memory

41

Richard L. Sites, April 2022

Waiting for Memory

Invisible: Pthread clone() takes a long time to start up

42

Richard L. Sites, April 2022

Waiting for Memory

Invisible: Pthread clone() takes a long time to start up

Visible: Started thread waits for CPU and memory

43

Richard L. Sites, April 2022

Waiting for Memory

Invisible: Long start up
Visible: Started thread waits for CPU and memory

1. Clone() makes a read-only copy of parent page tables to share its memory.
2. Child's first initialization write takes a page fault to do copy-on-write
3. That fault waits for parent to finish page-table-sharing setup; parent waiting for children
4. Rest of child's initialization takes 60 more page faults
5. Real child processing finally starts

44

Richard L. Sites, April 2022

Waiting for Memory, summary

Waiting for memory comes from ...
● All memory allocated
● Large allocation in badly-fragmented memory
● Paging to death
● Other threads manipulating page tables

Seeing the page faults in context matters.

45

Richard L. Sites, April 2022

3c. Waiting for Disk

46

Richard L. Sites, April 2022

Waiting for Disk

Invisible: Execution timespans for two different 40MB disk reads. Why slowdown?
 Read 1: 680 msec

 Read 2: 1330 msec

47

Richard L. Sites, April 2022

Waiting for Disk

Invisible: Execution timespans for two different 40MB disk reads. Why slowdown?
 Read 1: 680 msec

 Read 2: 1330 msec

Visible: Execution timespans, tracing every execution interval.

 Read 1: Single 40MB read; almost all wait_disk for ~0.7 seconds
 Read 2: 10240 reads, each 4KB, missing every other disk revolution for ~1.3 seconds

48

Richard L. Sites, April 2022

Waiting for Disk

Invisible: Why slowdown?
Visible: Detail of three 4KB reads
 CPU 1: disk interrupts, wakeup arcs
 CPU 3: user code: read,wait,finish
 repeats ~150 usec
 (disk blocks: ~66 usec repeat)

49

Richard L. Sites, April 2022

Waiting for Disk, summary

Waiting for disk/SSD comes from ...
● Busy disks
● Small transfers
● Device emptying write buffer or erasing flash blocks
● Complex interactions between user code, kernel code, file system code, scheduler

delays, and storage devices

Seeing the interrupt activity matters.

50

Richard L. Sites, April 2022

3d. Waiting for Network

51

Richard L. Sites, April 2022

Waiting for Network

Invisible: Twelve RPCs sending 4KB each, receiving short answers. Why 6 slow?

52

Richard L. Sites, April 2022

Waiting for Network

53

Invisible: Twelve RPCs sending 4KB each, receiving short answers. Why 6 slow?

Visible: Time-aligned CPU writes

Richard L. Sites, April 2022

Invisible: Why slow? Other-thread 1MB write #49948 delays network access
Visible: Write #13045 not delayed. Writes #23759, ... delayed getting on the wire

Waiting for Network

54

Richard L. Sites, April 2022

Waiting for Network, summary

Waiting for network comes from...
● Outbound kernel-code delay
● Outbound network-access delay

● Network hardware path

● Inbound network-interrupt delay
● Inbound kernel-code delay
● Inbound user-code fetch delay

Seeing when the packets cross the wire is important.

55

Richard L. Sites, April 2022

3e. Waiting for Locks

56

Richard L. Sites, April 2022

Waiting for Locks

Invisible: Two threads wait a long time for lock; middle thread has it

57

Richard L. Sites, April 2022

Waiting for Locks

Invisible: Two threads wait a long time for lock; middle thread has it

Visible: Middle thread re-acquires lock multiple times

58

Richard L. Sites, April 2022

Waiting for Locks

Invisible: Middle thread starves out the others
Visible: Middle thread re-acquires lock multiple times

Each time middle thread frees the lock, it wakes up the
other two. But before they can run, it re-acquires the lock.
Rinse and repeat ... goes on for 84 msec!

59

Richard L. Sites, April 2022

Waiting for Locks, summary

Waiting for locks comes from
● Other threads that are holding the lock
● (Hint: fix those, not the waiting thread)
● (But first you have to know which ones)

Seeing lock acquire, hold, release is important.
Recording which lock is important.

60

Richard L. Sites, April 2022

The Knuth Challenge

61

Make a thorough analysis of everything your
computer does during one second of

computation. -- Don Knuth 1989

Richard L. Sites, April 2022

The Knuth Challenge

62

Make a thorough analysis of everything your
computer does during one second of

computation. -- Don Knuth 1989

"Sites and KUtrace met my 33-year-old one-second Challenge"
-- Don Knuth, March 2022

Richard L. Sites, April 2022

Overall Summary

63

Richard L. Sites, April 2022

Summary

We looked at reasons for unexpected delays in complex software
 Executing too much code
 Executing too slowly
 Waiting: CPU, memory, disk, network, locks

Being able to see what every CPU core is doing every nanosecond makes the
invisible visible and reveals root causes. KUtrace makes the invisible visible.

64

Richard L. Sites, April 2022

Summary

We looked at reasons for unexpected delays in complex software
 Executing too much code
 Executing too slowly
 Waiting: CPU, memory, disk, network, locks

Being able to see what every CPU core is doing every nanosecond makes the
invisible visible and reveals root causes. KUtrace makes the invisible visible.

As an industry, we generally have poor tools for observing what is
really happening in time-sensitive production code.

65

Richard L. Sites, April 2022

Reference

66

Richard L. Sites, April 2022

Reference

Richard L. Sites, "Understanding Software Dynamics."
Addison-Wesley, December 2021.

informit.com/dsites Use code DSITES to save 35%

Matching software and HTML at
https://www.informit.com/store/understanding-software-dynamics-9780137589739
(Downloads tab partway down)

or at https://github.com/dicksites/KUtrace

p.s. I would enjoy some help taking traces of the SPEC benchmarks 67

https://www.informit.com/store/understanding-software-dynamics-9780137589739
https://github.com/dicksites/KUtrace

Richard L. Sites, April 2022

Questions, that perhaps I could answer

68

Richard L. Sites, April 2022

abstract

Making the Invisible Visible
Observing Complex Software Dynamics

From mobile and cloud apps to video games to driverless vehicle control, more and more software is time-constrained: it
must deliver reliable results seamlessly, consistently, and virtually instantaneously. If it doesn't, customers are unhappy--and
sometimes lives are put at risk. When complex software underperforms or fails, identifying the root causes is difficult and,
historically, few tools have been available to help, leaving application developers to guess what might be happening. How
can we do better?

The key is to have low-overhead observation tools that can show exactly where all the elapsed time goes in both normal
responses and in delayed responses. Doing so makes visible each of the seven possible reasons for such delays, as we
show.

69

