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ncreasing levels of software reuse constitute one of the 
most pervasive and  profound influences in software 

engineering today. Technological innovations (e.g., object-
oriented languages, distributed object models, domain spe-
cific languages) and process innovations (e.g., domain 
modeling, architectural analysis, reuse metrics) are enabling 
organizations to meet ever-more stringent cost, quality, and 
interval requirements. Furthermore, there is actually now a 
reuse market-place: One can literally buy class libraries, 
frameworks, and components out of catalogues. 

The Fifth International Conference on Software Reuse 
that was held in Victoria, B.C., Canada, included papers, 
mini-workshops, panels, and tutorials dedicated to various 
aspects of the software reuse enterprise, including object-
orientation, domain modeling, domain specific languages, 
software architecture, and reuse over the internet. Out of 
the 31 papers (selected from 96 submissions) that were pre-
sented, a select few were nominated by the program com-
mittee as representing special, innovative contributions. 
These were subjected a special rereview and two were se-
lected for this special issue. 

These two papers represent two of the major technological 
approaches to software reuse: generative/transformational 
reuse, and object-oriented reuse. 

The first paper, by Batory, Chen, Robertson, and Wang, 
considers the problem of selecting the best realizations and 
algorithms for a general purpose data structure, a container 
[1]. There are several different implementation choices for 
such a data structure: linked lists, hash tables, binary trees, 
etc. Some of these can also be used in conjunction on the 
same container data structure to provide multiple access 
modes. Containers can also be concurrent, persistent, se-
cure, and so on. Each of these feature combinations offers 
specific performance characteristics suitable for specific 
usage profiles. Selecting the specific combinations of im-
plementation features, given a particular workload, in-
volves the application of specialized design knowledge. 
The Batory et al. paper describes a framework that encapsu-
lates this design knowledge into a design wizard. This design 

wizard helps a programmer select a particular combination 
of container implementation features tailored to a specific 
application and usage profile. Once a feature set has been 
selected, code that implements that specific feature combi-
nation is generated after applicable optimizations have 
been performed. As reuse libraries become larger, more 
feature-rich, and complex, the design choices involved in 
using them become more difficult; Biggerstaff has called 
this the “library scaling problem” [4]. The wizard approach 
of Batory et al. is an important step toward ameliorating 
this problem. 

The second paper, by Maruyama and Shima, is con-
cerned with the problem of adapting class libraries for spe-
cific requirements. The authors note that OO reuse typically 
involves two phases: finding a related class, and modifying it 
to suit the new requirements. They further observe that 
during the modification phase, developers make heavy use 
of change precedents: What types of changes have been made 
before in similar contexts. The modification phase, then, can 
be viewed as a process of integrating change precedents. 
They seek to provide automated support for this activity. 
Changes made to class libraries are stored in change histo-
ries. Using their tools involves several steps: Identify a can-
didate class for adaptation, then identify change prece-
dents, and, finally, integrate change precedents into the can-
didate class. Their approach is based on [2] and makes use 
of program slicing, dependence graph, and graph 
matching. Maruyama and Shima’s work can be viewed as a 
way to systematically  capture and replay typical modifica-
tions and extensions that occur during the evolution of ob-
ject-oriented systems. 

Some of the early stirrings of software reuse can be 
traced back to 1958 [1], with the introduction of separate 
compilation of subroutines in Fortran II, and the increasing 
use of Fortran subroutine libraries in scientific computation 
over the following years. There has been dramatic progress 
since then in languages, component models, transforma-
tional techniques, reuse metrics, and processes. The papers 
in this special section, and those in the Proceedings of the 
Fifth International Conference of Software Reuse contain impor-
tant, intriguing ideas that will sustain the progress of soft-
ware reuse research. We invite you to join in this exciting 
endeavor. 
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