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Abstract

There are three interdependent factors that drive our development processes: interval, quality and cost. As market pressures

continue to demand new features ever more rapidly, the challenge is to meet those demands while increasing, or at least not sac-

rificing, quality. One advantage of defect prevention as an upstream quality improvement practice is the beneficial effect it can have

on interval: higher quality early in the process results in fewer defects to be found and repaired in the later parts of the process, thus

causing an indirect interval reduction.

We report a retrospective analysis of the defect modification requests (MRs) discovered while building, testing, and deploying a

release of a network element as part of an optical transmission network. The study consists of three investigations: a root-cause

defect analysis (RCA) study, a process metric study, and a code complexity investigation. Differing in the quantities that we an-

ticipate to be related to found defects, they all have in common the goal of identifying early quality indicators.

The core of this threefold study is the root-cause analysis. We present the experimental design of this case study in some detail

and its integration into the development process. We discuss the novel approach we have taken to defect and root cause classifi-

cation and the mechanisms we have used for randomly selecting the MRs, to analyze and collecting the analyses via a web interface.

We present the results of our analyses of the MRs and describe the defects and root causes that we found, and delineate the

countermeasures created either to prevent those defects and their root causes or to detect them at the earliest possible point in the

development process. We conclude the report on the root-cause analysis with lessons learned from the case study and from our

experiences during subsequent usage of this analysis methodology for in-process measurement.

Beyond the root-cause analysis, we first present our findings on the correlation between defects detected and the adherence to our

development process. Second, we report on our experience with analyzing static code properties and their relation to observed defect

numbers and defect densities. � 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

1.1. Project context

The product in our study is a network element (NE)
that is a flexibly configurable transmission system in
an optical network, consisting of circuit packs, ASICs,
software units, and a craft terminal. The total head

count for this release was 180 people and the develop-
ment project lasted for 19 months.

The NE software is developed in teams of 5–10
people. A typical (large) NE configuration can consist of
many different hardware board types and up to 150
different software components. A software team is res-
ponsible for a collection of functionally related com-
ponents, which altogether form an architectural unit,
called ‘software domain’ within this paper. The overall
size of the NE software product is around 900 K-NCSL
(non-commentary source lines), 51% being newly de-
veloped software.

This release has been a very important and critical
one especially for the European market. Manage-
ment concern for process improvement enabled several
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project retrospective activities, one of them being the root-
cause defect analysis (RCA) project, two others have
been a process compliance and a code complexity study.
Several improvement projects towards, for example,
better effort estimation, more efficient development, and
predictable and higher quality (measured in number of
defect MRs) have been performed afterwards.

1.2. Retrospective analysis

The studies we are presenting have all been done
retrospectively, but were based on different data sets
from the same project context. The input data we used
were defect numbers, static code analysis data, and de-
fect classification data from a sample from all defects.
The last set of data constitutes the basis for the central
part of this paper, the RCA, which is an extended ver-
sion of Leszak et al. (2000). The other two data sets were
input to smaller investigations, one on process compli-
ance, the other on code complexity and its relation to
defect insertion.

For the RCA a team has been constituted as cross-
functional team: members represented the NE software
and hardware domains, as well as the independent in-
tegration and certification department and quality sup-
port group. We also have been supported by members of
the Bell Laboratories Software Productions Research
Department who brought extensive experience from
other similar studies (e.g., Perry and Stieg, 1993) into
our team. The mission of the RCA project was to

• analyze sample defect MRs; find systematic root
causes of defects;

• analyze major customer-reported MRs during the
maintenance release (so-called Post-GA MRs,
GA¼ general availability of the product);

• propose improvement actions, as input for current
development projects, in order to reduce number of
critical defects (severity 1 and 2 MRs) and to reduce
rework cost, e.g., MR fix effort.

The other two investigations on process compliance
and on static code analysis measures have been per-
formed by quality assurance representatives in coopera-
tion with the software support team. Data were readily
available from quality gate reviews and from measure-
ment tools evaluating static code characteristics like
code size and complexity.

1.3. Limitations

The root-cause study has focused on defect analysis
and determining the underlying root causes of those
defects. There are more general perspectives that one
might take (for example, what went well and what went
wrong) but those have been out of scope for this study.

Moreover, correlations with other product metrics have
not been considered either, though it would be very in-
teresting to analyze, for example, defect distributions in
relation to test effort. We have focused our effort analy-
sis on the reproduction, investigation and repair of the
defect MRs, not on the retest effort that makes up a
significant part of the rework effort.

Due to time pressures resulting from limitations on
team member availability for RCA, we were not able to
implement the formal analysis training and testing to
establish a defined level of inter-rater reliability i.e.,
different analysts often came up with different RCA re-
sults for the same MRs. However, there are two miti-
gating factors. First, the analysts looking at the MRs
were members of the team putting together and re-
viewing the web-based analysis tool. This participation
resulted in project relevant aspects being included in the
questionnaire. We argue that this participation also re-
sulted in a shared understanding of the components of
the analysis. Second, we did implement informal con-
sistency checks during the analysis process. Where in-
consistencies were found, the analysts made subsequent
corrections to the defect analyses. Third, after all data
have been analyzed a comparison of the team specific
results took place which revealed that the differences
between teams where consistent with the subjective ex-
pectations of the analysts. Thus, we are relatively con-
fident in the consistent ratings of the resulting data.

The investigation of the relation between defects and
process non-compliance should be regarded as an acci-
dental finding like there are uncountably many in the
history of science. As such it needs further study and
investigation before it could be used as a standard tool
for early defect indication, work that still remains to be
done.

1.4. Relation to other work

Prior work on software faults has generally been re-
ported on initial developments and focused on the
software faults themselves rather than their underlying
causes. The work of Endress (1975), one of the earliest
papers to analyze software faults, based his error clas-
sification on the primary activities of designing and
implementing algorithms in an operating system. Thayer
et al. (1978) provided an extensive categorization of
faults based on several large projects. Schneidewind and
Hoffmann (1979) categorized faults according to their
occurrence in the development life-cycle. Ostrand and
Weyuker (1984) introduced a novel attributed catego-
rization scheme delineating fault category, type, pres-
ence and use. Finally, Basili and Perricone (1984)
provided an analysis of a medium scale system.

Our current study is based in part on earlier work by
Perry and Evangelist (1985, 1987) on interface faults
which, while cognizant of the earlier fault categorization
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work listed above, derived its list of interface faults from
the fault data rather than using a pre-existing categori-
zation. It is based also on the work by Perry and Stieg
(1993) – a study of one of the releases of one of Lucent’s
very large switching systems. The fault categorization
used in this study was based in part on the published
categorizations and part on the experience of the de-
velopers in the reported project.

The work here is similar in intent but differs in im-
plementation details. First, the defect categories are an
improvement on the original categories in that they are
separated into three classes for better human factors
reasons, breaking up a large set of defects into three
reasonable sized sets of defects. Second, the effort esti-
mation scales are uniform here where they were different
there; further, we added investigation effort here. Third,
we expanded the root causes over what we had in the
original study. This expansion was done in conjunction
with the knowledgeable developers from the project and
reflects both the current state of their project and their
processes. Fourth, and our most novel aspect from a
research point of view, we allowed for multiple root
causes to be defined as well as for no root causes (i.e., a
simple mistake with no underlying, lurking cause). And
finally, rather than surveying the entire set of defect
MRs, we have randomly selected a statistically signifi-
cant sample from each of the domains for detailed
analysis.

Card’s ‘‘Learning from out Mistakes with Defect
Causal Analysis’’ (Card, 1998) provides a generic pro-
cess which is congruent with the process followed here.

There are several strands of related work that are
similar to ours but which did not have a direct influence
on our approach. Chillarege et al. in their paper ‘‘Or-
thogonal Defect Classification’’ (Chillarege et al., 1992)
focuses on defect types and defect triggers as a means
of feedback to the development process. In spirit, this
is much the same as our approach except that their
method is used throughout the entire development
process for immediate feedback where ours is essentially
a retrospective and ‘end of development’ feedback pro-
cess. Also the subsequent elaboration of their approach
in Orthogonal Defect Classification at IBM,3 appears to
be too detailed and complex to be applied to the kind of
software application we studied.

More recent work on defect and root-cause analysis
by Yu et al. (1997, 1998) has followed a process similar
to ours, but using different defect and root-cause clas-
sification schemes. They have not focused explicitly on
the effort related to the defects. However, the general
shape of their results are similar to ours.

In a larger context, our methodology applies key as-
pects of the defect prevention process area of the CMM

(Paulk et al., 1993) and is similar to the one described in
Endress (1975).

For the process compliance part of our work, several
case studies on error-prone modules e.g., by Khosh-
goftaar and Allen (1999) are related to our work.
However, their classification does not relate defects per
module to the degree to which a defined process has
been followed.

The definition of a process consistency metric in
Krishnan and Keller (1999) is based on following certain
CMM key process areas and relating those to field de-
fects. Our study bases process compliance on more
detailed, quality related activities like unit test and in-
spections and relates the execution or omission of those
activities to defects found in-process.

1.5. Organization of the paper

We first discuss the root-cause analysis study in Sec-
tion 2 which constitutes the core and the most multi-
faceted part of the paper. We introduce our RCA
methodology in Section 2.1. We then present our data
analysis in Section 2.2 focusing first on how we prepared
the data, then on the results of our general analyses of
the defects, effort and root causes, and finally on the
selection of critical root causes to be either prevented
or found earlier. In Section 2.3, countermeasures and
follow-up improvement actions are discussed. Section
2.4 summarizes lessons learned from the retrospective
analysis, as well as from the subsequent implementation
as in-process measurement (ipRCA).

In the following two sections we report on two
smaller sized investigations.

Section 3 presents the stunningly clear relation be-
tween defects found and process non-compliance during
development by introducing a process metric derived
from our development process and comparing defect
numbers and densities found for SW components falling
into different process non-compliance categories.

Section 4 then gives a brief summary of our unsatis-
fying experiences with static code analysis and its rela-
tion to observed defects and defect densities.

Finally in Section 5 we summarize the paper and give
an outlook into future activities.

2. Root-cause defect analysis (RCA)

We elaborate first on our methodology for RCA.

2.1. RCA methodology

2.1.1. Embedding of RCA into the development process
Fig. 1 depicts the process workflow in which RCA

plays a key role for analyzing defects and learning
from systematic root causes: from the project’s MR3 http://www.research.ibm.com/softeng/ODC/ODC.HTM
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databases, samples of both internally detected and cus-
tomer delivered defects are selected (1) and enhanced by
RCA information by the RCA team. Upon analysis of
the systematic root causes, countermeasures are defined
(2) and proposed as either short-term or long-term im-
provement actions. Upon management alignment and
approval, the former will impact the development pro-
ject directly, whereas the latter will lead to improve-
ments of the organizational development process.

2.1.2. MR classification scheme
Each MR in the selected sample has been analyzed

along the categories ‘phase detected’, ‘defect type’, ‘real
defect location’, ‘defect trigger’, and ‘barrier analysis
info’, described in detail below.

Phase detected information. An important fact needed
if we are to find defects earlier is when the defect was in

fact found. The analyst may choose any one of 10
process phases (see Table 1) as the phase in which the
defect is found. In addition, the analyst may indicate
why the defect was not found earlier.

Defect types. We divided the defects into three classes
of defects: implementation, interface and external.
Within each of these classes there are a set of appro-
priate defects types, depicted in Table 2.

Each type can then be further refined by indicating its
defect nature: incorrect, incomplete, other. These were to
be applied wherever they were appropriate. Their use
was to reduce the number of explicit defect types. The
other part of the defect classification focused on re-
classifying the severity if that was necessary and re-
porting the amount of effort to reproduce the defect, to
investigate it, and to repair it. We used a uniform scale
for these effort reports: zero (meaning negligible effort),
less than one day, one to five days (i.e., up to a week),

Fig. 1. Overall development workflow, enhanced by RCA procedure.

Table 1

Lifecycle phases for network element development (associated RCA analysis results are in Fig. 3)

Lifecycle phase Included process steps

1. System definition Specification of requirements and of systems architecture

2. HW design Design of HW entities e.g., circuit packs and ASICs

3. IMS ‘Integration of minimal system’, i.e., integration of all HW pieces for a network element

4. SW design Software architecture definition and design, coding and unit testing of SW components

5. SW integration Integration of SW components into a complete SW image and grey-box testing of the

interworking of SW components, on host-level without the target hardware

6. System integration Integration of all HW and SW entities for a network element, as well as subsequent functional

test of their interworking

7. System test Black-box acceptance testing of requirements on network element level

8. Reproducibility Phase after successful system test, at delivery of the final HW configuration and SW load, but

prior to ‘General Availability’

9. Deliveries Phase after General Availability i.e., operation at customer networks

10. Prior to project start Phases related to previous product release, prior to ‘System definition’ of current release
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five to 20 days (one to four weeks, i.e., up to a month),
and more than 20 days (more than a month).

Real defect location. The real defect location specified
either a document identifier, or whether it was software
or hardware. ‘Real’ location characterizes the fact that
in real projects some defects are not fixed by correcting
the ‘real’ error-causing component, but rather by a so-
called ‘work-around’ somewhere else.

Defect triggers. Our approach to defect triggers (root
causes) is rather novel. There are a number of dimen-
sions that may in fact be at the root of each of the defects
– that is, there may be several underlying causes rather
than just one. We therefore provided a set of four inher-
ently non-orthogonal classes of root causes: phase-re-
lated, human-related, project-related and review-related.

• The phase triggers are the standard development
phases or documents: requirements, architecture,
high level design, component spec/design, component
implementation and load building. The phase related
root causes could be qualified by the nature of the
trigger: incorrect, incomplete, ambiguous, changed/
revised/evolved, not aligned with customer needs,
and not applicable (the default).
Associated analysis results are in Fig. 4.

• The human related triggers are: change coordina-
tion, lack of domain knowledge, lack of system
knowledge, lack of tools knowledge, lack of process
knowledge, individual mistake, introduced with other
repair, communications problem, missing awareness
of need for documentation, and the default, not ap-
plicable. The ‘‘individual mistake’’ trigger is similar
to the ‘‘Execution/oversight’’ category of Yu (1998).
It reflects the fact that sometimes you just make mis-
takes.
Associated analysis results are in Fig. 5.

• The project triggers are time pressure, management
mistake, caused by other product, and not applicable
(again the default).

• The review triggers are no or incomplete review, not
enough preparation, inadequate participation, and
not applicable. (Note that a review is a formal mod-
erator-controlled inspection of a document or code
artifact. Our review process is described in Laitenber-
ger et al. (1999).)

• other triggers and, of course, there is the escape
‘‘other’’ allowing a different trigger to be specified.

Barrier analysis information. Finally, the analyst
may suggest measures for ensuring earlier defect detec-
tion and/or for preventing or avoiding the defect alto-
gether.

2.1.3. MR selection procedure
As is usual in these kinds of studies, there is a prob-

lem with the magnitude of the amount of work that
would have to be done to analyze all the relevant MRs
to get a complete picture of the defects and their causes.
One way of reducing the amount of work is to randomly
select a significant subset of the MRs to represent the
whole set and carefully analyze that subset. Thus our
selection procedure was as follows:

• Define a set of MRs per domain (not per team), such
that a subteam analyses selected MRs per domain.

• For each set of MRs per domain:
� filter out inappropriate MRs;
� split into n MR subsets, such that each MR in

a certain subset ‘‘Si’’ belong to exactly one do-
main;

� from the MR subset Si , select further a (typically
much smaller) subset S0

i such that
– one part (say 5–10) is selected manually by the

subteam analyzing S0
i, based on own selection

criteria like ‘‘this MR hurt us a lot’’, long life-
time, overly complex problem solution, etc.

– The second part is a random sample of Si of or-
der 40 MRs. In case Si is not ‘significantly lar-
ger’ than 40, all MRs in Si are selected.

– Explicitly not excluded are severity 3 or 4
MRs (being not customer-visible), no-
change MRs (false positives), and documenta-
tion MRs.

2.1.4. Methodology to derive countermeasures and im-
provement actions

Our methodology entails four steps.
(1) Selection of most significant MR subset. Critical

for proposing countermeasures is the necessity of fo-
cussing on a reasonable subset of all defects.

Table 2

Classification of defect types (associated RCA analysis results are in Fig. 2)

Implementation Interface External

1. Data design/usage 9. Data design/usage 16. Development environment

2. Resource allocation/usage 10. Functionality design/usage 17. Test environment (tools/infrastructure)

3. Exception handling 11. Communication protocol 18. Test environment (test cases/suites)

4. Algorithm 12. Process coordination 19. Concurrent work (other releases)

5. Functionality 13. Unexpected interactions 20. Previous (inherited from previous release)

6. Performance 14. Change coordination 21. Other

7. Language pitfalls 15. Other

8. Other
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To arrive at such a set we apply a filtering mecha-
nism. The filter cannot be defined beforehand, but is
the outcome of a first analysis step. In this first step,
the goal is to identify selection criteria which filter
those MRs that have together a significant part of
rework effort and which to a large extent are found
late in the development process. This way we arrive at
a first subset of MRs that will be analyzed in more
detail.

As second criterion for finding important defects, we
look into Post-GA MRs and search there for dominant
contributions. If the defects that are found to be im-
portant differ in their characteristics from the first set,
we get a second set of MRs for detailed study. These
results provide the statistical input to the team for the
selection of countermeasures that were suggested for
each MR during its analysis.

(2) Prioritization of countermeasures. The RCA action
team brainstormed proposals and weighted each pro-
posal with overall consensus, according to three factors:
statistical weight as percentage of total effort, effective-
ness of the suggested countermeasure and estimated cost
of its implementation, on a scale of 0–1. The product of
the values is taken to get a first ranking of counter-
measures. Finally this ranking is taken as basic, but not
fully binding, input to select the countermeasures to
tackle. Typically

• countermeasures with weight > 0:5 should be selected
• the number of countermeasures should be ‘small’ e.g.,

< 20, to remain manageable w.r.t. organizational
changes

(3) Definition of improvement actions. We conducted a
two-day workshop with the analysts in which we fo-
cussed on the selected subset of defects and root causes
to determine the appropriate actions to the defined and
prioritized countermeasures. The results are summarized
in Section 2.3.

4. Deployment of improvement actions. Results were
presented to our R&D Management Leadership Team
and the development teams. Key improvements pro-
posed have been approved and their implementation
initiated, see details in Section 2.3.

2.2. Data measurements and analysis

We first discuss the issue of preparing the data for
analysis, then present our general analysis results and
conclude with a discussion of how we selected the crit-
ical root causes as a focus for more detailed analysis and
group discussion.

Before continuing, we briefly clarify the terminology
we use in our MR handling process. The following types
of MRs are distinguished:

• initialization MR: used to add an artifact for the first
time to the configuration management repository.
Once an MR of this kind is closed, other MRs, of
type enhancement or defect, may be created on the
associated artifact;

• enhancement MR: used to add new functionality as
part of a new release, i.e., as planned evolution of
an existing system;

• defect MR: used to correct any fault in specifica-
tion, design, or implementation. For each problem
detected, a new MR is issued. If several artifacts
are affected by the correction, this is handled by
MR spawns. In this paper, we consider always
the problem-related MRs, not their spawned sub-
MRs.

2.2.1. Data preparation
Data screening for the analysis proceeded in two

steps.

1. Consistency checking. A comparison of results be-
tween different domains was conducted. The ratio-
nale being the elimination of misunderstandings of
terms and verification of results. In particular the an-
alysts have been asked to provide reasons for a typi-
cal behavior or to correct the classification if it was
due to a misinterpretation of terms.

2. Preparation of a representative sample. We separated
from those settled analysis data the MRs which have
not been selected randomly. From the rest of the
MRs we split off so-called no-analysis MRs which
were erroneously classified as defects but in fact were
initial MRs or enhancement MRs. The remaining
MRs constitute a basis of 427 MRs belonging to 13
domains (Post-GA MRs counted as separate do-
main).

Each domain was represented with at least 8% of its
MRs. Typically 20–40% of the MRs were analyzed,
these percentages being a consequence of the chosen
minimal sample size of 40 MRs, see Section 2.1.3.
Taking also the total number of MRs per domain we
had a multiplicity factor depending on the domain that
each MR was weighted with during the analysis. E.g.
each MR belonging to a sample that was represented
with 20% of its MRs was counted as 5 MRs with all the
characteristics the particular sample MR had like se-
verity, defect type, etc. These weighted MRs were used
throughout the following analysis, to extrapolate from
the random sample to the total set of MRs.

Extra MRs that have been analyzed in addition to the
random sample MRs were negligible in number except
for one domain. The MRs of this domain have been
included in the comparison between domains as separate
group of MRs. The remaining extra MRs have not been
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considered in the statistical analysis but only in the
manual evaluation of countermeasures.

2.2.2. General analysis results
Our statistical analysis is mainly descriptive in nature.

Thus the bulk of evaluation consists in graphical or
tabular aggregation of the results of our investigations
and is done using the ‘‘S’’ software tool (Becker et al.,
1988) in an exploratory way. Most results, depicted in
Figs. 2–6, are presented using Pareto charts.

From the distribution shown in Fig. 2, we can derive
several general results:

1. External defects are negligible, except for type ‘‘inheri-
ted from previous release’’.

2. Interface defects consume about 25% of effort, the
largest amount being caused by unexpected interac-
tions, followed by functionality and data design.

3. Implementation defects consume 75% of all effort and
are dominated by defects of type algorithm and of
type functionality. These defects will be studied in
more detail below.

Interesting is the mismatch between number and effort
which is most significant for defects of type previous,
unexpected interaction, performance, and data design.
This is reflected in the estimated effort (in person days)
per MR of those defects. On the average, we find 4.6 days
for external, 6.2 for interface, 4.7 for implementation
defects. Outliers are data design (at the low end) with 1.9
days and (at the high end) inherited defects 32.8, unex-
pected interactions 11.1 and performance defects 9.3.

As depicted in Fig. 3, system integration represents
50% of the distribution for defect detection, while the

elimination of those defects taking up almost 60% of
effort. As expected, the data show a significant variation
in effort per MR. Defects found in SW design and SW
integration require less effort than those found in system

Fig. 2. Distribution of defect types.

Fig. 3. Distribution of phase where defect detected.

Fig. 4. Distribution of phase where defect originated.
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integration and test. The estimated effort per MR (in
person-days) as extracted from those figures are 3 days
during SW design and integration, 6 days during system
integration and system test and 9 days after delivery.

As shown in Fig. 4, defects are injected into the sys-
tem predominantly (71%) within the component ori-
ented phases of component specification, design and
implementation. As an interesting outcome of the anal-
ysis, we observe that defects from the requirements
phase do not consume on the average tremendously
more fix effort to be eliminated than others. Rather ar-
chitectural mistakes turn out to require much more ef-
fort. It turns out that the required effort is for defects
originating from requirements 6.5 days, from architec-
ture 10 days, from high level design 5.8 days and from
component spec./design 5 days.

An important study decision was to allow for several
root causes to be specified during analysis of each MR.
The intuition is that there may well be several factors

contributing to the occurrence of a defect. Thus, in ad-
dition to phase, we have allowed human, project, and
review root causes to be specified. These non-orthogonal
classifications give indications as to what played a role
in a defects occurrence. A useful way of looking at the
data is to take the inverse percentages as an indication
how many defects remain unaffected if the particular
root cause were eliminated.

Viewing the data this way, we can see from Fig. 5 that
eliminating individual mistakes would have no effect on
67% of all defects, eliminating lack of system and do-
main knowledge would have no effect on 69%. If all
communication-related problems were to be solved, 87%
of all defects remained unaffected.

For the selection of project root causes, while time
pressure was chosen to be one affecting factor in 40% of
all defects, mostly project root causes were not consi-
dered relevant.

Review-related root causes have been considered in
73% of all MRs and inadequate reviews have been
specified as important in 48% of all MRs. Thus in 66%
of all defects where review root causes have been con-
sidered at all, review deficiencies have been diagnosed.

2.2.3. Selection of critical root-causes, to be improved or
eliminated

As first step in figuring out dominant contributions,
the distributions of MRs according to their defect type
were studied with the result that defects of type algo-
rithm and of type functionality (defect class ‘imple-
mentation’) dominated by far all other defect types.
‘Functionality defect’ refers to missing or wrong func-
tionality (w.r.t. requirements) in a design or code artifact
whereas ‘algorithm defect’ refers to an inadequate (effi-

Fig. 5. Distribution of human root causes.

Fig. 6. Human root causes found for defects of type algorithm and functionality, related to weighted mean number of MRs. [Three bars are displayed

for each root cause. They show the respective results for all analyzed MRs and for the subsets of MRs classified as ‘‘algorithm’’ or ‘‘functionality’’

defects. The human root cause description starts off at the center-bar of the group of three bars.]
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ciency) or wrong (correctness) algorithmic realization.
In terms of numbers those defects represent 34% and
21%, respectively, of the defect population and 35% and
19% of the fix effort. The remaining defects are distrib-
uted over 16 other defect types.

Of particular interest are the Post-GA defects because
they are typically detected by a customer. Of all Post-GA
MRs 14% are classified as type algorithm and 68% of
type functionality. This re-enforces our interest in those
two defect types as deserving further detailed studies.

Specific analysis of MRs with defect type ‘algorithm’
or ‘functionality’. MRs of defect class ‘‘implementa-
tion’’ and defect type ‘‘algorithm’’ or ‘‘functionality’’
have been correlated with the phase when they have
been detected:

The table shows that for all defect types, more than 60%
of the defects are detected late in the process, namely, in
system integration and system test. Since the average is
60% this also shows that the remaining 40% of all MRs
is typically detected earlier. In particular, algorithm
defects exceed the average finding in system integration
by almost 50% and the finding of other MRs by 100%.
Besides the pure numbers, late detection is a second
strong argument for looking into the root causes of these
particular defect types. To this end the correlations with
various root causes were investigated. The correlation
with the phase when the defect was introduced

shows no unexpected behavior. As one would as-
sume, algorithm defects are introduced during design,
specification and implementation, deviating significantly
from the average distribution of defect detection.
Functionality defects occur in rates close to the average
behavior.

The correlation with human root causes (Fig. 6)
shows significant contribution from lack of domain and
system knowledge, and of individual mistakes. Not un-
expectedly the contribution from lack of domain
knowledge is smaller in case of functionality defects.

With respect to the correlation with review root
causes, we observe that of all MRs of defect type algo-
rithm 75% are afflicted with inadequate reviews with a
total of 84% reporting review root causes. For func-
tionality the amounts are 30% inadequate reviews with a
total of 67% reporting review root-causes.

Contrasted with an average of 48% inadequate re-
views on the basis of a reporting rate of 73%, we may
infer that in particular algorithm defects escape earlier
detection due to review deficiencies.

From all project root causes that have been available
for selection, only time pressure constitutes a major
part. On the average 40% of all defects are related to
time pressure whereas this amount is 70% for defects of
type algorithm and 17% for type functionality.

The analysis thus far indicates that important areas to
look for improvements are reviews, domain and system
knowledge, and test strategies (e.g., defined vs. achieved
test coverage) because of late detection of defects.
Means of prevention and earlier detection – provided by
the MR analysts – are further evaluated manually to
arrive at concrete countermeasures.

Specific analysis of Post-GA MRs. Although we in-
tended to get a subset of MRs from a detailed analysis
of Post-GA MRs, the outcome may be summarized very
briefly. In fact, we observe that defects of type algorithm
and functionality again dominate by far all other de-
fects. Thus having arrived at this subset already nothing
must be added to cover defect causes that become visible
to the customer. With respect to finding countermea-
sures this sample adds, however, the question why so
many defects have been classified as ‘‘introduced by
another repair’’.

2.3. Countermeasures and improvement actions

Our strategy was to find and deploy an effective set of
improvement actions, so that for future development
projects

• the overall number of defect MRs is significantly re-
duced;

• the defects are detected earlier in the lifecycle;
• the mean effort to fix a defect is reduced;
• the actions are really effective, i.e., focusing on sys-

tematic errors which result in a small number of pro-
cess changes, promising at the same time to affect
multiple defect root causes.

In the countermeasure definition meeting, the team
decided to select 10 focus areas on the basis of the sta-
tistical data evaluation. The areas chosen from the effort
distribution over the phase defects have been intro-
duced, are component specification and design, com-
ponent implementation and architecture. Note that
this selection covers all algorithm defects and 73%

Defect type SW

design

(%)

SW

integration

(%)

System

integration

(%)

System

test

(%)

All MRs 14 24 49 11

Algorithm 3 14 71 12

Functionality 13 23 47 14

All other MRs 23 32 33 9

Defect type Archi-

tecture

(%)

High level

design

(%)

Component

specifi-

cation &

design (%)

Component

implemen-

tation (%)

All MRs 4 8 31 40

Algorithm 0 0 48 46

Functionality 4 15 25 44
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functionality defects which were found to dominate all
other defect types. Review root causes were selected as
one single category. From the human root cause data
the team selected ‘individual mistake’, ‘lack of system
knowledge’ combined with ‘lack of domain knowledge’
as one area, and selected ‘introduced with other repair’
and ‘communication problems’ together with ‘missing
awareness for need of communication’ as another area.
The reason for selecting categories with small contri-
butions was the insight that only human and review root
causes can be addressed by countermeasures directly.
Finally the team added the categories ‘subcontracted
software components’ and ‘project management’, due to
specific proposals for means of prevention found in the
analysis data. Within these categories a set of counter-
measures was distilled from the suggestions provided
by the analysts during the analysis. The same proce-
dure was followed to arrive at a set of measures for
earlier detection of defects found in phases system in-
tegration, system test, and maintenance. All counter-
measures thus assembled have been weighted to arrive at
a ranking. As ranking criteria the team decided to use
three inputs:

• savings potential per RC area, represented by portion
of total bugfix effort (this the maximum effort that
can be saved by avoiding defects of this particular
category),

• effectiveness per countermeasure, i.e., estimated per-
centage of MRs of this RC area which can maximally
be influenced by a countermeasure,

• cost per countermeasure, i.e., estimated additional
cost to implement the countermeasure. (‘Additional’
costs refer e.g., to enhanced tools and/or processes
that need to be newly introduced.) In order to com-
bine the cost measured in 1000 US$ with the other
ranking criteria we mapped cost ranges onto factors
in the interval ½0; 1� as depicted in Table 3.

The following main countermeasures (CM) and as-
sociated improvement projects (IPs)/activities have been
defined, with increasing potential benefit in the ordered
list below. All proposed IPs have been started and are
ongoing. Note also that countermeasures are defined
even in areas where SW development is already com-
paratively mature. Since our organization satisfies CMM

level 3 criteria in several key process areas, we under-
stand the improvement activities as one of the means
that allow us to reach level 3 fully. Potential savings,
effectiveness and cost (S/E/C) are shown in brackets.

CM1: component specification and design documentation

• ensure required contents, especially include compli-
ance to non-functional and performance require-
ments (32%/20%/0.8);

• IP: improve requirements management and systems
engineering process w.r.t. traceability process and
capturing non-functional SW requirements;

• IP: introduce performance engineering (i.e., perfor-
mance modelling, budgeting, and measurements).

CM2: component implementation

• increase usage of static and dynamic code analysis
tools (coding standards checking, memory leak detec-
tion, code coverage analysis) (40%/15%/0.8);

• better unit tests (higher test coverage, complete test
specification, systematic case selection, better host
test environment, test bed, test automation) (40%/
35%/0.4).

IP: code analysis tools and unit test tools usage
as standard procedure in development process, fully
integrated with load build environment. (Note: other
product improvements on implementation level, e.g.,
cleanroom software engineering, sophisticated coding
standard based on pre-/post-conditions, etc., have
not been tackled: this would mean a major paradigm
shift – considered too risky for ongoing development of
releases within the same product line in a highly com-
petitive market.)

CM3: system and domain knowledge

• extend training offers and attendance on architecture
and application domain, improve systems design
skills (38%/35%/0.6).

IP: enhanced training program, assigned training coor-
dinator.

CM4: document & code reviews

• analyze review culture and performance, improve re-
view process (66%/30%/0.8).

IP: include total effort for reviews in realistic planning,
ensure sufficient review participation, increase awareness
for review importance by e.g., better training, establish
review process control: strict entry conditions, schedul-
ing, timing. An review improvement project has been
started in cooperation with Fraunhofer Institute for
Experimental Software Engineering (IESE). First anal-
ysis results appeared in Laitenberger et al. (1999).

Table 3

Mapping of cost ranges per countermeasure into weighting factors

Cost range in K-US$ Factor

0–6 1.0

6–30 0.8

30–130 0.6

130–600 0.4

> 600 0.2
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CM5: project management

• increase process compliance, i.e., completeness of exit
conditions of systems and software development pro-
cess (100%/30%/0.5).

IP: study correlation of component measurements (size,
defects, complexity) and process compliance (see sig-
nificant results in Section 3).

IP: Implement database system for all project-related
data, supporting project tracking and reporting early
warnings on process issues.

2.4. Lessons learned

For the insight we gained, we describe first insights
related toRCA study after GA.We focus then on insights
based on RCA study conducted in-process, before GA.

2.4.1. Retrospective RCA
(1) Bugfix costs do not grow exponentially by phase,

but rather linearly. (Note, however, that we do not
consider re-testing effort which would have added a
significant amount to total rework costs.)

(2) The majority of defects do not originate in early
phases.

(3) Within the same project, the defect attribute dis-
tribution per SW domain revealed large differences. (To
our knowledge this has not been reported in other
studies.)

The number of defects per domain found in system
test ranged from 0% to 55%, the respective range is 5–
95% for defects found in system test and system inte-
gration together. Although intriguing, we learned that
these numbers cannot simply be attributed to differences
in the quality of SW artifacts. To a significant extent
they are due to architecture caused differences of do-
mains. Thus, some have been targets of requirement
changes, others could reuse existing functionality, others
have higher operation profiles due to belonging to a
lower architectural layer, etc. Although interesting, the
data available did not permit a detailed comparison
along these lines which therefore is left for future stud-
ies. In particular, it would be interesting to disentangle
the architectural aspect from the team cultural one, e.g.,
how unit testing or reviews are done, because it would
permit identification and promotion of best practices.
An interesting side-result of the comparison is the fact
that Post-GA defects are to a much larger extent (30%)
than on average (5%) caused by another repair which
may be traced back to a project’s ‘end-game’ pressure.

(4) There is a significant influence of human factors
on defect injection. Our study extended similar ones
with regard to human factors for defect infection, and it
made them more explicit. We recognized that this was in
fact a particularly important attribute. It allowed us to

separate randomly inserted defects due to unavoidable
(human) mistakes and systematically introduced defects
due to mismatches in required and available technical
and/or soft skills. In software engineering work, the
‘‘human factor’’ should receive higher focus.

(5) RCA has a low and tolerable effort, relative to its
apparent benefits. Two technical insights that we think
are worthwhile mentioning, as well. In spite of starting
the activity several months after project completion, and
that the defects to be analyzed were on the average
about a year old, the mean time for analysis was just 19
min. Thus such activities are even cheaper if they are
performed during the project when the detailed knowl-
edge about defects can be recalled easily. In-process
RCA is a cost effective mean to identify deficiencies and
improvement areas. When combined with statistical
analysis, which of course is only possible in rather large
development projects, conclusions about countermea-
sure selection can be made sound and put on a solid
basis with regard to costs and potential benefits.

2.4.2. In-process RCA
In-process RCA has been carried out for a successor

release of the one we undertook the RCA study. The
goals of this project were to

• allow for early feedback, within the same project, for
systematic root-causes of defects;

• improve the quality focus, especially to create a cul-
ture for defect prevention, of the software organiza-
tion.

This project was a rather medium-size feature en-
hancement release. Due to the size of the release and the
very high quality focus of the project team, only 250
defect MRs have been produced before GA (customer
delivery).

We experimented with an enhanced and much more
detailed version of our RCA scheme, by incorporating
details from IBM’s ODC model.3 All project team
members have been trained to classify each defect MR
after resolution.

We failed to have significant analysis results, due to
several reasons:

• we fully relied on correct data input from our engi-
neers, but around 30% of the entries have been incon-
sistent. Probable cause was the RCA scheme that
was realized to be overly complex and was not fully
mastered by casual users who had to provide the re-
quired data. (This was despite the fact that a database
web application was implemented to capture all RCA
information. This application did not check for inter-
attribute dependencies and constraints, though.) The
respective data records could not be rescued without
extensive effort of the providers.
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• the surprisingly low number of defects classified and
the very detailed scheme led to too small sample sizes
per attribute value (significant portion of the MRs
were classified into groups of < 5 items).

• although we followed a principle of a mature mea-
surement procedure – provide immediate feedback
from data collected to all stakeholders of the data –
the project team felt that the complex scheme caused
a high amount of measurement reports to be studied,
and had lost track of it due to project pressure.

We have learned several lessons from this experience
and would like to re-introduce ipRCA into our next
product release in the following way:

• the MR attribution for RCA will be done by mem-
bers of a small dedicated RCA analysis team, as in
the retrospective analysis described in this paper;

• the analysis will be performed at major intermedi-
ate deliveries, i.e., after each delivery to system test
(Card, 1998)

• random sampling will be applied to select MRs to be
analyzed;

• analysis result will undergo some peer-to-peer valida-
tion, to maximize inter-rater reliability.

3. Process compliance study

We introduce a novel process metric which we have
measured and correlated with two other essential met-
rics on the SW product. (The complete study is captured
in Stoll et al., 1999.) Process compliance is defined as the
degree to which a documented process is followed in
a development project. A process metric clusters SW
components in three groups, characterizing the degree of
process compliance during component development of
the studied project: red, yellow, green. In our case study,
defect density differs significantly between the groups.

This simple, efficient, and early applicable discrimi-
nator between SW components leads to higher final
product quality, if used as milestone exit criterion in the
component development process.

Relating various component-oriented metrics, i.e.,
process compliance and defect density leads to con-
structive recommendations with regard to

• identifying critical, error-prone components for in-
tensified code review and unit test

• indicating the risk of ‘reusing’ a component from a
previous project, if the amount of changes can lead
to decayed design and thus to excessive defect density.

Typically for an enhancement release, more than 80%
of all software defects are introduced during component
development. Therefore, analyzing product quality and
steps towards preventing defects should focus on the

software component development process. To improve
product quality, these recommendations are currently
being discussed with the successor project of the one
under study.

Our concept for defining an adequate process metric,
to be related with defects, is based on

• typical quality-related activities demanded by a ma-
ture component-based development process, e.g., de-
sign and code reviews, unit testing, delivery to next
stage only after fixing of major defects accomplished;

• for each software component, process compliance is
represented by assessing these activities as red, yel-
low, or green, depending on the degree to which those
have been done or not. E.g. the mapping onto ‘‘red’’
means that minimal quality requirements have not
been met by the respective component.

The metrics definition is depicted in Fig. 7. The data
source for this metric is based on evaluations during so-
called milestone reviews for all the software components,
recorded by a quality engineer at the end of component
development. Some components that were planned to be
reused without changes or with only marginal changes
were not under quality assessment, and thus a fourth
metric value ‘‘no classification’’ was added because the
metric could not be applied. The meaning of the clas-
sification criteria for each component, listed from top to
bottom of Fig. 7, is as follows:

• test coverage – refers to the completeness of unit test-
ing done, based on defined unit test specification;

• completeness of test specification and test execution –
here both the underlying testcases and the test results
(testcases executed and passed) is assessed by the in-
ternal customer of the next development phase and
by the independent quality manager;

• completeness of code reviews – here the amount of re-
views accomplished on new/changed parts of the
component is measured;

• completeness of design reviews – here the amount of
reviews accomplished is measured, again for the new
and changed parts;

• amount of unresolved problems – here the open de-
fect MRs are claimed to have an impact on the deliv-
ered quality of the component. The impact depends
especially on the severity of the MRs, i.e., the higher
the severity, the higher the impact on the compo-
nent’s operation is observable.

The final classification result for an SW component is
obtained by following the decision trees from left to
right. The overall result is red if at least one decision is
red, it is green, if all decisions are green otherwise it is
yellow. Twenty two components have been classified
‘‘green’’, 21 ‘‘yellow’’, 27 ‘‘red’’. There were in addition
66 unclassified components.
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Fig. 8 shows the percentage of components having
less than N defects or less than x defects per kNCSL,

respectively (all severities). It is clearly demonstrated
that the group with worst behavior (40% of components
with more than 50 defects and more than 7 defects per
kNCSL) is the one with ‘‘red’’ classified components.
The best behavior is observed for unclassified compo-
nents. This justifies a posteriori that the components
were not put under quality control (thus no additional
effort was wasted). Interestingly, ‘‘yellow’’ and ‘‘green’’
group do not differ significantly. Identical conclusions
apply, if only high severity MRs are considered.

From the results presented, it is clear that a process
metric has been identified that allows an early classifi-
cation of error-prone software components. The statisti-
cally significant difference in the defect distribution
between differently classified groups allows us to use this
process metric as exit criterion to SW component de-
velopment. For our development process we conclude
that there should be a mandatory milestone review,
before components are passed on to system integration.
During this review, all components should be classified
according to the process metric. Those classified as
‘‘red’’ should not automatically be allowed to be handed
over to system integration immediately, but rather
should be improved first.

4. Code size and complexity study

On the same basis of defect data the third investi-
gation aimed at a verification and justification of
the predictive power of static code analysis. Various
size, complexity and dependency measures have been

Fig. 7. Process metric definition, on level of software component, measured prior to SW delivery to system integration.

Fig. 8. Software process compliance metric.
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introduced in the past and it is believed that such static
code analysis helps in identifying components with high
defect density or prone to errors. Since we could not find
convincing evidence for the capability of static code
analysis throughout the literature that was available to
us, we started an own investigation.

We applied the tool QAC (Programming Research
Ltd, 1998) to the available code base and extracted size
information and complexity and cohesion data: NCSL,
CNCSL, cyclomatic complexity, static path count,
nesting level. The aim we had was to identify a corre-
lation between a combination of these metrics and the
number of defects or defect density of SW components.
To this end we not only performed regression tests on
the entire set of components but furthermore subdivided
the set into two groups with different ratio of changed/
new to total code size.

Within the group of components that had more than
50% changed or new code, 70% of components have
defect density larger than 1.5 per kNCSL. The risk that
an individual from this group has large defect density
was clearly tied to its static code properties.

In the second group of components with less than
50% changed or new code it was not possible to relate
static code properties to defect numbers. Unless addi-
tional information is made available there is no value
seen in measuring static code properties of such com-
ponents. Our assumption is that, by adding information
like the character of the changes (e.g., interface change,
functional enhancement, new algorithm. . .) and in par-
ticular adding the information which piece of the code
of a component was changed with an MR, code prop-
erties can become sensible metrics data.

Throughout our investigation, we found that size and
complexity measures give essentially the same informa-
tion on the expected defect numbers. Either no corre-
lation between metric and defect data was found, or all
used metrics showed similarly good correlation that
could not be improved by adding more metrics to the
regression analysis.

A side result of this study was the observation that
the defect density of reused components with CNCSL/
NCSL > 0:4 was in all cases above average over all
components. From this fact, we conclude that a limit on
the degree of change should be set. We concluded that
the limit of 25% in the ratio of changed to total code size
CNCSL/NCSL should not be exceeded and that com-
ponents that have an estimated ratio of 25% or larger
should be recoded entirely.

5. Summary and outlook

Measurement and evaluation is a critical activity
throughout the entire software development and evolu-
tion lifecycle. It is fundamental to determining whether

the software products we develop, have the desired
functional and non-functional properties; it is funda-
mental to determining whether we have the desired cost,
interval and quality attributes of our software develop-
ment and evolution processes.

We have presented three different measurement and
evaluation activities about an evolution point in the
same project: a retrospective analysis of defects to de-
termine the underlying root causes, an analysis of the
relationship between process deviations and software
defects, and an analysis of the relationship between
static code properties and software defects.

5.1. RCA study

We have described the origins of our study, delin-
eated the process of our retrospective root-cause anal-
ysis, and provided some of the analyses we performed
on the data as illustrations and support for our subse-
quent improvement decisions.

We introduced a novel approach to root-cause anal-
ysis in this study: the possibility of more than one un-
derlying root-cause. We replaced the previously known
one-dimensional root-cause classification (that allows
only for a single unique root-cause to be selected) by a
three-dimensional root-cause space. There are several
dimensions of underlying causes (for example, phase
related causes such as ambiguous design documentation,
human knowledge related causes such as lack of domain
knowledge) which may interact with each other. The
three dimensions are spanned by human, project, and
life-cycle phase root cause. Unique root-cause selec-
tion thus requires specification of a root-cause value in
each of the three directions. This choice reflects the
general richness that underlies most of the faults that
occur in the building and evolution of large complex
software systems. We feel that this provides a more re-
alistic view of what is going on and removes the need
to force fit a problem into one specific category. We
also allowed for the fact that sometimes people simply
make mistakes and that there is nothing lurking beneath
the surface that is the cause of that particular defect. The
significant number of defects that fell into this category
confirms our intuition about this problem.

The rest of our contributions to RCA are incremental
to the approach in Perry and Stieg (1993).

Our RCA study yielded a number of important in-
sights, some of them new, some of them confirming
previously revealed insights.

• the cost of fixing bugs increases linearly, not exponen-
tially, across the earlier phases (Perry and Stieg, 1993);

• the majority of the defects are in the design and cod-
ing phase (Perry and Stieg, 1993);

• different subsystems in the same project have different
defect profiles;
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• domain and system knowledge continue to be one of
the largest underlying problems in software develop-
ment (Perry and Stieg, 1993).

5.2. Process compliance study

Our process conformance metric (measuring the
conformance to or deviation from the defined process)
enabled us to provide an early classification of error
prone software components. Moreover, the number of
defects per changed NCSL varies with the degree of
reuse and the total defect density.

5.3. Code size and complexity study

Complexity is an essential characteristic of the soft-
ware systems that we build. We found that there is a
significant correlation between the percentage of change
in reused code and the number of defects found in those
changed components. Where CNCSL/NCSL was greater
than 0.4, the observed defect density was above average
for all components. To limit the amount of fault injec-
tion in reused components, we recommend that a com-
ponent be rewritten if more than 25% of the code is
changed. As changes are made both to products and to
processes, we need to measure and evaluate both to
ensure that they conform to our desired set of charac-
teristics.
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