
Architectural Design Decisions in Open Software
Development: A Transition to Software Ecosystems

Meiru Che, Dewayne E. Perry
Department of Electrical & Computer Engineering

The University of Texas at Austin
Austin, Texas, USA

meiruche@utexas.edu, perry@mail.utexas.edu

Abstract—Managing architectural design decisions (ADDs) in

software development process is an essential task for architec-

tural knowledge management. As software ecosystems become

a new software development paradigm in software engineering

processes, it is important and necessary to capture and represent

ADDs in open software development, and to evolve architectural

knowledge with minimum knowledge evaporation in the open

ecosystem community. So far, little work has been done on man-

aging architectural decisions in software ecosystems in current

software architecture research and practice. In this research

position paper, we discuss the typical characteristics of software

ecosystems which may influence architecture decision-making

processes in software development, and identify the essential

aspects that should be considered for managing ADDs in the

context of software ecosystem. In addition, we discuss major

challenges of managing ADDs for software ecosystems, and we

also propose possible directions in research to solve the problems.

Keywords—architectural design decisions; open software devel-

opment; software ecosystems; architectural knowledge;

I. INTRODUCTION

A recent strand of software architecture research is that
where software architecture is considered as a set of architec-
tural design decisions (ADDs) [1]. The specific focus on ADDs
led to a broader focus on architectural knowledge [9]. Cap-
turing and representing ADDs helps to organize architectural
knowledge and reduce vaporization, and maintain consistency
between requirements and the deployed system, therefore
providing better control on many fundamental architectural
drift and erosion problems in a software development life cycle
[10]. An increasing number of models and tools are emerging
to capture, manage, and share ADDs [12], [4], [7], [5].

A recent phenomenon in the evolution of software de-
velopment strategies is that of encouraging external software
developers to become involved in software development. These
third parties make their contributions to software development
and software organizations realize intrinsic benefits. This sig-
nificant shift in the traditional software development process
has resulted in a new software development paradigm called
“software ecosystems”. The adoption of the software ecosys-
tem approaches establishes a new area in software engineering
research and practice. Basically, in a software ecosystem, soft-
ware organizations have broken their organization boundaries,
and different parties collaborate under a common architecture
and within a social networking context to achieve innovation.

Therefore, the traditional closed software development has
changed to open software development.

Current approaches to managing ADDs within a software
organization for single product development may not be ap-
plicable for software ecosystems. The popularity of software
ecosystems forces researchers and practitioners to reconsider
how to manage architectural knowledge in open software
development, since ADDs should be shared not only within
the organization but also with external parties. Thus, a number
of challenges of managing ADDs in a software ecosystem
platform will arise, and it is important to develop approaches to
managing architectural knowledge effectively in order to adapt
the increasing openness and interoperability in the software
community. So far, little work has been conducted in ADD
management in software ecosystem research and practice.

In this research position paper, we firstly discuss the
characteristics of software ecosystems, and then we briefly
present our previous work on the approach to localized ADD
documentation and evolution. Based on this, we discuss the
essential aspects of managing ADDs in software ecosystems,
and analyze and summarize the expected challenges. We
also propose the possible directions in research to solve the
problems at the end of the paper. To the best of our knowledge,
our study is the first to provide challenges and directions on
ADD management in software ecosystem contexts.

II. SOFTWARE ECOSYSTEMS CHARACTERISTICS

A software ecosystem is defined as a set of businesses
functioning as a unit and interacting with a shared market for
software and services, together with the relationships among
them [8]. Compared with traditional software engineering,
software ecosystems have the following characteristics:

A social community. In a software ecosystem, third parties are
encouraged to contribute to an organization’s product develop-
ment, which establishes a social network that includes not only
the team within the organization but also external developers,
sharing technologies, skills, knowledge and even issues in the
network. This further accelerates social interactions among the
organization and the external parties, and forms a software
social community.

Extensive business innovation. Innovations are always used
to illustrate the capability of an organization to be creative
in product development [3]. In a software ecosystem, both
employees in the organization and the third parties have
opportunities to provide innovative ideas to solve business



Figure 1. Triple View Model Framework

problems, which extend the organization’s innovative strategy
and support both reactive and proactive business innovations
[3].

Architecture platform commonality and variability. The
concept of a software ecosystem focuses on multiple prod-
uct development achieved by sharing a common architecture
platform in open software development. However, software
organizations also need to provide stable interfaces through the
architecture platform to external developers, without disabling
the operation of externally developed applications on top of
the platform [2]. The concern of the architecture in a software
ecosystem is to manage its commonality and variability to suit
different business entities.

Diverse management. In a software ecosystem, both employ-
ees in an organization and external developers share commu-
nity resources which include not only technical resources in
the development but also tacit knowledge behind the thoughts
of all parties. Thus, management is required to deal with the
diverse resources distributed in multiple developments and
multiple stakeholders, which influence the decision-making
processes and the corresponding architectural knowledge.

III. LOCALIZED ADD MANAGEMENT

In this section, we give a sketch of our previous work
on ADD documentation and evolution in a localized software
project context.

In order to capture the ADD set, we proposed the Triple
View Model (TVM) to clarify the notion of ADDs and to
cover key features in an architecting process [5]. The TVM is
defined by three views: the element view, the constraint view,
and the intent view. This is analogous to Perry/Wolf model’s
elements, form, and rationale but with expanded content and
specific representations [10]. Each view in the TVM is a subset
of ADDs, and the three views together constitute an entire
ADD set. Specifically, the three views cover three different
aspects when creating an architecture, i.e., “what”, “how”, and
“why”, as shown in Fig. 1. The three aspects aim to specify
design decisions on “what” elements should be selected in an
architecture, “how” these elements combine and interact with
each other, and “why” a certain decision is made. The detailed
contents in each view of the TVM are illustrated in Fig. 2.

Based on the TVM, we define the scenario-based ADD
documentation and evolution method (SceMethod) [5]. In the

Figure 3. The Process of the Scenario-Based Method

SceMethod, we aim to obtain and specify the element view,
constraint view, and intent view through end-user scenarios,
which are represented by Message Sequence Charts (MSCs)
[11]. Fig. 3 illustrates the SceMethod process. At the beginning
of the architectural design process, we obtain initial ADD
results. Later on, as the requirements change, the ADDs are
evolved and refined according to the newly requirements.
By documenting ADDs and evolving these decisions with
changing requirements, the SceMethod effectively helps us
make architectural knowledge explicit and reduce architectural
knowledge evaporation. We have four steps in the SceMethod
to derive ADDs in a software project. For the sake of brevity,
we will not discuss the detailed steps here. The full illustration
of the TVM and the SceMethod can be found in our published
work in [6].

IV. ADD MANAGEMENT IN SOFTWARE ECOSYSTEMS

In order to manage ADD documentation and evolution
in software ecosystems, models and tools should be capable
of capturing and representing architectural decisions not only
within an organization’s architecting process, but also among
those external parties in the social community. However, the
openness and the sociality of a software ecosystem bring us
new challenges and more difficulties of further capturing archi-
tectural decisions influenced by a software social community.

We argue that a modified/extended approach to ADDs in
software ecosystems should be established, and the corre-
sponding ADD management mechanisms should be extended
to fit the ecosystem contexts as well. Note that we propose a
paradigm for managing ADDs in open software development
environment, which is illustrated in Fig. 4.

In this paradigm, we discuss five aspects of a software
ecosystem, i.e., architecture platform, technology, business,
community, and resource management. Specifically, a common
architecture platform is shared by both the organization and the
associated third parties to support commonality and stability
in the open contexts. Technology, business, and community
represent respectively the three types of interactions among
the multiple stakeholders. Moreover, a resource management
mechanism is needed as well to deal with the diverse resources
distributed in multiple developments and multiple stakeholders.

As for the ADD management in software ecosystems,
we propose a new ADD set that includes basic architecture



Figure 2. Triple View Model for Architectural Design Decisions

Figure 4. ADD management paradigm for software ecosystems

elements, properties and relationships, and intents that form the
common architecture platform, and that extends the decision
set by considering decision-making strategies from the technol-
ogy issues, the business innovations, and the social community.
As shown in Fig. 4, we can establish the initial ADD set using
the localized model and method, i.e., our TVM and SceMethod
that support localized ADD management, while combining
the design decisions come from Technology, Business, and
Community into the ADD set to constitute a larger set for
architectural knowledge needed in software ecosystems.

Note that our paradigm proposed in this paper is still a pre-
liminary ADD framework for the open software development
environment, and we believe that many new challenges and
difficulties should be considered and be solved as we explore
the ADD management in software ecosystems. We present and
discuss the expected challenges in the next section, and we aim
to offer useful insights into managing architectural knowledge
in the context of software ecosystem.

V. OPEN CHALLENGES

We summarize major challenges of developing new tech-
nologies and tools for managing ADDs in software ecosystems
in this section. In general, how to identify ADDs and how to

manage the openness and the sociality of the environment are
the main challenges in software ecosystems. Specifically, we
elaborate each challenge in the following sections.

A. Comprehensive definition

Aiming to identify and manage architectural knowledge
effectively, a definition of what should be considered as ADDs
in a software ecosystem is an initial requirement. The existing
definition for ADDs in the localized software development
are likely not to be sufficient to meet software ecosystem
requirements. Thus, we argue that an extended or modified
approach to ADD sets for software ecosystems should be
established, and that in the new approach ADDs are derived
not only from the software organization but also from the third
parties.

B. Multi-level communication

Sharing and communicating ADDs within an organization,
between an organization and external developers, and among
third parties are all inevitable and necessary in a software
ecosystem. Therefore, how to keep architectural knowledge
consistent in a complex distributed and communicating envi-
ronment should be addressed. New models and tools of ADD
management for software ecosystems should contain mecha-
nisms to deal with the multi-level communication and ensure
ADDs to be consistent in the open development environment.

C. Completeness

Our previous work on the TVM and the SceMethod helps
to document and evolve ADDs in localized software product
development, and they derive and maintain the ADD set as
complete as possible. However, for architectural knowledge
representation in a software ecosystem setting, an adequate
model and tool support are still needed, and an approach to
managing the completeness of ADDs in the open development
environment needs to be developed as well.
D. Scalability

Since different parties contribute to multiple product de-
velopments in a software ecosystem, models and tools for



Figure 5. Exploratory solutions for software ecosystems

architectural knowledge management should address scalabil-
ity issues as the amount and the complexity of architectural
decisions increase, and the management on ADDs should
also tolerate the continuous involvement of a large array
of suppliers, developers and users in an ecosystem. This
scalability problem further accelerates the evolution process of
ADDs, which is another potential issue in software ecosystem
approaches.

E. Traceability

Efficient automated traceability between system drivers
(such as requirements, business and market needs) and ADDs
is necessary for the enhanced ADD set in software ecosystems.
We still need extensive research on architectural knowledge
traceability, not only for the localized software development,
but also for software ecosystem environment.

VI. POSSIBLE SOLUTIONS

In order to explore the possible directions in research to
solve the aforementioned problems and challenges in archi-
tectural knowledge management in software ecosystems, we
propose several exploratory ideas that can be investigated on
our preliminary ADD framework in Fig. 4. The main ideas
that we explore are discussed as follows, and we use Fig. 5 to
illustrate them briefly.

First, federated ADD management strategy. We propose the
federated strategy to manage the ADDs in a software ecosys-
tem. Specifically, we conduct ADD management separately
focusing on different aspects of the software ecosystem, i.e.,
we use our TVM and SceMethod to document and evolve
ADDs respectively related to the architecture platform, the
technology, the business, and the community of the software
ecosystem. After we obtain the ADDs from each aspect, we
use a central repository to store and record the ADDs, and this
therefore suggests the second idea.

Second, central repository coordination. The central repos-
itory helps us store architectural knowledge information that
comes from different areas, and at the same time, it can be
accessed by the organization, external developers and third
parties, which can be seen as a bridge among different stake-
holders in the software ecosystem. Thus, the central repository
might be enhanced as a tool to ensure the consistency of
ADDs in the software ecosystem contexts. The federated ADD
management strategy and the central repository provide good
directions for supporting comprehensive definition, multi-level
communication, and completeness in software ecosystems.

Third, configuration management tools. In order to support
the scalability and the traceability in ADD management, one
possible solution is that combining ADD management with
other configuration management tools. This part of work is
expected for both the localize ADD management and the
ecosystem ADD management, and we plan to investigate this
tool support in our future work.

VII. CONCLUSIONS

With the increasing trend of software ecosystems, the man-
agement of ADDs becomes more significant and critical due to
the characteristics in the software ecosystem context. However,
to the best of our knowledge, little work has been conducted in
ADD management in a software ecosystem. In this paper, we
discuss the typical characteristics of a software ecosystem, and
then we briefly present the ADD documentation and evolution
method for localized software development. Based on this, we
discuss the essential aspects of managing ADDs in software
ecosystems, and summarize the expected challenges on ADD
management in software ecosystem research and practice. We
propose the possible solutions for future investigation.

ACKNOWLEDGMENT

This research is supported in part by NSF CISE Grants
IIS-0438967 and CCF-0820251.

REFERENCES

[1] J. Bosch. Software architecture: The next step. In European Workshop
on Software Architecture, volume 3047 of Lecture Notes in Computer
Science, pages 194–199. Springer, 2004.

[2] J. Bosch. Architecture challenges for software ecosystems. In Pro-
ceedings of the Fourth European Conference on Software Architecture:
Companion Volume, ECSA, pages 93–95, New York, NY, USA, 2010.
ACM.

[3] P. R. J. Campbell and F. Ahmed. A three-dimensional view of software
ecosystems. In Proceedings of the Fourth European Conference on
Software Architecture: Companion Volume, ECSA, pages 81–84, New
York, NY, USA, 2010. ACM.

[4] R. Capilla, F. Nava, S. Pérez, and J. C. Dueñas. A web-based tool for
managing architectural design decisions. SIGSOFT Softw. Eng. Notes,
31, September 2006.

[5] M. Che and D. E. Perry. Scenario-based architectural design decisions
documentation and evolution. In Proceedings of the 2011 18th IEEE
International Conference and Workshops on Engineering of Computer-
Based Systems, pages 216–225, 2011.

[6] M. Che and D. E. Perry. Managing architectural design decisions
documentation and evolution. International Journal Of Computers,
6:137–148, 2012.

[7] A. Jansen, J. van der Ven, P. Avgeriou, and D. K. Hammer. Tool
support for architectural decisions. In Proceedings of the Sixth Working
IEEE/IFIP Conference on Software Architecture, page 4, 2007.

[8] S. Jansen, A. Finkelstein, and S. Brinkkemper. A sense of community:
A research agenda for software ecosystems. In Proceedings of the
31st International Conference on Software Engineering - Companion
Volume, pages 187 –190, May 2009.

[9] P. Kruchten, P. Lago, and H. V. Vliet. Building up and reasoning about
architectural knowledge. In Quality of Software Architectures, pages
43–58, 2006.

[10] D. E. Perry and A. L. Wolf. Foundations for the study of software
architecture. SIGSOFT Softw. Eng. Notes, 17:40–52, October 1992.

[11] D. M. A. Reniers. Message sequence chart: Syntax and semantics.
Technical report, Faculty of Mathematics and Computing, 1998.

[12] J. Tyree and A. Akerman. Architecture decisions: Demystifying
architecture. IEEE Softw., 22:19–27, March 2005.


