
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 5, MAY 2000 423

Guest Editors’ Introduction:
Next Generation Software Reuse

Premkumar T. Devanbu, Dewayne E. Perry, and Jeffrey S. Poulin, Senior Member, IEEE

—————————— ✦ ——————————

ncreasing levels of software reuse constitute one of the
most pervasive and profound influences in software

engineering today. Technological innovations (e.g., object-
oriented languages, distributed object models, domain spe-
cific languages) and process innovations (e.g., domain
modeling, architectural analysis, reuse metrics) are enabling
organizations to meet ever-more stringent cost, quality, and
interval requirements. Furthermore, there is actually now a
reuse market-place: One can literally buy class libraries,
frameworks, and components out of catalogues.

The Fifth International Conference on Software Reuse
that was held in Victoria, B.C., Canada, included papers,
mini-workshops, panels, and tutorials dedicated to various
aspects of the software reuse enterprise, including object-
orientation, domain modeling, domain specific languages,
software architecture, and reuse over the internet. Out of
the 31 papers (selected from 96 submissions) that were pre-
sented, a select few were nominated by the program com-
mittee as representing special, innovative contributions.
These were subjected a special rereview and two were se-
lected for this special issue.

These two papers represent two of the major technological
approaches to software reuse: generative/transformational
reuse, and object-oriented reuse.

The first paper, by Batory, Chen, Robertson, and Wang,
considers the problem of selecting the best realizations and
algorithms for a general purpose data structure, a container
[1]. There are several different implementation choices for
such a data structure: linked lists, hash tables, binary trees,
etc. Some of these can also be used in conjunction on the
same container data structure to provide multiple access
modes. Containers can also be concurrent, persistent, se-
cure, and so on. Each of these feature combinations offers
specific performance characteristics suitable for specific
usage profiles. Selecting the specific combinations of im-
plementation features, given a particular workload, in-
volves the application of specialized design knowledge.
The Batory et al. paper describes a framework that encapsu-
lates this design knowledge into a design wizard. This design

wizard helps a programmer select a particular combination
of container implementation features tailored to a specific
application and usage profile. Once a feature set has been
selected, code that implements that specific feature combi-
nation is generated after applicable optimizations have
been performed. As reuse libraries become larger, more
feature-rich, and complex, the design choices involved in
using them become more difficult; Biggerstaff has called
this the “library scaling problem” [4]. The wizard approach
of Batory et al. is an important step toward ameliorating
this problem.

The second paper, by Maruyama and Shima, is con-
cerned with the problem of adapting class libraries for spe-
cific requirements. The authors note that OO reuse typically
involves two phases: finding a related class, and modifying it
to suit the new requirements. They further observe that
during the modification phase, developers make heavy use
of change precedents: What types of changes have been made
before in similar contexts. The modification phase, then, can
be viewed as a process of integrating change precedents.
They seek to provide automated support for this activity.
Changes made to class libraries are stored in change histo-
ries. Using their tools involves several steps: Identify a can-
didate class for adaptation, then identify change prece-
dents, and, finally, integrate change precedents into the can-
didate class. Their approach is based on [2] and makes use
of program slicing, dependence graph, and graph
matching. Maruyama and Shima’s work can be viewed as a
way to systematically capture and replay typical modifica-
tions and extensions that occur during the evolution of ob-
ject-oriented systems.

Some of the early stirrings of software reuse can be
traced back to 1958 [1], with the introduction of separate
compilation of subroutines in Fortran II, and the increasing
use of Fortran subroutine libraries in scientific computation
over the following years. There has been dramatic progress
since then in languages, component models, transforma-
tional techniques, reuse metrics, and processes. The papers
in this special section, and those in the Proceedings of the
Fifth International Conference of Software Reuse contain impor-
tant, intriguing ideas that will sustain the progress of soft-
ware reuse research. We invite you to join in this exciting
endeavor.

Premkumar T. Devanbu
Dewayne E. Perry
Jeffrey S. Poulin

0098-5589/00/$10.00 © 2000 IEEE

————————————————
• P.T. Devanbu is with the Computer Science Department, University of

California at Davis, Davis, CA 95616. E-mail: devanbu@cs.ucdavis.edu.
• D.E. Perry is with the Electrical and Computer Engineering Department,

University of Texas at Austin, Austin, TX 78712.
E-mail: perry@ece.utexas.edu.

• J.S. Poulin is with Atlas Commerce.
E-mail: Poulin.Jeff@atlascommerce.com.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 110651.

I

424 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 5, MAY 2000

REFERENCES
[1] J. Backus, “The History of FORTRAN I, II, III,” IEEE Annals of the

History of Computing, vol. 20, no. 4, 1998.
[2] S. Horwitz, J. Prins, and T. Reps, “Integrating Noninterfering

Versions of Programs,” ACM Trans. Programming Languages and
Systems, vol 11, no. 3, July 1989.

[3] D.R. Musser and A.A. Stepanov, “Algorithm Oriented Generic
Libraries,” Software Practice and Experience, vol. 24, no. 7, 1994.

[4] T. Biggerstaff, “The Library Scaling Problem and the Limits of
Concrete Component Reuse,” Proc. Int’l Conf. Software Reuse,
pp. 102-110, Nov. 1994.

Premkumar T. Devanbu received his BTech in
electrical engineering (light current) from the In-
dian Institute of Technology, Madras, India, in
1977, and his MS and PhD in computer science
from Rutgers University, Piscataway, New Jersey,
in 1979 and 1994. He has developed both sys-
tems and telecommunications software, first at the
Perkin-Elmer Corporation and then at AT&T Bell
Laboratories from 1979 to 1985. From 1985, he
was a researcher at AT&T Bell Labs in Murray Hill,
New Jersey, until the trivestiture in 1996. From

1996 to 1997, he was a principal technical staff member at AT&T Re-
search. In January 1998, he joined the faculty of the Department of
Computer Science at the University of California at Davis.
 Prof. Devanbu’s research interests include retargetable, flexible soft-
ware tools, software reuse, and approaches to building trust in software
engineering tools and processes that are sensitive to intellectual property
protection. More details are available at http://www.cs.ucdavis.edu/~devanbu.

Dewayne E. Perry is currently the Motorola
Regents Chair of Software Engineering at The
University of Texas at Austin. The first half of his
computing career was spent as a professional
programmer, with the latter part combining both
research (as a visiting faculty member in com-
puter science at Carnegie-Mellon University) and
consulting in software architecture and design.
The last 16 years were spent doing software
engineering research at Bell Laboratories in
Murray Hill, New Jersey. His appointment at UT

Austin began in January 2000. His research interests include (in the
context of software system evolution) empirical studies, formal models
of the software processes, process and product support environments,
software architecture, and the practical use of formal specifications and
techniques. He is particularly interested in the role architecture plays in
the coordination of multisite software development, as well as its role in
capitalizing on company software assets in the context of product lines.
His educational interests at UT include building a great software engi-
neering program, both at the graduate and undergraduate levels, creat-
ing a software engineering research center, and focusing on the em-
pirical aspects of software engineering to create a mature and rigour-
ous empirical software engineering discipline. He is a co-editor-in-chief
of Wiley’s Software Process: Improvement & Practice; a former associ-
ate editor of the IEEE Transactions on Software Engineering; a mem-
ber of ACM SIGSOFT and the IEEE Computer Society; and has served
as organizing chair, program chair, and program committee member on
various software engineering conferences.

Jeffrey S. Poulin earned his Bachelor’s degree
from the United States Military Academy at West
Point and his Master’s and PhD degrees from
Rensselaer Polytechnic Institute in Troy, New
York. He recently joined Atlas Commerce, a pro-
vider of business-to-business e-commerce solu-
tions as the chief technology officer. He previ-
ously worked as a senior software engineer and
systems architect with Lockheed Martin Federal
Systems (formally Loral Federal Systems and
IBM Federal Systems Company) in Owego, New

York. As a member of the Postal Software Development/Products
Group, he has led the technical activities on major large-scale programs
for the United States Department of Defense, Postal Service, and com-
mercial customers. As a senior member of the IEEE, he actively partici-
pates in conferences and standards activities of the IEEE, the IEEE
Computer Society, and the ACM. Dr. Poulin has more than 60 publica-
tions on software measurement, software reuse, and domain-specific
software architectures, including a book titled Measuring Software Reuse
(Addison-Wesley). Dr. Poulin is a Hertz Foundation Fellow.

