
Software Engineering Education in the Era of
Outsourcing, Distributed Development, and Open Source

Software: Challenges and Opportunities

Matthew J. Hawthorne1 and Dewayne E. Perry2

Empirical Software Engineering Lab (ESEL),
Dept. of Electrical and Computer Engineering,

The University of Texas at Austin,
Austin, Texas, USA

{hawthorn, perry}@ece.utexas.edu
1http://www.ece.utexas.edu/~hawthorn

2http://www.ece.utexas.edu/~perry

Abstract. As software development becomes increasingly globally distributed,
and more software functions are delegated to common open source software
(OSS) and commercial off-the-shelf (COTS) components, practicing software
engineers face significant challenges for which current software engineering
curricula may leave them inadequately prepared. A new multi-faceted distrib-
uted development model is emerging that effectively commoditizes many de-
velopment activities once considered integral to software engineering, while
simultaneously requiring practitioners to apply engineering principles in new
and often unfamiliar contexts. We discuss the challenges that software engi-
neers face as a direct result of outsourcing and other distributed development
approaches that are increasingly being utilized by industry, and some of the key
ways we need to evolve software engineering curricula to address these chal-
lenges.

1 Introduction

Driven by a critical combination of technological and economic forces brought on by
ongoing developments in technology and economic pressures caused by globaliza-
tion, software engineering is changing in fundamental ways. We must rethink many
of the assumptions that have provided the basis for software engineering education in
the past, and make fundamental changes to the way we educate software engineers in
order 1) to prepare them to navigate the increasingly dynamic environment that soft-
ware engineering has become, and 2) to equip them with the perspectives and skills
they will need to thrive in the midst of the even greater challenges they will face
throughout their professional lives. In the remainder of this section, we highlight
three basic trends that are changing the way organizations develop software: third
party components, integration platforms, and globalization. These trends are already
changing the practice of software engineering, and we believe they will continue to
impact the practice of software engineering for the foreseeable future.

Third-Party Components

The first trend is the increasing reliance on third-party components for core system
functionality, including open source software (OSS) [13] and commercial off-the-
shelf (COTS) components. The impact that delegating significant functionality to
OSS or COTS components has on software development projects is similar in many
respects to that of outsourcing: more system functionality is being developed by third
parties, potentially reducing the amount of software that organizations develop inter-
nally, but at the same time, making integration technologies, architectures and
frameworks, and software engineering competencies related to integration, of para-
mount importance to software development organizations. Project planning and
engineering need to expand beyond traditional technical concerns to encompass
methods for locating and evaluating candidate third-party components, and selecting
the optimal set of components for a given project by evaluating and balancing trade-
offs between such diverse concerns as functionality, licensing terms and fees, integra-
tion costs, and technical support, etc. This trend toward increasing use of third-party
components is also bringing about basic changes in software development organiza-
tional structures and processes. Requirements engineering assumes a more signifi-
cant driving role in developing software systems. Quality and evolution issues are
complicated and exacerbated because of the lack of control over component problems
and evolution. Integration is hindered by architectural mismatch, etc.

Integration Platforms

The second trend is the growth and maturation of integration platforms and architec-
tural frameworks such as J2EE, .NET, web services, and service-oriented architec-
tures (SOA), as well as problem domain model-oriented abstraction approaches to
system design such as model-driven architecture (MDA) and the semantically richer
intent-based system abstraction technologies of the near future. These approaches are
providing new tools, architectural platforms and system abstractions to integrate the
diverse set of components that inevitably results when development organizations
build products that incorporate a large number of third-party components. Since
current technologies and standards are likely to continue evolving rapidly, emphasiz-
ing a thorough understanding of the principles behind these approaches and their
applicability for solving software engineering problems will be more useful over the
long term than complete mastery of the minute details at a given point of time. How-
ever, using appropriate platforms and standards as teaching tools is an excellent way
to illustrate and reinforce architectural styles, patterns, techniques and principles
related to integration.

Globalization

The third trend that is changing software engineering is the globalization of software
development, often referred to as “outsourcing”. We make no distinction in this
paper between literal outsourcing, in which one organization pays one or more other
organizations or individuals to develop software components or systems, and “inter-
nal outsourcing”, where an organization distributes development projects to one or
more of its own development teams located in different countries. The overall impact
on software engineering is similar in either case: organizations are transitioning from
primarily local models of software development to globally distributed models. This
transition is motivated by two basic issues: cost and time. In the first case, lower
labor costs in other countries has had the same effect on the software industry as it
has had in other industries – namely, significant parts of the work are done either by
external contracts or by opening international facilities using local talent. In the sec-
ond case, the possibility of round the clock development has the attraction of signifi-
cantly shortening the lapse time required for software products.

This trend towards globalization brings with it its own set of problems and further
complicates and exacerbates existing software development problems.

• Cultural differences. With different countries come different social interac-
tion assumptions and rules. There are differences in expected and acceptable
behaviors and interactions. For example, a simple request may be perceived as
a significant social obligation. Moreover, different languages may result in
radically different interpretations from what is expected. For example, the
word “envy” has both positive meanings in English, Italian and French. How-
ever, there is no positive meaning of “envy” in German.

• Legal differences. One significant legal difference may be that involving the
laws about working overtime. What is permitted in one country may be pro-
hibited in another. Doing business in a specific country may require a certain
percentage of the workers to be local to that country. And there may be dif-
ferent rules and regulations about the domain of the software systems in-
volved. For example, there are significantly different rules and regulations
about telecommunications system in different countries that must be accom-
modated by the systems.

• Interaction differences. A significant amount of problem solving while devel-
oping software systems is done informally at the coffee machine, over lunch,
etc. With geographical and temporal separation, these informal modes of in-
teraction are virtually impossible. Given that roughly 75 minutes per day in
one project were spent in short (3 minutes or under) unplanned interactions in-
formally solving problem [15], the removal of these informal channels of in-
teraction seriously affects project interactions.

Challenges and Opportunities

The increasingly distributed nature of development and the ubiquitous use of third-
party components, along with new integration platforms and tools, have created a

dynamic software development environment in which organizations continue to
search for ways to reduce the cost of software development through outsourcing and
other means. This process is compounded by the fact that 1) new OSS and COTS
components, 2) development tools are continually being introduced and existing ones
extended, and 3) there is lack of local control over improvements and problems fixed.
Software engineers need to be prepared to deal with unprecedented levels of diversity
and change, not only in the technologies and components they will be working with,
but also in the nature of the development teams and organizations with whom they
will need to interact on a regular basis, and even in the very roles and responsibilities
they will need assume as development processes and organizations continue to
evolve. The new integration platforms and technologies represent further movement
away from the system development processes and architectural styles of the past,
which tended to be much more monolithic, toward more loosely coupled integration
models that will better enable systems to be composed of components from diverse
sources.

The impact of these trends on software engineering projects, processes and practi-
tioners means that the mix of competencies required to practice successfully software
engineering now includes much more than just software development skills. In to-
day’s competitive global environment, short-term market opportunities and financial
concerns increasingly impact software development projects, often causing project
requirements and priorities to change on short notice, while simultaneously increas-
ing the pressure to produce software at the lowest possible cost in the shortest possi-
ble time. At the same time, the increasing commoditization and distribution of hands-
on software development via outsourcing and the use of third-party components is
causing the demand for traditional software development skills in many areas to be
eclipsed by new opportunities available to software engineers who possess certain
kinds of enhanced software engineering expertise.

To enable engineers to take advantage of these opportunities, we need to augment
traditional software engineering strengths in requirements engineering [11], software
architecture [14], design, and development processes with new techniques that will
enable software engineers to apply engineering principles in larger organizational and
project management contexts. We need to produce software engineers who are just
as comfortable practicing engineering in environments where the “tools” are distrib-
uted project teams and third-party components as they are designing and implement-
ing complete systems themselves. We also need to equip engineers with architecture,
design, and development approaches that facilitate third-party component integration,
and the simultaneous evolution of product family architectures and external compo-
nents. Given the right set of knowledge, skills and perspectives, we see this trend
toward distributed and third-party development as an excellent opportunity to build
on the unique strengths of software engineering as a distinct discipline, by equipping
software engineers to play a central role in ensuring the success of development or-
ganizations as they explore these new development models.

In the next section we briefly discuss several new “core competencies” -- attitudes,
perspectives, and skills that are not usually considered core aspects of software engi-
neering education, but that we believe will serve new software engineers well as they
navigate the increasingly dynamic development environment, and help equip them to
flourish throughout their careers as they face whatever unforeseen challenges may

arise in our profession in the future. In the following several sections, we discuss
several areas of competency that we believe will be among the most valuable for
software engineers, and hence require additional curricula to support. These include
organization and process engineering, system and product family architectures, inte-
gration techniques and technologies, product and product line management, and
distributed project management. Finally, we briefly discuss several important aspects
of ethics as they relate to software engineering education and practice.

2 Non-Technical “Core Competencies”

Non-technical skills and characteristics such as verbal and written communication,
social sensitivity, adaptability and creativity have always been important factors con-
tributing to the success of many of the most successful software engineers. The per-
vasive changes software engineering is undergoing are making it more critical than
ever that we prepare future engineers to be excellent communicators (e.g., so they
will be able to communicate effectively with diverse groups of stakeholders and de-
velopers who may be globally distributed). Further, engineers of the future must be
prepared to be extremely adaptable, and to consider solutions that may be “outside of
the box” of previous software engineering experience, including their own. And they
must be sensitive to the cultural and linguistic contexts in which these projects take
place. This section discusses several of these non-technical competencies and charac-
teristics that we believe will be crucial to the success of future software engineers,
and that software engineering programs will need to address if we are to prepare our
students to leverage the new opportunities that change will inevitably bring to our
profession. Since any specific tools, technologies or programming languages we
teach student software engineers today are almost certain to be obsolete long before
the end of their engineering careers, it is imperative that we also give them the tools
and perspectives that will enable them to adapt to whatever the future holds for our
profession.

Targeted Communication

Interpersonal communication has always been an integral part of software engineer-
ing, since most software projects involve some kind of team interaction, and even
engineers working on single-person projects must still communicate with users, man-
agers and other stakeholders at some point. But communication is increasingly criti-
cal to the success of software engineering projects, especially given the increased
reliance on third-party components. Communications with distributed development
team members, project stakeholders, managers and other members of the extended
development team should be undertaken as deliberately as any other critical-path
engineering task. Software engineers need to learn and practice purposeful or tar-
geted communication, directed toward achieving specific results. This requires engi-
neers to understand how software development projects and organizations work, and
how the different roles that individuals may assume within projects and organizations

relate to their own projects. It also requires them to have a clear understanding of
what and with whom they need to communicate to accomplish a given purpose, what
specific effect they wish their communication to have, and how best to accomplish
the desired effect.

While traditional technically oriented engineering communications such as re-
quirements documents, UML diagrams, etc. will continue to be important skills, en-
gineers also need to learn to be comfortable and confident communicating in other
contexts such as marketing and business planning meetings, as well as meetings with
customers and other non-technical stakeholders. And as software engineering be-
comes more distributed and project-oriented, the “target” or goal of targeted commu-
nication by engineers increasingly will include areas that were previously the domain
of business managers, especially in the area of obtaining and justifying the resources
necessary to complete projects successfully. Project planning and design activities
increasingly will incorporate P&L (profit & loss) projections. Whether P&L models
remain the province of business managers in a given organization or not, engineers
will be under intense pressure to minimize costs by maximizing the use of third-party
developers and components. In such an environment of intense competition for pro-
ject resources, business advocacy and persuasion skills, or at least a basic understand-
ing of business drivers combined with strong communication skills, increasingly will
become important for many engineers if they hope to compete successfully for re-
sources for their own projects, much less reengineer and optimize the processes and
engineering organizations to which they belong.

Along with traditional and extended engineering skills, engineering training should
emphasize communicating engineering models, evaluations, plans and other
engineering results both to technical and non-technical stakeholders, especially
business managers and user representatives. Engineers have traditionally excelled at
presenting technical facts. Targeted communication goes far beyond imparting
technical knowledge, and is geared toward communicating in a way that will achieve
desired results. This means that the engineer must understand 1) what they want to
say, 2) what result or results their project requires that the communication should
achieve and 3) how to communicate what they want to say to the target audience so
that the communication achieves those desired results. This is why we sometimes
refer to targeted communication as goal- or result-oriented, or engineered,
communication. What this really means is that engineers need to stop imagining that
everybody who reads their documentation or listens to their presentations is also an
engineer. To function effectively in modern development organizations, engineers
need to understand how to communicate effectively with diverse members of the
“extended engineering team”, including business management, sales and marketing,
users and user domain experts, customer support, and others. Finally, as engineers,
we should point out that the ultimate “target” or desired result, of targeted
communication is always to enhance the success of the engineering projects with
which we are involved.

Professional Habits and Traits

The increasingly dynamic nature of software engineering means that to maximize
their chances for success in this environment, future software engineers will need to
practice professional behaviors and habits such as adaptability and creative problem-
solving in addition to mastering the appropriate tools, technologies and processes.
Although such personal habits or traits are widely held to be inborn traits that people
“naturally” possess to a greater or lesser extent, when we talk about characteristics
such as flexibility or inquisitiveness, we are really referring to related sets of behav-
ioral traits that, if habitually practiced in the context of software engineering projects,
will greatly contribute to their success over the long term. Since we are essentially
talking about behavioral habits that can be learned, or at least enhanced with practice,
for the purposes of software engineering education and practice, it doesn’t really
matter whether these characteristics are more the result of “nature” or “nurture”.
Merely adopting these behaviors is sufficient. For example, if we can convince soft-
ware engineers who are “naturally” inflexible, or who are not particularly inquisitive
by nature, of the benefits of making flexible or inquisitive behavior an integral part of
their software engineering practice, their projects and careers will still reap the same
benefits, regardless of whether they feel “naturally” inclined to exhibit those behav-
iors.

• Adaptability. Software engineering will continue to change, whether software
engineers are prepared to deal with change or not, and the most successful
software engineers will be those who are the most able to adapt. Indeed, for
the foreseeable future at least, the rate of change appears to be accelerating,
and we don’t see anything on the horizon that is likely to change this signifi-
cantly anytime soon. Adaptability is really an application of one of the engi-
neering discipline’s greatest strengths – the “filter” of practicality. Good en-
gineers adopt the best tools available for a given task at the time, and engi-
neering tools always change over time, even if they did so at a less dizzying
pace in the past. Adaptable software engineers grow professionally primarily
by abstracting essential principles from past experience, while staying open to
new models, paradigms, technologies and methodologies. This allows them to
benefit from past experience, but at the same time, never to allow that experi-
ence to limit their perspective.

• Intellectual curiosity. Along with adaptability, practicing intellectual curiosity
is a valuable skill for software engineers. While adaptability is practicing
openness and flexibility toward new ways of practicing software engineering,
intellectual curious or inquisitive software engineers are always proactively
looking for better ways to practice their profession, including new tools, tech-
nologies, architectures and processes. And when new models and paradigms
are developed, inquisitive engineers will be the first to notice and adopt them,
if indeed they are not the ones who developed the new models and paradigms
in the first place.

• Creative problem-solving. Another important skill that will enhance the suc-
cess of software engineers in a dynamically changing environment is creative
problem-solving. By definition, ongoing and future change implies uncer-

tainty, since no matter how forward-looking we may be, the future we envi-
sion will inevitably include unexpected developments (indeed, the world
would be a dull place if this were not the case!). While practicing adaptability
and intellectual curiosity will help software engineers stay open to new things,
greatly helping them to avoid ever “missing the boat” by not noticing or em-
bracing new developments in software engineering, the creative problem-
solvers will be the engineers who are driving future change in our profession.
Since engineering always concerns solving some problem or set of problems,
creativity in engineering is mainly the ability to conceive of solutions that are
“outside the box” of normal theory and practice.

• Knowledge assimilation and categorization. Finally, to complement adapta-
bility, intellectual curiosity and creative problem-solving, software engineers
of the future will need to be very adept at rapidly assessing, assimilating and
adopting new knowledge. This knowledge may be in the form of new devel-
opment models, tools and technologies, or it may be involve new abstractions
and paradigms for which we currently lack even the concepts and language to
discuss. But the important thing is that whatever form it may take, there are
always going to be new models, theories and technologies that a software en-
gineer will need to evaluate to determine first of all, whether they are applica-
ble to the set of problems they are trying to solve, and then, whether they are
the best solution available. Since there is no way we can teach new software
engineers all the technical knowledge they will need over the course of their
careers, we must at least give them the tools and perspective they will need to
assimilate new technologies rapidly.

3 Requirements Management and Engineering

In recent years, there has been a trend in many software development organizations
for software engineers to focus almost exclusively on software development, with
marketing representatives or other “domain experts” increasingly taking responsibil-
ity for defining, analyzing and managing system requirements, sometimes even in-
cluding aspects of system design (e.g., human-computer interface (HCI) design, use
case engineering, etc.). Although business-related drivers related to outsourcing have
motivated much of this change, a tendency among software developers to avoid being
limited to a single application domain or industry by focusing on implementation
technologies like programming languages, tools and techniques, while deemphasizing
problem domain analysis and expertise, has also contributed to this trend. While the
need to involve domain experts actively during requirements gathering and prioritiza-
tion is a well-established principle in software engineering, ongoing industry trends
and upcoming developments in software engineering theory and practice make it
more critical than ever that software engineers refocus on requirements analysis and
engineering to counter the recent trend toward non-engineers “owning” or managing
many aspects of system requirements.

One basic reason software engineers need to refocus on requirements is because
requirements are arguably the most fundamental software engineering concern. The
functional requirements of the system (often referred to as “goals”), along with the

non-functional requirements (often referred to as “constraints”) together form the
basis for the architecture and design of the system. While non-engineering domain
specialists may have some idea about the overall problem domain functionality of the
system, without the system, product line, and architectural perspectives of software
engineering, they are unlikely to be able to produce the kind of coherent set of system
requirements that can form a robust basis for the system architecture. Since current
requirements engineering practices (RE) [11] include analyzing, refining and rational-
izing the requirements, all of which involve changing the requirements because of
engineering concerns, it is critical that software engineers fully understand the central
role of requirements in the software development process, and learn the requirements
elucidation, analysis and engineering skills that will enable them to play an active
leadership role in managing the requirements for the systems they design and imple-
ment.

Requirements are becoming even more fundamental to designing system architec-
tures as a result of new architectural design paradigms that are being developed, e.g.,
rationale and intent-based architectures [5] [4] [1] [2] [8]. Building on recent devel-
opments in RE, problem domain modeling [9], and decision-based architectural mod-
els [3] [10], under these new approaches, models of the functional intent of the sys-
tem as expressed in the requirements form the basis for the system architecture. In
many respects, under these new system abstractions, the requirements will be the
system architecture, allowing models based on the functional requirements of the
system to function essentially in much the same way as we currently use architectural
designs. With requirements poised to become, if not the actual system architecture, at
least the integrally connected wellspring and literal basis for the system design, it is
all the more imperative that we prepare software engineers to take the lead in re-
quirements analysis and engineering. They must also be willing to “dirty their hands”
by embracing application domain expertise and communicating with actual system
users and other stakeholders, so they will be able to elicit, analyze and engineer mod-
els of system requirements that will enable the system design to fulfill the desired
functional intent of the system. Requirements are the ultimate wellspring of system
architecture and design.

Also, whenever business unit proxies for actual system users are inserted into the
development process as designated domain experts, they can serve to isolate the sys-
tem architects and developers from meaningful contact with users. While this kind of
arrangement may be useful from the standpoint of condensing divergent user requests
into a coherent set of requirements and buffering the development staff from being
“bothered” by users, unless the user proxy is exceptionally good at requirements
elicitation and analysis, the quality of the system may suffer from inadequate re-
quirements analysis. Furthermore, each additional indirection and communication
link that requirements must traverse to reach the implementation team increases the
potential that requirements may be misinterpreted or misunderstood somewhere along
the way.

A final reason we need to reemphasize requirements is related to the “business-
related drivers” to which we previously alluded. Transitioning requirements gather-
ing and analysis from software engineering teams to business groups has contributed
to the marginalization of internal software development organizations, effectively
causing all software development, including in-house development, to be done “to

order”, according to specifications developed by the business group. This kind of
ubiquitous outsourcing model of product development has been particularly attractive
to organizations that are actively exploring or practicing significant software devel-
opment outsourcing. While it is beyond the scope of this paper to argue the relative
benefits and drawbacks of outsourcing in general, attempting to outsource software
development without retaining a software engineering perspective in the system re-
quirements specification and architectural design loops is a sure recipe for disaster,
including shortcomings in system architecture and design, as well as product line
integration problems, among others.

4 Processes and Organizations

As software development becomes more globally distributed, we envision software
engineers increasingly utilizing their expertise in architecture, design, and process
engineering to take ownership of engineering-in-the-large, moving beyond imple-
mentation engineering to reengineer the very organizational processes and teams that
are involved in conceiving, designing, developing and deploying software solutions.
Organizational and process modeling are critical from multiple standpoints. During
system design and development, business modeling and simulation techniques are
important means of understanding target user organizations and how they will use a
software system. Further, they are especially useful for developing, refining and vali-
dating system functional requirements. Business and process modeling also are be-
coming increasingly critical aspects of system architecture and high-level design, as
system designs increasingly make use of problem-domain-based architectural abstrac-
tions.

In addition to utilizing organization and process models as an integral part of de-
sign and development, software engineers must also possess strong organizational
and process modeling and optimization skills, techniques and perspectives if they are
to reengineer and to optimize their own software development organizations and
processes. Pervasive pressure to reduce software development costs, combined with
increasing third-party development options, means that software development
organizations and processes are continually being “reengineered”, whether actual
engineers are involved in the process or not. While it is not our intention here to
focus on any potential career benefits that may result from being personally involved
in managing organizational change, at least relative to the alternative (i.e., being
affected by such processes without a seat at the table), as a practical matter, an
engineering perspective is critical to ensure that cost-driven reengineering of software
development projects, organizations and processes ultimately produces successful
results. Organization and process engineering to optimize software development includes
determining the optimal organization of distributed projects that may include a mix-
ture of internal resources and outsourcing, as well as third-party (COTS and OSS)
components. Project allocation, estimation and control present special challenges in
this kind of mixed-mode distributed project, and depend on stringent requirements
specification. Besides new approaches to software development itself, software engi-
neers should understand the entire range of roles in the extended software engineering
organization, including business management (e.g., cost and. risk analysis), sales and

marketing (e.g., requirements gathering and prioritization), customer support (e.g.,
usability and supportability), and others. An understanding of the intellectual prop-
erty ownership and security issues involved with incorporating external project teams
and components is also critical.

5 System Architectures

The increasing use of distributed and outsourced development, and the resulting need
to incorporate third-party components within existing and newly developed systems,
makes it more critical than ever that software engineers understand how to design and
use system abstractions and architectural models that support the integration of com-
ponents from diverse sources. Incorporating third-party components from diverse
sources also compounds and complicates security and dependability concerns. Tech-
niques and technologies that will enable engineers to design architectures that inte-
grate diverse sets of components into systems that fulfill the functional and non-
functional goals and constraints of the system include product family architectures,
integration styles and patterns, system abstractions derived from functional require-
ments, and application integration frameworks.

• Product family architectures. Incorporating diverse sets of third-party com-
ponents into existing or newly developed products will require that software
engineers understand how to design, develop and extend product family archi-
tectures [16] that are robust and comprehensive enough to encompass all these
disparate elements, and organize them into a consistent architectural view.

• Integration styles and patterns. To enable integration at a finer level of archi-
tectural design granularity, engineers will also need to be very familiar with
integration styles and patterns such as connectors, adapters and wrappers so
they can use them as building blocks to create architectures that effectively
manage the complexity induced by components designed and developed in
parallel by diverse teams. These and similar styles and patterns that encapsu-
late functionality and component interactions within consistent interfaces are
also important techniques for simplifying the incorporation of security con-
cerns into complex systems by allowing security functionality to be central-
ized within the design of the encapsulating framework entities (i.e., the con-
nectors, adapters, wrappers, etc.).

• System abstractions. System abstractions that enable implementation
architectures to be derived more directly from abstractions of the problem
domain, such as goal- or prescription-based architectures [2] and intent-
based architectures [5], will also be important techniques to reduce
complexity and enhance architectural consistency.

• Integration frameworks. Industry application frameworks such as J2EE [7]
and .NET [12], and platform-independent integration frameworks such as web
services and service-oriented architectures (SOA), are extremely useful tech-
nical skills for software engineers.

In general, system abstractions, architectural styles and design processes that enhance
the ability of software engineers to design flexible software architectures with en-
hanced support for architectural evolution to accommodate changing functional

specifications and integration requirements will become increasingly critical compe-
tencies for software engineers as system evolution and integration, along with related
security concerns, increasingly come to dominate the set of architectural concerns
that engineers must balance.

6 Product and Project Management

Software development is rapidly moving away from the traditional model [17], which
primarily involved designing and building systems entirely within a given organiza-
tion, increasingly utilizing a range of mixed development models incorporating vary-
ing levels of third-party (OSS and/or COTS) components and outsourcing, and in-
creasingly including projects that are primarily, or even completely, outsourced.
Mixing outsourced component development, where the paying organization retains at
least some level of management input into the design and implementation of the con-
tracted deliverables, with OSS and COTS components, where the paying organization
may have little or no input into design and implementation, adds to the challenges
faced by the software engineer/architect who must somehow integrate these diverse
components into a working system.

Managing versus Contributing Organizations and Projects

One result of outsourced development in particular is that a dichotomy is emerging
between the role of a software engineer in the managing organization for a project
(i.e., the organization managing and ultimately paying for a given development pro-
ject), and that of a software engineer or developer in a third-party contributing or-
ganization (i.e., an organization that is developing components that will be incorpo-
rated into the managing organization’s product). The situation is further complicated
by the fact that a given organization may be simultaneously managing some software
projects and contributing to others. While the emerging trends we highlight in this
paper can and do affect both kinds of projects, over the near term, contributing pro-
jects will continue to include more traditional hands-on software implementation,
while managing projects will move more rapidly toward requiring the kinds of ex-
tended software engineering competencies we emphasize in this paper.

Product Management

Product management, or managing the direction and functionality of software prod-
ucts and product families, including many aspects of requirements engineering (RE),
is increasingly performed by marketing professionals. Software engineers may only
become involved in software development projects at implementation time, after the
domain and marketing experts have specified the requirements (and often, the re-
source budget and project schedule), without considering engineering concerns like
reusability and product family architectures. We need to prepare software engineers

to be fully engaged in projects from the outset, when important decisions about pro-
ject feasibility are made. As approaches like goal-driven prescriptive architectures
and intent-driven implementations become more prevalent, requirements analysis and
engineering will become the most critical part of the software engineer’s job. Soft-
ware engineers will need to become problem domain experts and experts in require-
ments elicitation and analysis to engineer the implementation domain. This will
require engineers to work more closely with customers, business managers and other
stakeholders, and to be flexible enough to reason about software design and usage
from diverse points of view.

Project Management

Project management will also become an increasingly important concern of software
engineering as development projects become more globally distributed. Software
engineers will increasingly find themselves working on projects where their ability to
deliver their product directly depends on third-party development teams delivering
components on time and according to agreed-upon functional specifications. Manag-
ing software project resources and schedules is notoriously difficult even under the
best of circumstances. Adding distributed development teams to the mix will require
software engineers to become much better at planning and estimation, using ad-
vanced techniques for accurately estimating the time it will take the various internal
and external teams to complete their parts of the project, including integration and
quality assurance (QA). This will also require much better interpersonal communica-
tion skills than many software engineers currently possess to communicate project
requirements effectively to distributed and outsourced team members, and verify that
the requirements are satisfied. Software engineers also need a theoretical and practi-
cal background in “agile” methods such as XP. Agile methodologies challenge tradi-
tional design-centric models of software engineering by using test code, user repre-
sentatives and other relatively lightweight methods to represent the functional intent
of the system, as well as changing many aspects of project planning and estimation.

7 Ethics

While professional ethics may not appear to be related to outsourcing and the other
developments in the software engineering profession we have been discussing, they
bear mentioning here, both because the technical and business environment changes
brought about by these developments are related to certain aspects of professional
ethics, and also because professional ethics training in general appears to be lacking
in many software engineering curricula. While we only discuss several aspects of
professional ethics that we believe are most pertinent to navigating the current profes-
sional environment, more thorough treatments are available (e.g., in [6]).

The general ethical principle we should impart to our students is to practice integ-
rity and excellence [18] in every aspect of their software engineering practice. While
integrity and excellence are excellent guidelines for life in general, in the practice of
software engineering this includes honesty and openness, good stewardship of time

and resources, and excellence in the application of software engineering principles.
In the rest of this section, we discuss ways to apply these in software engineering
education and practice.

Communication Integrity

Communication integrity includes openness and honesty. In software engineering,
this includes being proactively honest and open when reporting project status, not
only when the project is on schedule, but especially when problems are anticipated or
realized. Software projects are almost never done in a vacuum; any technical, design,
or schedule problems are very likely to impact other members of the development
team, or even the success of the development project as a whole. In addition, project
managers need to know about any problems as soon as possible to implement mitiga-
tion strategies, manage customer expectations, etc. That is why software engineers
need to be trained to not only be honest (i.e., give an honest answer when asked), but
also to be proactive and take initiative in communicating any information that is im-
portant to the success of their project.

Another area where communication integrity is important for software engineers is
when they are called upon to provide an engineering evaluation or estimate, particu-
larly when the honest answer is not what the listener (e.g., management) wants to
hear. Examples include how long it will take to design or implement a given compo-
nent or product, whether a proposed design or solution should be adopted, etc. More
subtle, but equally common, are situations where someone asks the engineer “casu-
ally” or “off the record” whether something is possible, can be done within a certain
time, etc. Since any statement, no matter how casual, may be repeated or otherwise
used in unintended ways, software engineers should treat all project-related commu-
nication as an engineering communication for which integrity is imperative. It is
important to emphasize to student engineers that communication integrity always
leads to better results in the long term. For example, if as a software engineer they go
along with a management schedule expectation that their own estimates show to be
unrealistic, they will either end up working excessive hours under tremendous stress
trying to meet the schedule expectation they failed to challenge, or else they will miss
the target delivery date altogether and earn the wrath, however unjustified it may
seem, of management.

Ethical Use of Time and Resources

Another ethical area that should be emphasized in software engineering education is
good stewardship of time and resources. While the Internet is undoubtedly the most
useful research and communication tool ever invented, it is also arguably the most
efficient way ever devised to waste time. Software engineers need to be taught (or it
needs to be reemphasized) that unless they are being paid as a contractor on a per-
deliverable basis, any normal employer-employee relationship includes an implicit, if
not explicit, contractual understanding that they will spend at least a certain number

of numbers per week performing the agreed-upon function (the actual number of
hours varies by company and by country). For software engineers, this means that
they have a professional ethical obligation to spend at least the designated amount of
time actually practicing software engineering. Since software engineering schedules
often include “slack time”, e.g., times when an engineer is temporarily waiting for
another part of the project to be finished, or when an engineer finishes his or her part
of the project sooner than expected, integrity and discipline is necessary to avoid
wasting time, and find something to do that actually contributes to the project. Engi-
neers can also be creative; if they feel burned out or need to do something else for
awhile besides staring at the computer, they can always spend some “slack” time
helping or mentoring more junior engineers, helping other engineers brainstorm about
the design of some aspect of the system, etc. Integrity does not need to be boring; it
just needs to be practiced.

Personal Responsibility

Another ethical issue related to integrity is personal ownership and responsibility.
Software engineering students should be taught always to take ownership of, and
responsibility for, their own actions. This includes the results of their actions, includ-
ing any projects they work on, software they design or implement, etc. Any blaming
of others, or attempting to shift blame, is unethical. It is also counterproductive,
because it poisons the software development team environment, and in the worst
case, can degrade or destroy the ability of a team to function. The behavioral aspects
of personal responsibility, taking responsibility for one’s own actions, are included in
communication integrity. What we are addressing here is really more of an ethical
attitude of personal responsibility that will serve to motivate ethical behavior under
any circumstance, than a set of behaviors per se.

Engineering Practices

While software engineering education does often emphasize engineering practices
like good system design, the principle of integrity should be extended to cover all
software engineering activities. The general principle here is to practice engineering
at all times. For example, students should be taught never to make any unjustified (or
undocumented) shortcuts, claims, promises, etc. All of these should be based on
evidence. And valid evidence is always ultimately based on some kind of model,
even if it is only a mental model based on experience. We need to equip students
with the models they need now and the skills they will need to extend current soft-
ware design and development models, and create new models, to meet unforeseen
future software engineering needs. Technically, what we need to give engineering
students is good software engineering domain meta-models, including useful entities,
relationships and organizational principles they can use to create and adapt their own
models in particular project and organizational contexts. Examples of software engi-
neering domain models include application domain models, requirements analysis

and requirements engineering models, architectural models, design patterns and other
design models, project planning and scheduling models, testing and verification mod-
els, and even models for more esoteric aspects of software engineering like team
interaction and communication. Students should be taught to refine these core soft-
ware engineering models continually as they gain experience and encounter new
circumstances or challenges, and ultimately, to recognize new domains as they arise
in the future, and create appropriate models for them.

Intellectual Property

Finally, no discussion of software engineering ethics would be complete without
talking about intellectual property. For the purposes of this discussion, we consider
intellectual property in the broader context as potentially including any information a
software engineer gains while working for a company that may harm the company if
it is disclosed. We do not include areas such as disclosure of illegal activity at the
company to the proper authorities, where there may be an ethical or legal obligation
to disclose information that does prove to be harmful to the company. But even leav-
ing out such cases leaves a wide area where behaving ethically is not only a profes-
sional imperative, but may also save a software engineer from legal problems. For
example, every software engineer knows, or ought to know, that it is illegal and un-
ethical to steal or take source code from a company without permission.

Where software engineers have sometimes run into problems is cases like using
proprietary knowledge (also known as trade secrets) they obtained while working for
a company in their own business or while working at another company. Such pro-
prietary knowledge can include details of system functionality and design, customer
lists, knowledge of implementation plans and schedules, or any other private com-
pany information, whether it is explicitly protected by patent or copyright, or not.

In addition, the nature of software engineering is such that software engineers of-
ten have access to personal information, especially if they are involved with building
or maintaining databases that contain personal information (e.g., human resources or
financial data systems), or if for whatever reason they have root or administrator
privileges on any system where personal information is stored. While it should be
apparent, software engineers have an absolute ethical obligation not to use or divulge
any personal information to which they may gain access. And while this also should
be obvious, it is unethical for a software engineer to gain access deliberately to any
database, directory, system, etc., in which they have no legitimate project-related
business (i.e., all forms of “hacking” are unethical).

8 Discussion

To prepare software engineers to thrive in an increasingly distributed and outsourced
environment, we recommend starting software engineering programs with an en-
hanced introduction to software engineering principles, including material that explic-
itly addresses outsourcing and distributed development, before any core technical

coursework is attempted. A basic understanding of software as a service will provide
important conceptual, technical and practical perspective for applying the technical
material in real-world situations. The goal is to give students both the tools and the
perspective needed to become software engineers who design solutions, rather than
programmers who write programs. Starting with engineering principles gives stu-
dents a firm foundation in software engineering, avoiding the need to “retrofit” them
with this knowledge later on, and also enables the technical course materials, assign-
ments, and projects to reinforce and expand upon these principles. Industry practitio-
ners and managers should also be brought in regularly to provide perspective on how
software engineering principles are used in industry.

Software Development Process Curricula

Software development process curricula should emphasize requirements engineering
(RE), including requirements management, i.e., methods and techniques for manag-
ing the expectations of customers, managers and other stakeholders. While much of
requirements gathering and prioritization is currently done by marketing profession-
als, software engineers should be prepared to take a leadership role in RE, taking
market concerns into account, and working closely with market researchers and other
stakeholders. While software as a service utilizes technical means such as service-
oriented architectures (SOA), a complete understanding of the service aspects of
modern software development and delivery also impacts all aspects of the software
development process. Software engineering students need to be acutely aware that
they serve a “higher purpose”, in that their technical knowledge will only be useful to
the extent that they learn to use it to contribute practically to providing a needed ser-
vice. Curricula should also teach students when and how to adopt aspects of “agile”
methodologies and other iterative approaches to software development projects.
Process education should include organization engineering, i.e., methods and tech-
niques engineers at all levels can use to reengineer their organizations to optimize the
success of development projects.

Architecture and System Design Curricula

Architecture and system design curricula should emphasize distributed system archi-
tectures, and component-connector architectures, both of which make it easier to
incorporate components developed by third parties, whether outsourced, OSS, or
COTS. The trend toward providing and utilizing software as a service is impacting
the way software-based systems are designed and deployed. Architecture curricula
should include styles that support software as a service, particularly distributed ser-
vice provider network architectures, such as service-oriented architecture. However,
the service-oriented software approach also requires software architects and designers
to approach basic system design in entirely new ways. Curricula should teach engi-
neers to provide specifically needed services by developing service provider compo-
nents, and architects to design applications and systems primarily by composing sets
of these services, which may have been developed globally by disparate organiza-

tions. Architecture curricula should also include product family architectures, to give
engineers tools to develop frameworks that bring order and consistency to systems
developed by diverse distributed teams. Application frameworks such as J2EE,
.NET, or similar platforms, should be used as practical training tools in their own
right, as well as to illustrate, e.g., the difference between a common component
model and a product family architecture. And finally, prescription-based architec-
tural approaches [2] [5], in which the system architecture is directly derived from the
requirements, will give software engineers important techniques to help ensure that
systems they design fulfill the specified functional goals and constraints. Specific
attention should also be given to domain-specific software engineering techniques,
methods and tools.

Expanded Project Management Training

Project management education should be expanded to include program management,
including such business-related concerns as cost/benefit analysis and market analysis,
among others. Project management education should emphasize cost and time plan-
ning and estimation for distributed projects, including projects that utilize internal
and external outsourcing. Software engineers need to think of themselves as man-
ager-integrators who are comfortable engineering systems using outsourced teams
and third-party components, while avoiding inefficient practices like unnecessary
hands-on development. Outsourcing often includes international teams, so the effects
of cultural and linguistic issues on team communication, expectations, etc., should
also be addressed. And since the success of software projects largely depends on
resource availability (time, engineers, equipment, tools, etc.), project management
education would not be complete without addressing advocacy and resource man-
agement for development projects. Software engineers must be able to determine as
early as possible whether the resources allocated to their project are sufficient to en-
able the project to be successful, so they can reengineer teams and processes, manage
requirements and expectations, and do whatever else is necessary to ensure success.

Change Management

Although we have mentioned the need for software engineers to manage change in
different software engineering contexts throughout this discussion, we believe this is
an important enough topic to merit special mention here. All core software engineer-
ing curricula should emphasize the dynamic nature of software engineering. For
example, in the real world, projects must often be completed under different organiz-
ing principles, using a different set of development team members than the ones who
were available when the project began. And requirements often change many times
before the project is finished, sometimes invalidating the fundamental assumptions
underlying the original architecture and design. This intrinsic need for system evolu-
tion is further complicated by the increasing reliance on components developed and
separately maintained by distributed teams from different organizations or open
source communities, since these disparate components usually also continue to evolve

in parallel. In general, software engineering curricula needs to stop acting as though
software development occurs in some kind of a vacuum where a developer or team
can use a given set of requirements to derive an architectural design and implementa-
tion, without the need to accommodate changes from various sources at inopportune
times throughout the process. Some ideas for incorporating change management
training into software engineering curricula include changing the requirements for
design and implementation projects at different project phases, changing the individ-
ual roles and membership of project teams during class projects, and making change
management concerns an integral part of all software engineering process and design
curricula.

Practical Ethics Education for Engineers

Software engineering curricula should include a course in software engineering eth-
ics, and all core software engineering curricula should encourage students to practice
software engineering in an ethical manner by highlighting the practical ethical con-
cerns related to utilizing the technologies and methodologies being taught. However,
curricula should avoid presenting software engineering ethics as merely a set of rules,
which students might be tempted to dismiss as irrelevant. All software engineering
ethical principles and guidelines have very practical benefits, which may include
preventing interpersonal or legal problems, or enhancing other aspects of software
engineering practice. Preventative benefits of ethical behavior range from preventing
various practical or team-related problems, to in extreme cases, perhaps protecting
software engineers from lawsuits or other legal penalties. Most of the ethical soft-
ware engineering behavior we have discussed also yields practical benefits that either
directly contribute to the success of software engineering projects (e.g., communica-
tion integrity and engineering practice integrity), or at least help prevent practical
problems later on. So software engineering core curricula should include the appro-
priate professional ethical context, and in turn, the ethical discussion should be
grounded within a framework that includes practical benefits.

9 Conclusions

For our profession to remain relevant, we need to prepare software engineers to as-
sume leadership roles in engineering system requirements, building solutions using
internal and third-party components and distributed development resources, and inte-
grating software elements from these diverse sources into coherent product families
using optimal component and connector architectures. To develop systems success-
fully using distributed resources, engineers will need to learn better product and pro-
ject management, organization and process engineering, and interpersonal and cross-
cultural communication skills. We see these challenges as an excellent opportunity
for properly prepared software engineers to play a central role in ensuring the success
of software projects and product families, by applying enhanced engineering princi-

ples to manage the architectural and process complexity induced by the current drive
toward distributed and third-party development models.

References

[1] Bosch, J.: Software Architecture: The Next Step. In Proceedings of the First European
Workshop on Software Architecture (EWSA 2004) (2004) 194-199

[2] Brandozzi, M., Perry, D.: Architectural Prescriptions for Dependable Systems. ICSE 2002
Workshop on Architecting Dependable Systems (WADS 2002) (2002)

[3] Dueñas, J., Capilla, R.: The Decision View of Software Architecture. In Proceedings of the
2nd European Workshop on Software Architecture (EWSA 2005) (2005) 222-230

[4] Grunbacher, P., Egyed, A., Medvidovic, N.: Reconciling Software Requirements and Ar-
chitectures with Intermediate Models. Software and Systems Modeling, Vol. 3 No. 3 (2004)
235-253

[5] Hawthorne, M., Perry, D.: Exploiting Architectural Prescriptions for Self-Managing, Self-
Adaptive Systems: A Position Paper. ACM SIGSOFT 2004 Workshop on Self-Managed
Systems (WOSS ’04) (2004)

[6] IEEE Computer Society/ACM Joint Task Force on Computing Curricula: Software Engi-
neering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Software En-
gineering, http://sites.computer.org/ccse/SE2004Volume.pdf (2004)

[7] Sun Developer Network Products and Technologies: Java Platform, Enterprise Edition
(Java EE), http://java.sun.com/javaee/index.jsp (2006)

[8] Divya Jani, Damien Vanderveken and Dewayne E Perry: "Deriving Architectural Specifica-
tions from KAOS Specifications: A Research Case Study", European Workshop on Soft-
ware Architecture 2005, Pisa Italy, June 2005

[9] Hall, J., Jackson, M., Laney, R., Nuseibeh, B., Rapanotti, L.: Relating Software Require-
ments and Architectures Using Problem Frames. In Proceedings of the IEEE Joint Interna-
tional Requirements Engineering Conference (RE'02) (2002) 9-13

[10] Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. 5th
Working IEEE/IFIP Conference on Software Architecture (WICSA 2005 (2005)

[11] van Lamsweerde, A.: Requirements Engineering in the Year 00: A Research Perspective.
In Proceedings of the 22nd International Conference on Software Engineering (ICSE’00),
Invited Paper, ACM Press (2000) 5-19

[12] Microsoft Developers Network (MSDN): Microsoft .NET Framework Developer Center,
http://msdn.microsoft.com/netframework/ (2006)

[13] The Open Source Initiative (OSI), http://www.opensource.org (2006)
[14] Perry, D., Wolf, A.: Foundations for the Study of Software Architecture. ACM SIGSOFT

Software Engineering Notes, 17(4):40 (1992)
[15] Perry, D., Staudenmayer, N., Votta, L.: People, Organizations, and Process Improvement.

IEEE Software (1994)
[16] Perry, D.: Generic Descriptions for Product Line Architectures. ARES II Product Line

Architecture Workshop (1998)
[17] SWEBOK: Guide to the Software Engineering Body of Knowledge. www.swebok.org
[18] The Tau Beta Pi Engineering Honor Society, http://www.tbp.org (2006)

	Third-Party Components
	Integration Platforms
	Globalization
	Challenges and Opportunities
	Targeted Communication
	Professional Habits and Traits
	Managing versus Contributing Organizations and Projects
	Communication Integrity
	Ethical Use of Time and Resources
	Personal Responsibility
	Engineering Practices
	Intellectual Property
	Practical Ethics Education for Engineers

