
1

Fall 2004 322C – Lecture 1 1

EE 322C
Data Structures

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 1 2

Introductions
• The Teaching Team

– Instructor – Dewayne E. Perry
• Programmer, Designer and System Architect
• Visiting faculty at CMU
• SE Researcher at Bell Labs
• Motorola Regents Chair in SE at UT Austin

– TA – Matthew Hawthorne
• MS in SE in the UT Option 3 Program
• Significant experience in SE & C++
• PhD Student working with me on SW Architecture

– Grader – [don’t know yet]

Fall 2004 322C – Lecture 1 3

ECE322C in Context

Data
Structures
In C++

Software Dev./
Engineering

Systems
Software

Other non
ECE areas

Other ECE
areas

Introductory
Programming
In C

Objectives:
• teach you data structures, and
• to prepare you for later courses

Embedded
Systems

Fall 2004 322C – Lecture 1 4

Goals for this class

• A practical understanding of a variety of common
data structures

• A practical understanding of where they are
applicable

• Knowledge of the basic constructs of the C++ and
good programming style

• How to use C++ to create appropriate abstractions
to solve programming problems

• A good understanding of basic software
engineering principles

Fall 2004 322C – Lecture 1 5

High Points of Syllabus
• Prerequisite, EE312- C Programming

– If no prerequisite or not sure the
prerequisite has been met, see me

• You are responsible for all materials
presented in classes, whether you attend
or not. Material presented in class is in
addition to the notes.

• The purpose of the lecture notes is to
help you listen in class.

Fall 2004 322C – Lecture 1 6

Schedule Highlights

• Aug 25 is our first day of class, Dec 1 is
our last day of class

• Lectures every Monday and Wednesday in
CPE 2.210 from 5- 6:15

• Exams (3): Sep 27, Oct 27, and Dec 1
• Programming assignments (6-8) will come

out throughout the semester
• No class Nov 24 (evening before Thanks-

giving)

2

Fall 2004 322C – Lecture 1 7

Assignments and Grading
• Assignments will be 6 - 8 programs.

– Programs to be completed independently unless
I state otherwise (we may try some pair
programming)

• Three exams during semester.
• Pop quizzes at any time

– all equal to 1 assignment
• Grades made up of:

60 % exams
40 % assignments/quizzes

Fall 2004 322C – Lecture 1 8

Final Grade Criteria

Final Average Letter Grade
90 – 100 A
80 – 89 B
70 – 79 C
60 – 69 D
0 - 59 F

Fall 2004 322C – Lecture 1 9

Assignments and Grading
• Exam grades may be curved if warranted.
• Programs are submitted for grading via email

system
• Assignments turned in late will not be accepted.
• Your program must run successfully on the ENS

lab configuration
• Assignments are graded on a 20 point scale

– Each assignment may have different criteria
– Partial credit may be given
– Correctness, style, performance, etc. will be scored

Fall 2004 322C – Lecture 1 10

Syllabus
• All the remaining details of the course

policies, rules, grading criteria, and
procedures are in the syllabus document
on the class web page

• Various C/C++ documents will also be
available on the web page

• Will have the web page set up by next
week

Fall 2004 322C – Lecture 1 11

Questions?

Fall 2004 322C – Lecture 1 12

Software Engineering and Programming

• Software Engineering (SE) is about
– Building and evolving software systems
– That solve practical problems in the world
– Using appropriate and simplifying abstractions

• Programming is about
– Finding the appropriate representations for

• Processing
• Data

– Implementation details in a programming
language (here C++)

3

Fall 2004 322C – Lecture 1 13

Standard View of SE

• Basic SE life-cycle processes
– Requirements
– Architecture & Design
– Construction
– Deployment & Maintenance

• Integral to life-cycle processes
– Documentation
– Measurement & Evaluation (M&E)
– Teamwork
– Management of system objects
– Evolution

Fall 2004 322C – Lecture 1 14

Standard View of SE

• We will become acquainted with aspects of
each of these
– Requirements: the problem to solve
– Design: the shape of the problem influencing

the shape of the solution
– Construction: integrating multiple pieces
– Documentation: describing the solutions
– M&E – various forms of analysis and testing
– Teamwork: will do some projects in teams
– Evolution: will evolve some projects

Fall 2004 322C – Lecture 1 15

A Different View of SE

• Three elements in engineering SW systems
– Theory
– Experience
– Process

• We will become acquainted with aspects of
each of these
– Will introduce theories for data structures
– Will gain experience with them
– Will instill good SE & programming practices

Fall 2004 322C – Lecture 1 16

Wisdom from Fred Brooks

• Suggestion: read Mythical Man-Month often
• Essential Characteristics of SW Systems

– Complexity – our besetting problem
• Software entities are more complex for their size

that perhaps any other human construct
• Two kinds of complexity

– Intricacy (may find some of this in some data structures)
– Wealth of detail (probably not in this class)

– Lack of Conformity
– Changeability & Evolution
– Invisibility and Implicitness

Fall 2004 322C – Lecture 1 17

Wisdom from Fred Brooks

• Accidental Characteristics
– Inadequate abstractions

• Our main job as SEs is to find, create and evolve
appropriate abstractions

– Inadequate modes of expression
• Depends on the languages we use

– Language limitations – here C++
– Resource limitations – time, PCs, cycles, etc
– Inadequate support – tools, environments, etc

Fall 2004 322C – Lecture 1 18

Managing Complexity

• Modularity
– Divide and conquer
– Break things up into manageable pieces

• Encapsulation
– Localize similar things
– Localize expected changes

• Abstraction
– Functional: generalize and parameterize
– Implementation:

• Define simple interface
• Hide implementation details

4

Fall 2004 322C – Lecture 1

What is a Program?
• Algorithms + Data Structures = Program
• Data

– Is information represented in a manner suitable for
communication or analysis by humans or machines

– A data structure is a systematic way of organizing,
holding, and accessing computerized data

• An algorithm
– Is a logical sequence of discrete steps that describes

a complete solution to a given problem computable in a
finite amount of time.

– The key to packaging and time Vs. space tradeoff
decisions

Fall 2004 322C – Lecture 1 20

Structured Programming

• A disciplined style of programming where the
• Static structure mirrors the dynamic structure

– Modularization and scoping of programs
– Restricted set of control structures
– Indentation of subordinate structures

• Control Structures
– Sequence
– Selection (if, Case, etc)
– Iteration (for, while, etc)

• Data Structures
– Tuples
– Ordered elements
– Unordered elements

Fall 2004 322C – Lecture 1 21

Data Structures

• Base Types
– int, float, char, bool, enum, pointer

• Tuples
– struct

• Ordered types
– string, array, vector, stack, queue, linked list,

tree, graph, table, hash table
• Un-ordered types

– sets, heaps

Fall 2004 322C – Lecture 1 22

Questions about Data Structures

• When are the different data structures
applicable or appropriate?
– When do we use types, ordered or unordered

structures?
– What are the costs and benefits?

• How do you design new data types?
– Open structures or abstract data types?
– What operations are needed?

• Eg, add, remove, access data
– What else is needed?

Fall 2004 322C – Lecture 1 23

Functional vs. Object-Oriented

• Read the problem statement and/or
specification of the software you want to
build.
– Underline the verbs if you want to focus on

procedural aspects,
– Underline the nouns if you want to focus on the

data aspects
• How do you decide which to emphasize in a

system design ?
– it depends on the application

Fall 2004 322C – Lecture 1

Two SW Design Approaches

Divides the problem
into more easily handled
subtasks, until the
functional modules
(subproblems) can
be coded.

Identifies various
objects composed of
data and operations,
that can be used
together to solve
the problem.

FUNCTIONAL
DECOMPOSITION

OBJECT-ORIENTED
DESIGN

FOCUS ON: processes FOCUS ON: data objects

5

Fall 2004 322C – Lecture 1

Functional Design

Find
Weighted
Average

Print
Weighted
Average

Main

Print Data

Print Heading

Get Data
Prepare
File for
Reading

Fall 2004 322C – Lecture 1

Object-Oriented Design

A technique for developing a program in which
the solution is expressed in terms of objects
-- self- contained entities composed of data
and operations on that data.

Private data

<<

setf
.
.
.

Private data

>>

get
.
.
.

ignore

cin cout

Fall 2004 322C – Lecture 1

What is Software Engineering?
• A disciplined approach to the development of

computer software systems that:
– produces high quality software solutions (i.e. it works

correctly, its reusable, modifiable, etc.),
– are developed on time and within cost estimates,
– uses technology that help to manage the size and

complexity of the resulting software products.
– applies to all types of software systems that are

developed as products
– uses general principles and domain specific approaches as

well

Fall 2004 322C – Lecture 1 28

What is System Software?
• Operating systems, compilers, linkers, loaders,

middleware
• Network management tools
• Computer performance monitors
• Telecomm
• NOT end user applications, web aps, games, etc.
• Issues involved are very close to the machine:

squeezing space, minimizing time, slicing resource
utilization, etc.

Fall 2004 322C – Lecture 1 29

What is Embedded Software?
• Inside a device
• Smart appliances
• Automotive, anti lock brakes
• Digitial signal processing
• System on a chip
• Issues involved are hard real time

Fall 2004 322C – Lecture 1 30

Next Time

• We get started on C++

1

Fall 2004 322C – Lecture 2 1

EE 322C
Data Structures

Lecture 2

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 2 2

Announcements

• http://www.ece.utexas.edu/courses/fall_04/ee322c-15515
– Class web site is up
– Basic C to C++ reading notes out
– Syllabus is there
– Class lectures will be there after
– Assignments will be announced there

Fall 2004 322C – Lecture 2 3

C++ References
• Books

– C++ Programming Language, 3rd Edition, B.
Stroustrup, Addison Wesley, 2000

• Online sources
– http://cppreference.com - syntax reference
– http://www.cprogramming.com/tutorial.html
– http://www.cplusplus.com
– Many others – search for them

Fall 2004 322C – Lecture 2 4

Two SW Design Approaches

Divides the problem
into more easily handled
subtasks, until the
functional modules
(subproblems) can
be coded.

Identifies various
objects composed of
data and operations,
that can be used
together to solve
the problem.

FUNCTIONAL
DECOMPOSITION

OBJECT-ORIENTED
DESIGN

FOCUS ON: processes FOCUS ON: data objects

Fall 2004 322C – Lecture 2 5

Introduction to Problem Solving
and Algorithms

• Look at algorithms first
• Fits the functional style of C
• Algorithms + data structures = programs

Fall 2004 322C – Lecture 2 6

Algorithm
• General - a step by step procedure for solving

some problem or accomplishing some goal
(Webster’s) - e.g. a recipe

• Computer - A logical sequence of discrete steps
that describes a complete solution to a given
problem that is computable in a finite amount of
time.
– “Find the largest prime number” is NOT amenable
– Often appears at several levels of abstraction/detail
– Algorithms operate on data structures from a

functional viewpoint

2

Fall 2004 322C – Lecture 2 7

Algorithm (cont.)

• A given problem may be solvable by a number
of different algorithms. Its importance is
crucial in designing a solution program.

• An algorithm may be transformed into a
working program if its computable

• An algorithm will typically use levels of
abstraction to make the solution clearer and
implementation easier.

Fall 2004 322C – Lecture 2 8

Algorithm (cont.)
• An algorithm may be represented in several ways:

– Pseudocode - structured English language used to help
design an algorithm (free form; e.g. recipe)

– Flowchart - a graphical representation of an algorithm.
It shows control and data flow.

– Formal languages - outside the scope of this course
– Computer program - eventually an algorithm is written

in a programming language

Fall 2004 322C – Lecture 2 9

Algorithms in General

Fall 2004 322C – Lecture 2 10

How To Shampoo Your Hair

1) Wet your hair
2) Apply shampoo
3) Lather
4) Rinse
5) Repeat

Follow these simple steps:

Found on the back of a shampoo bottle - circa 1965

Fall 2004 322C – Lecture 2 11

How To Shampoo Your Hair

1) Wet your hair
2) Apply shampoo
3) Lather
4) Rinse
5) Repeat

Follow these simple steps:

Steps 1 - 4 depict a sequential flow of instructions
Step 5 introduces the notion of repetition/iteration of
instructions

Fall 2004 322C – Lecture 2 12

How To Shampoo Your Hair

1) Wet your hair
2) Apply shampoo
3) Lather
4) Rinse
5) Repeat

Follow these simple steps:
0) If out of shampoo,

then run out and buy some

This is a decision
making statement

3

Fall 2004 322C – Lecture 2 13

How To Shampoo Your Hair

1) Wet your hair
2) Apply shampoo
3) Lather
4) Rinse
5) Repeat steps 1 - 4, if necessary

Follow these simple steps:

This is a bounded iteration statement

Fall 2004 322C – Lecture 2 14

How To Shampoo Your Hair

1) Wet your hair
2) Set the wash hair counter to 0
3) Repeat steps 3A - 3D while the value of wash

hair counter is less than 3 (i.e. do it three
times)

A. Apply shampoo
B. Lather
C. Rinse
D. Add 1 to the wash hair counter

4) Stop

Follow these simple steps:

This is what pseudocode looks like

Fall 2004 322C – Lecture 2 15

Algorithm Exercises

Flowchart Symbology 101
- Primitives -

Start/stop

Process/
Task/action

Decision

Control flowInput/output

Fuzzy
notion

connector

Fall 2004 322C – Lecture 2 17

Three Proper Logic Constructs

sequence iteration selection

condition T

F

condition

T

F

. . .

one or a block of statements
grouped together

Fall 2004 322C – Lecture 2 18

Three Proper Logic Constructs
- pseudocode style -

sequence iteration selection

1. …

2. …

3….

Repeat below steps
While condition is true

a) …
b) …
c) …

end repeat

If condition is true
then

…
else

…
end if

Use indentation heavily to show the static (ie, block) structure

4

Fall 2004 322C – Lecture 2 19

Making Cookies

Fall 2004 322C – Lecture 2 20

Judy’s Chocolate Chip Cookies
start

stop

Input the
ingredients

Step 1 Step 2 Step 3 Step 4

Step 5 Step 6 Step 7

Step 9

Soft/
crisp Step 8a

Step 8b

soft

crisp

Fall 2004 322C – Lecture 2 21

Judy’s Chocolate Chip Cookies
start

stop

Input the
ingredients

Step 1 Step 2 Step 3 Step 4

Step 5 Step 6 Step 7

Step 9

Soft/
crisp Step 8a

Step 8b

soft

crisp

Do it
Again?

no
yes

Fall 2004 322C – Lecture 2 22

Numerics - Example
• Problem - given the right triangle

depicted in the figure below, and given
values for the lengths of sides a and b,
what is the length of side c?

a

b

c

Fall 2004 322C – Lecture 2 23

Algorithm

1. Input values for sides a and b
2. Compute the length of the hypotenuse c
3. Output the answer

Fall 2004 322C – Lecture 2 24

Code Example
#include <iostream>
#include <cmath>
using namespace std;
int main ()
{ // find the length of the hypotenuse c of a right triangle

// with sides a,b,c
double a, b, c;
cout << “enter a value for side a” << endl;
cin >> a;
cout << “enter a value for side b” << endl;
cin >> b;
c = sqrt (a*a + b*b);
cout << “the value of c is ” << c << endl;
return 0;

} // end of main

5

Fall 2004 322C – Lecture 2 25

Numerics - Exercise
• Problem - given the right triangle

depicted in the figure below, and given
values for the lengths of sides a and b,
what is the length of side c?

a

b

c

Do this for multiple given values of a and b

Fall 2004 322C – Lecture 2 26

Algorithm

1. input values for sides a and b
2. compute the length of the hypotenuse c
3. output the answer

Repeat the following steps until ??

Fall 2004 322C – Lecture 2 27

Code Example
#include <iostream>
#include <cmath>
using namespace std;
int main ()

{ // find the length of the hypotenuse c of a right triangle
// with sides a,b,c
double a, b, c;

cout << “enter a value for side a” << endl;
cin >> a;
cout << “enter a value for side b” << endl;
cin >> b;
c = sqrt (a*a + b*b);
cout << “the value of c is ” << c << endl;

return 0;
} // end of main

Fall 2004 322C – Lecture 2 28

How To Solve Complex
Programming Problems

Fall 2004 322C – Lecture 2 29

Problem Solving Process
1) Understand the given problem

2) Devise a high-level plan to solve it

3) Elaborate the plan

4) Implement the plan

5) Revisit and revise the plan as necessary

6) Stop when the solution is correct

Fall 2004 322C – Lecture 2 30

Problem Solving Process
1) Understand the given problem

2) Devise a high-level plan to solve it

3) Elaborate the plan

4) Implement the plan

5) Revisit and revise the plan as necessary

6) Stop when the solution is correct

6

Fall 2004 322C – Lecture 2 31

Problem Solving Process
• Understand the given problem

– Analyze the problem to determine: the goals, the givens,the requirements, the
constraints

• Devise a high-level plan to solve it
– Design the top-level system models (algorithm/data) to solve the problem- including

new and reused sub-parts

• Elaborate the plan
– Work out the details of the algorithm/data structures and their sub-parts

until it is ready for coding in a programming language

• Implement the plan
– Code, test and verify the program

• Revisit and revise the plan as necessary
– Fix and/or modify the program as needed

• Stop when the solution is correct

Fall 2004 322C – Lecture 2 32

Problem Analysis Process
1) Identify the inputs (e.g. the data given)
2) Identify the outputs (i.e. the desired results)
3) Identify the functions and features needed
4) Identify the data structures, variables and relationships between

them
5) Identify additional requirements or constraints on the solution
6) Identify those processes that transform the input data into the

output data
7) Identify pre-existing parts that will participate in the solution

(e.g. library classes and methods)
8) Make assumptions and simplifications as necessary (document

those)

Fall 2004 322C – Lecture 2 33

Problem Analysis Tips
• Read the problem statement very carefully.
• Use the given analysis process to identify and understand the

required inputs, desired outputs, etc.
• Parse the problem statement looking for the key concepts; use the

divide and conquer approach
– Noun phrases typically will denote potential data types and variables (and

later: classes, objects)
– Verb phrases will denote potential processes/functions/actions
– Outputs can often be related to inputs by a transformation process

(perhaps needing intermediate variables)
• Work examples all the way through by hand
• Seek clarification and more information as needed from the problem

specifiers (the teaching team in this case)
• Create a high level sketch of the flow of the algorithm
• DO NOT start by trying to write C++ code!!

Fall 2004 322C – Lecture 2 34

Divide and Conquer

• Programming is a complex task that is made simpler if you
can break the big problem down into smaller subproblems

• These smaller pieces are components called modules - e.g.
classes, methods, objects, subroutines, procedures or
functions.

• Break down a problem into modules that each just do one
thing using encapsulation and astraction. We will learn
more about what makes a good module later.

• A key feature of a well written algorithm will be proper
use of abstraction. This will provide an algorithm that:

– is more understandable
– is easier to implement and test
– provides more reusable modules

Fall 2004 322C – Lecture 2 35

Example Problem

Problem - You have $1,000 to invest in a
Certificate of Deposit (CD) that earns 3% interest
per year. Interest is compounded annually. How
many years will it take to double your initial
investment?

Fall 2004 322C – Lecture 2 36

Example Problem
Problem - You have $1,000 to invest in a Certificate of

Deposit (CD) that earns 3% interest per year. Interest is
compounded annually. How many years will it take to
double your initial investment?

Questions to you (the problem solver):
• Do you fully understand the problem statement? If not,

what are your questions?
• Can you solve the problem by hand?
• Can you then teach the computer how to do it?
• Ask yourself, if I was a computer, what would I do first?

then next, etc.
• What if the problem was changed slightly?
• Can you design a solution to solve this problem?

7

Fall 2004 322C – Lecture 2 37

The Generic Program Design
Usually Starts With

ProcessInputs Outputs

To begin, represent the program as a closed, black-box system.
Identify the inputs and outputs before you begin to describe and
outline (plan) the steps inside the process box.

- IPO System Model -

Fall 2004 322C – Lecture 2 38

Example Problem

You have $1,000 to invest in a Certificate of Deposit (CD)
that earns 3% interest per year. Interest is compounded
annually. How many years will it take to double your initial
investment?

inputs outputsProcess

Fall 2004 322C – Lecture 2 39

Example Problem

You have $1,000 to invest in a Certificate of
Deposit (CD) that earns 3% interest per year.
Interest is compounded annually. How many years
will it take to double your initial investment?

inputs

outputs
Number
of years

Process

Fall 2004 322C – Lecture 2 40

Example Problem

You have $1,000 to invest in a Certificate of
Deposit (CD) that earns 3% interest per year.
Interest is compounded annually. How many years
will it take to double your initial investment?

inputs outputs
Rate
Initial balance

Number
of years

Process

Fall 2004 322C – Lecture 2 41

Example Problem

You have $1,000 to invest in a Certificate of
Deposit (CD) that earns 3% interest per year.
Interest is compounded annually. How many years
will it take to double your initial investment?

inputs outputs
Rate
Initial balance

Number
of years

Determine the # of years it
takes to double a given
investment at a given
interest rate in my CD

Process

Fall 2004 322C – Lecture 2 42

The Algorithm Design Process
Design the algorithm to solve the problem
1. Use top down decomposition/stepwise refinement

to break a bigger process down into smaller pieces
2. Continue until code can be written directly from

the detailed algorithm
3. Understand the primitives and piece parts you have

to work with
4. Locate relevant functions/classes/etc. in existing

libraries
5. Modify existing methods/classes where necessary
6. Design new methods/classes where necessary

8

Fall 2004 322C – Lecture 2 43

Algorithm - First Cut
start

stop

Input the
rate and initial
balance

Output the
number of
yearsWhat is inside

the cloud?

Why do it
this way?

Fall 2004 322C – Lecture 2 44

Algorithm - First Cut
start

stop

Input the
rate and initial
balance

Output the
number of
years

Calculate # of
years to double
the CD’s value What is inside

the cloud?

Fall 2004 322C – Lecture 2 45

Algorithm - First Cut
start

stop

Input the
rate and initial
balance

Output the
number of
years

Calculate # of
years to double
the CD’s value What is inside

the cloud?

Remember that
interest is compounded
annually - how do I do that?
You must simulate how a CD
account works.

Fall 2004 322C – Lecture 2 46

Next Level Down
Start with the initial

balance as the CD amount
I now have in first year

Compute a year’s worth
of interest

Add that in to
the CD amount

Is what I have
Now 2X or more than

the initial balance?
yesno

Go to
the next
year

Fall 2004 322C – Lecture 2 47

Next Level Down
Start with the initial

balance as the CD amount
I now have in first year

Compute a year’s worth
of interest

Add that in to
the CD amount

Is what I have
Now 2X or more than

the initial balance?
yesno

Go to
the next
year

Is what I have
now detailed
enough to write
C++ code from?

Fall 2004 322C – Lecture 2 48

Pseudocode Form
Input the rate and initial balance
Start with the initial balance as the CD amount in first

year
Repeat the following until new balance >= 2X the initial

balance
Compute a year’s worth of interest
Add that in to the CD amount
Go to the next year

Output the number of years

9

Fall 2004 322C – Lecture 2 49

• Let’s look at the program now

Fall 2004 322C – Lecture 2 50

Programming Style and
Documentation

• Appropriate Comments
• Naming Conventions
• Proper Indentation and Spacing Lines
• Block Styles
• For more information see the coding

standards on the class web page

Fall 2004 322C – Lecture 2 51

Appropriate Comments
• Comments are for the purpose of explaining and

understanding of your program by humans
• Include a summary at the beginning of the

program to explain what the program does, its
key features, its supporting data structures,
and any unique techniques it uses.

• Include your name, class section,assignment
number, date, and a brief description at the
beginning of the program.

• Also document the high level logic of your
program at the key decision and iteration
points.

Fall 2004 322C – Lecture 2 52

Naming Conventions
Choose meaningful and descriptive identifier names that

reflect the problem concepts.
• Variables and method names:

– Use lowercase. If the name consists of several
english words, separate them with underscores

– For example, the variables radius and area, and the
function compute_area.

• Symbolic Constants:
– Capitalize all letters in constants. For example, the

constant PI.
• Class names:

– Capitalize the first letter of each word in the name.
For example, the class name My_math_functions.

Fall 2004 322C – Lecture 2 53

Proper Indentation,Spacing, Blocking
• Indentation

– Indent three spaces to reflect each level of nesting
• Spacing

– Use blank line to separate segments of the code.
• Block styles

– Use next-line style for braces, and end of block comments. e.g.

class Test
{ int function1()

{
cout << "block style example";

return 0;
} // end of function1

} // end of Test

1

Fall 2004 322C – Lecture 3 1

EE 322C
Data Structures

Lecture 3

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 3 2

Announcements

• http://www.ece.utexas.edu/courses/fall_04/ee322c-15515
– Class web site is up
– Basic C to C++ reading notes out
– Syllabus is there
– Class lectures will be there after
– Assignments will be announced there

Fall 2004 322C – Lecture 3 3

Topics for Today

• OO thinking
• C++ starter stuff
• Quick review of strings

Fall 2004 322C – Lecture 3 4

OO and C++
C++ supports object-oriented programming using
abstraction, encapsulation, inheritance and
polymorphism to provide great flexibility,
modularity and reusability in developing software.

– We will eventually learn how to define, extend and
work with classes and their associated objects

– But first we need to learn about how to think in an
object oriented style

– Jargon - I will often use the term method to mean
both functions and procedures

Classes and Objects
“Introduction to Object
Oriented (OO) Thinking”

“Objects are good” - Aristotle

Objects And Classes - in Two Worlds

• A class is an abstract grouping (or
categorization) of related
objects, containing members that
have something in common (e.g. at
least one attribute); it defines a
general kind of or type of object
(e.g. all cars, all students in this
course)

• An object is a specific,
identifiable thing; is a member of
1 or more classes, has attributes,
exhibits behavior (e.g. my Toyota,
your seat)

Real World

2

Objects And Classes - in Two Worlds

• A class is an abstract grouping (or
categorization) of related
objects, containing members that
have something in common (e.g. at
least one attribute); it defines a
general kind of or type of object
(e.g. all cars, all students in this
course)

• An object is a specific,
identifiable thing; is a member of
1 or more classes, has attributes,
exhibits behavior (e.g. my Toyota,
your seat)

C++ OO WorldReal World
• A class is a container of

functions, variables, etc.; and is
a generalization of and a
generator for all objects of that
class

• An object is a member (or
instance) of a class, it is a
composite data structure with
functions attached, and is a
thing you can create and
manipulate in your program. It
has a state, and behavior.

For some programming problems it is easy to map between these
two worlds - that is what OOP tries to do

Object Model Graphics

class

object

relationship/
association

classname

operations/methods

UML style

attributesclass

ER style

A Class Hierarchy

animals

vertebrateinvertebrate

fish amphibian mammal reptile

horse dog cat rabbit

Missouri
cottontail

Classification scheme with:
Superclasses, subclasses,
inheritance

A Class Hierarchy

animals

vertebrateinvertebrate

fish amphibian mammal reptile

horse dog cat rabbit

Missouri
cottontail

Classification scheme with:
Superclasses, subclasses,
inheritance

“Fluffy”My pet rabbit

Membership Relationships Between
Classes and Objects

class

object

Is a
member

of

1

N

Toyota

My_Toyota Object is a member
or instance of a class

Class is a template
or Blueprint for
creating

objects

class

object

Is a
member

of

1

N

Mo. Cottontail
rabbit

my_pet_rabbit

Name: FluffyVIN # Fall 2004 322C – Lecture 3 12

UML Model Example

Customer Bank Account

•ID#
•Owner
•balance

•Put $ in
•Take $ out
•Check balance

SSN:
Address:

1 N

has

•Open accts
•Get loans

3

Purposes of C++ Classes
Classes serve the following purposes:
1. Creates a new programmer defined data type
2. A class is like a factory used to create (or construct)

objects of that data type.
3. Specifies the functions (methods) you can use for

objects that belong to that class.
4. Defines the common attributes of all objects in the

class
5. A class defines (and encapsulates) the implementation

details. E.g. data fields and code for methods
6. There are public parts and private parts

Fall 2004 322C – Lecture 3 14

Class as Generator of Objects

class
Used as a
pattern to
create an object

A new
object

Assembly line

Fall 2004 322C – Lecture 3 15

Example Class Definition
class Bank_account // this is a class definition,

NOT an object!!
{// function (operations) definitions

public: // means theses are known everywhere
void deposit(double amount)
{// body left out for now
}
void withdraw(double amount)
{// body left out for now
}
double get_balance()
{// body left out for now
}

// member attributes (state) variables definition
private: // means it is known inside the class only

int account_number;
string owners_name;
double balance;

}
Fall 2004 322C – Lecture 3 16

OO Style Program

Data type classClient Program

Models all objects of
a class. It defines the
instance variables,
and methods to be
used on all objects
created from this
class (a template)

Uses the data type
classes to create and
then manipulate
actual objects. The
main function is in
here.

Fall 2004 322C – Lecture 3 17

C++ Starter Stuff

Fall 2004 322C – Lecture 3 18

Getting Started With C++
/* a program that does nothing

and just returns a zero */
int main()
{
// body of the program here
return 0; //return an integer value of zero

}

• A main is required for all C++ programs
• Unlike C,it must have a return type of int, and should return a zero to

indicate normal execution
• The body of main and all other functions should be enclosed within

{ }.
• The statements in the body can (but should not) be written in a free-form where

each statement is terminated by a ‘;’ (semicolon).
• The main can have parameters to allow access to command line arguments (more

later)
• The source code files can have various prefixes, e.g..cpp to indicate a C++ source

program to the compiler
• Multi-line comments use ‘/*’ and ‘*/’ and single line comments use ‘//’

4

Fall 2004 322C – Lecture 3 19

Header Files
#include <iostream>
#include “myincludes.h”

• Prototypes and declarations are kept in header files
• #include pre-processor directive inserts the file contents. No

semicolon is needed.
• Header files of standard system and library functions are enclosed

within “< >” and the compiler looks for those in the predefined paths.
• Header files within double quotes are searched for relative to the

current directory or the user directory defined in the IDE
• The system header files do not have the suffix to allow different

compilers to have their own suffix types. In C, the suffix was
required.

Fall 2004 322C – Lecture 3 20

Namespaces
• Namespaces allow the same names to be reused under a different

qualifying namespace contexts
• All of the standard C++ libraries are wrapped inside of the std

namespace, which has to be explicitly declared, e.g.
#include <iostream>
using namespace std;

Otherwise each use of a library function would need to have the
namespace prefix. For example:

cout << “hello world\n”;
would have to be written as:

std::cout << “hello world\n”;
The names from the namespace are visible only within the scope of
the using directive (file, function, etc.)
Names can be used selectively from a namespace

using namespace std::cout;
You can define your own namespaces in C++

Fall 2004 322C – Lecture 3 21

Hello World
#include <iostream>
using namespace std;
int main ()
{

cout << “Hello World” << endl;
// or cout << “Hello World\n”;
return 0;

}

• cout or “console output” stream is used to output from a C++ program.
cin is the “console input” stream.

• endl writes a newline (‘\n’) and flushes the output buffer. ends only
flushes the buffer. Explicit flush can be done by cout.flush();

• Any number of << operators can be used in one statement
• Some common functions are: fill(char), precision(int),

width(int)
• Dot operator is used for calling a member function

Fall 2004 322C – Lecture 3 22

Stream I/O Manipulators
Look at http://www.cppreference.com - under C++ I/O for the
basics and differences

• Some common stream manipulators are: dec, endl, ends
(output a null), flush, hex, oct,
resetflags(long), setfill(char),
setiosflags(long), setprecision(int), setw(int),
ws

• Other “state” modifiers or flags for cout (and other streams,
fstream, etc) that can be used with cout.setf(ios::flags)
skipws, left, right, internal(padding for sign),
dec, oct, hex, showbase, showpoint (trailing
zeros), uppercase, showpos (show sign),
scientific, unitbuf (flush after each op), stdio
(flush after each char), fixed (dddd.dd)

• The effect of manipulators/state modifier flags remain
effective until they are reset

Fall 2004 322C – Lecture 3 23

Variables
#include <iostream>
using namespace std;
int main ()
{ cout << “Enter a number” << endl;

{ int number=0;
cin >> number;
cout <<“you entered ” << number << endl;

}
// cout << “number entered = ” << number<<endl;
// will fail on compile since it’s out of scope
return 0;

}

• Variables can be defined anywhere and are valid within
the scope of the block in which they are defined

• They should be defined right before their first use,
but within the scope of all their uses

Fall 2004 322C – Lecture 3 24

Built-in Data Types and Operators
• A new data type bool is introduced that has two values, true and

false, which are set to 1 and 0, respectively.
• E.g. bool married = true;

• All the usual C data types such as float, double, int, char,
void, etc as well as specifiers such as short, long,
unsigned and signed.

• All the usual mathematical, logical, bitwise, sizeof, casting, etc.
operators are supported. The logical operators produce bool
values.

• Explicit casting syntax is introduced in C++ in addition to using C
style cast operation and implicit conversions.

static_cast<type>(var) //regular cast for type conversion
const_cast<type>(var) //const/volatile to non const and

//non-volatile pointers
reinterpret_cast //for complete disregard of a type
dynamic_cast //for objects

5

Fall 2004 322C – Lecture 3 25

Quick Review of strings

• What are strings? Two answers:
– C style string is an array of chars terminated

by the NULL char
– C++ style string is a composite object from

the new data type named string (a class
definition); which also contains some useful
operations that can be performed on strings

• C++ strings are better than C style strings
• Use the C++ standard library string

– #include <string>

Fall 2004 322C – Lecture 3 26

About strings
• An object is composed of values, and has associated

methods that can operate on it (more later)
• A string literal is 0 or more characters enclosed in double

quotes.
"" is the empty or null string.

• For example "Spanish Inquisition"
– The quotes are not a part of the string, they delineate

the string.
– If the string is output the double quotes do not appear
– cout << "Spanish Inquisition";
– Spanish Inquisition shows up on the computer screen

• String variables are declared and may be initialized, such
as:

string name = “Ned Logan”;

Fall 2004 322C – Lecture 3 27

How characters are stored in strings

• Each character(char) in a string is in a sequential
position.

• Each position has a number starting with position 0

N e d L o g a n

0 1 2 3 4 5 6 7 8Position #

string
contents

•The number above each character specifies its position
number (sometimes called its index number) in the
sequence

Fall 2004 322C – Lecture 3 28

What do we do with strings?
• Input and output them
• Make a bigger string out of little ones
• Break big strings into smaller ones
• Do comparisons (like in chars)
• Extremely useful in any application that

manipulates text (e.g. translators, word
processors, language puzzles, etc.)

• Useful methods for manipulating strings can
be found at http://www.cppreference.com -
under C++ strings

Fall 2004 322C – Lecture 3 29

Concatenation
• The plus operator, +, has a special meaning for string objects
• + is used to concatenate two or more strings

– Means append together, end-to-end, to form a new string, e.g.
string age = “9”;
string s = “He is ” + age + “ years old”;
cout << s; // He is 9 years old

• Concatenation can also be used with strings and other data types. -
automatic conversion to string is done

int age = 9;
string s = “He is ” + age + “ years old”;
cout << s; // He is 9 years old

Fall 2004 322C – Lecture 3 30

Other Simple Examples
• Input/output of strings

#include <string>
. . .

cout << “please enter your name: ”;
string s;
cin >> s; // needed storage is then allocated
cout << “Hello ” << s + “!” << endl;

. . .

Simple manipulations
string str1 = “test”; // initializes str1
string str2; // null string
str2 = “ing”; // allocates storage for “ing”;
str1 = str1+str2; // concats the two strings as “testing”

// frees previous storage for str1
// and reallocates for concat string

cout << str1[3]; // fourth character of string ‘t’
str1=str1.substr(0,4);//str1=“test” from str1=“testing”
if (str1 < s) then i++;

6

Fall 2004 322C – Lecture 3 31

String functions you should know

Given the declarations:
• string str, string1, search_string;

• int index, start_index, number_of_chars;
Here are examples of the most commonly used functions:
• str.length ()
• getline (cin, string1)
• str.find (search_string, start_index)
• str.substr (start_index, number_of_chars)
• str.insert (index, string1)

• str.erase (index, number_of_chars)

1

Fall 2004 322C – Lecture 4 1

EE 322C
Data Structures

Lecture 4

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 4 2

Fall 2004 322C – Lecture 4 3

Lecture 4 Announcements

• Homework Assignment on Web
– Details on submission etc

• Coding standards available on web
• Topics of the day

– More on C to C++ basics
– Building your own data types
– Booleans
– Functions (time permitting)

Fall 2004 322C – Lecture 4 4

What’s Wrong with C ?

• It’s a middle level language
• Its not strongly typed
• Its not machine independent
• It has little run time error checking
• It allows bit twiddling - OK for systems programming
• Not block structured, but function based
• Its not OO – no mechanisms for abstract data types (ATDs)
• It places few restrictions on programmers
• Good for embedded systems and system aps
• It has no graphical programming capability
• Lots of other little nits that are annoying

Fall 2004 322C – Lecture 4 5

C/C++ Language Basics
• History, background, context, general programming concepts, program

structure
• Expressions - basic data types, vars, operators, cont, expression

evaluation rules
• Statements - selection, iteration, case, blocks, jumps
• Arrays - 1D, 2D, 3D?
• Pointers - vars, operators, with arrays, indirection, dynamic allocation

of memory
• Functions - definition, calling, scope, args, parameters, return,

prototypes, recursion?, std fcn library, overloading?
• Structs, unions, enums
• Console I/O - C style, C++ style
• File I/O - ?
• Preprocessor commands - #include

Fall 2004 322C – Lecture 4 6

Keywords in C++ (63 vs 32)
asm
auto
bool
break
case
catch
char
class
const
const_cast
continue
default
delete
do
double
dynamic_cast

else
enum
explicit
export
extern
false
float
for
friend
goto
if
inline
int
long
mutable
namespace

new
operator
private
protected
public
register
reinterpret_cast
return
short
size
sizeof
static
static_cast
struct
switch
template

this
throw
true
try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar_t
while

2

Fall 2004 322C – Lecture 4 7

The Order of A C++ Program
#include statements
Base-class declarations
Derived-class declarations
Non-class function prototypes
Global variables declarations
int main ()
{ // the body of your main program
}
Non-class function definitions

• In most projects the class declarations will be in
the standard class library or will be put into a
header file and included with your program

Fall 2004 322C – Lecture 4 8

The block structure of a C++ Program

main

Class-2

sub0()

. . .

program

Other functions

sub1()

Std fcn library

Fall 2004 322C – Lecture 4 9

The block structure of a C++ Program

main

Class-2

sub0()

. . .

program

Other functions A function
CALLS
another
function by
its name() to
do some task

sub3 ()

sub1 ()

A function
either
returns a
value
through its
name or
returns no
value (void)

sqrt ()

Std fcn libary

Fall 2004 322C – Lecture 4 10

The block structure of a C++ Program

main

Class-2

sub0()

. . .

program

Other functions
A function
CALLS
another
function by
its name()
to do some
task

sub3 ()

sub1 ()

A function
either
returns a
value
through its
name or
returns no
value (void)

sqrt ()

Std fcn libary

Fall 2004 322C – Lecture 4 11

Calling a Function

• str.translate (“Hello Class”);

Function name -
A function is called
or invoked by using
its correct name. A
function is like a
preexisting small
program found in your
code file or the
C++ libraries.

Argument(s) are
values that are sent
to the called function

In this case the
function translate
requires a string
parameter (e.g.
“Hello, Herb”) as the
value to be operated
on

Qualifiers of
the function
call. In this case
str is the name
of a string
variable

What function? Where? How?

Teaser - Is this a true function or a procedure being called ?

Fall 2004 322C – Lecture 4 12

Function Prototypes
•All functions must be declared (signatures only) before using. This
allows for compatibility and type checking during compilation. E.g.

•int foo1(void);
•double foo2 (int, int, bool);

• void is optional in C++ if a function takes no parameters.
• Every function must have a prototype with the parameter list.
However, only parameter types need to be declared (names are
optional).

• In C++, the functions must return a value as declared.
• All default parameters must appear to the right.

•int foo4(int i=0, char); // wrong -- int i=0 should be on the right side of char
• an example

void square_it (double); // the prototype
int main ()
{ int x = 10;

square_it (x); // what’s the problem?
return 0;

}

3

Fall 2004 322C – Lecture 4 13

Build Your Own Data Types
The below are built on top of the C++ built-in data types:
int, float, double, char, void, array, pointer

–struct - aggregate variables under one name
–bit-field - struct with bit level access
–union - two or more types for same memory
–enum - list of int constants
–typedef - alias for another type

Add in two new built-in data types: bool, wchar_t
The following are advanced capabilities for creating new
data types

–class - encapsulates code and data as a logical abstraction

–template - used to create generic classes and functions

Fall 2004 322C – Lecture 4 14

The boolean Data Type
•A boolean variable is used to hold truth values: either
true or false (which are reserved words that stand for
boolean literal values).
•Boolean variables are declared and then used as logic
flags, switches, etc..

For example:
boolean lights_on = true;

// Later in the program
lights_on = false;

boolean married = true;
If (married) cout << “hitched”;

Fall 2004 322C – Lecture 4 15

Boolean Expressions
• Boolean expressions are used in conditional

statement clauses (if, while, for, do), OR on the
right hand side of an assignment to a boolean
variable.

• A Boolean Expression is a formula that evaluates to
either true or false, e.g.

int A,B,C;
// assume that A,B, and C get values from input
boolean flag = A < = B + C;
// what’s the value of flag?

• Boolean expressions can get complex, just like any
formula

Relational Operators

Symbol Name Symbols C++ Example
= equal = = balance = = 0
≠ not equal != answer != 332
> greater than > expenses > income
≥ greater than or equal >= points >= 60
< less than < pressure < max
≤ less than or equal <= expenses <= income

Mathematics C++ Language

Conditions are often mathematical comparisons using these

Fall 2004 322C – Lecture 4 17

Logical Operators

• There are three boolean logical operators
that allow us to create more complex
boolean expressions that contain many sub-
conditions connected by these

• && Logical AND, all conditions must be
true for the whole boolean expression to be
true
– if(status == SINGLE && income < 21450)

Fall 2004 322C – Lecture 4 18

Logical Operators
There are three boolean logical operators that allow

us to create more complex boolean expressions
that contain many sub-conditions connected by
these

• && Logical AND, all conditions must be true for
the whole boolean expression to be true
– if(status == SINGLE && income < 21450)

• || Logical OR, if one of the conditions is true the
whole boolean expression is true
– if(month == APRIL || month == JUNE ||

month == SEPTEMBER || month == NOVEMBER)
daysInMonth = 30;

4

Fall 2004 322C – Lecture 4 19

Logical Operators
• There are three boolean logical operators that allow us to

create more complex boolean expressions that contain
many sub-conditions connected by these

• && Logical AND, all conditions must be true for the
whole boolean expression to be true
• if(status == SINGLE && income < 21450)

• || Logical OR, if one of the conditions is true the whole
boolean expression is true
• if(month == APRIL || month == JUNE ||

month == SEPTEMBER || month == NOVEMBER)
• daysInMonth = 30;

• ! Logical NOT, gives the opposite of the condition

Boolean Logic
• If A and B are conditions that are each either

true or false (e.g. A is x <= 10, B is y > 5) then
the following are the truth tables for our three
boolean logical operators:

A B A| | B A && B
true true true true
true false true false
false true true false
false false false false

A ! A
true false
false true

Fall 2004 322C – Lecture 4 21

Boolean data types (more)
• boolean variables may be used wherever a boolean

expression may be used.
• boolean variables may be assigned the value of a boolean

expression, e.g.
int hours, year; //assume these have values
const int SENIOR = 4; //declaring a constant
boolean happy = false;
happy = (hours <= 12) && (year != SENIOR);
if (happy)
{ // what does such a person do?
}

• Boolean variables can be used to simplify the conditional
logic in your program

Fall 2004 322C – Lecture 4 22

Loops — two basic patterns
Count-controlled loop:
• Number of iterations is determined before the loop starts.
• Counts each iteration using a counter variable.
• Stops when the desired number of iterations has been performed.
Event-controlled loop:
• Before each iteration, checks to see whether some event has occurred.
• Continues until that event occurs.
• Number of iterations not known beforehand.
• The event signal is in the condition to be tested; and may change

during an iteration. A boolean variable is often used to flag the signal,
e.g.
while(notSatisfied) //a boolean variable
{

// do other stuff
}

Fall 2004 322C – Lecture 4 23

A Function as a Module

in Subprocess/
subprogram

out

Defining and using functions are a primary
way of modularizing the procedural aspects
of your programs in C++ (or any language)

Fall 2004 322C – Lecture 4 24

A Function as a Module

Values sent in
from function
calling
statement
via arguments
(optional)

Resultant
values
returned, or
function
actions have
some other
effect

function

in Subprocess/
subprogram

out

5

Fall 2004 322C – Lecture 4 25

A Function as a Module

Values sent in
from function
calling statement
via arguments
(optional)

Resultant
values
returned, or
function
actions have
some other
effect

function

As in, for example:
double y = sqrt (x);
getline (cin, string1);
string2 = str.substr (startIndex, endSpot)

in Subprocess/
subprogram

out

Fall 2004 322C – Lecture 4 26

String Reverser example
int i =0;

char ch;
string phrase, reversed;
getline (cin, phrase);
reversed = “”;
while (i < phrase.length())

{ ch = phrase[i];
reversed = ch + reversed;
i = i + 1;

}
cout << reversed;

Fall 2004 322C – Lecture 4 27

String Reverser Example
int i =0;

char ch;
string phrase, reversed;
getline (cin, phrase);
reversed = “”;
while (i < phrase.length())

{ ch = phrase[i];
reversed = ch + reversed;
i = i + 1;

}
cout << reversed;

• Now suppose that we need to reverse many different strings in several places
in our main function - do we really want to cut and paste this code into many
places or should we turn this code into a “module” (function) that can be called
from many places as we have already done with the library functions that we
use?

Fall 2004 322C – Lecture 4 28

The String Reverser Function
string reverseFunction (string phrase)

// function signature/ header
{ int i =0; char ch;

string reversed;
reversed = “”;
while (i < phrase.length())
{ ch = phrase[i];

// concatenate ch onto the front-end of reversed
reversed = ch + reversed;
i = i + 1;

}
return reversed;

// means send back the answer to the call
}
This function can be called from within your main(or other) function in

the following way:
string result = reverseFunction (“actual text”);

Fall 2004 322C – Lecture 4 29

Call by Value or Reference
void foo1(int)
void foo2(int*)
int main()
{ int value=1;

foo1(value);
cout << value <<endl; //outputs 1;
foo2(value);
cout << value <<endl; //outputs 2;
return 0;

}
void foo1(int a)
{ a++;} //e.g. call by value
void foo2(int &a)
{ a++;} // e.g. call by reference

Fall 2004 322C – Lecture 4 30

Structures 101
• Aggregation of variables (elements) under one name
• Declaration forms a template that can be used to

create structure objects
struct address
{ string house_number;

string street_name;
string city;
string state;
int zip_code;

};

• Use the structure definition to create variables and
objects, e.g.
address my_address;
my_address.city = “Austin”;
address your_address = my_address;

• We can create arrays of structs too

1

Fall 2004 322C – Lecture 5 1

EE 322C
Data Structures

Lecture 5

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 5 2

Rerun Last Part of Lecture 4

Fall 2004 322C – Lecture 5 3

String Reverser Example

int i =0;
char ch;
string phrase, reversed;
getline (cin, phrase);

reversed = “”;
while (i < phrase.length())
{

ch = phrase[i];
reversed = ch + reversed; // ch[n] … ch[1]+ ch[0]
i = i + 1;

}
cout << reversed;

• Now suppose that we need to reverse many different strings in several
places in our main function - do we really want to cut and paste this code
into many places or should we turn this code into a “module” (function) that
can be called from many places as we have already done with the library
functions that we use?

Fall 2004 322C – Lecture 5 4

The String Reverser Function
String reverseFunction(string phrase)//function signature
{

int i =0; char ch;
string reversed;
reversed = “”;
while (i < phrase.length())
{

ch = phrase[i];
reversed = ch + reversed;
i = i + 1;

}
return reversed; // send back the answer to the call

}

This function can be called from within your main(or other) function in
the following way:
string result = reverseFunction (“actual text”);

Fall 2004 322C – Lecture 5 5

Call by Value or Reference
void foo1(int)
void foo2(int*)
int main()
{

int value=1;
foo1(value);
cout << value <<endl; //outputs 1;
foo2(value);
cout << value <<endl; //outputs 2;
return 0;

}
void foo1(int a)
{ a++; } //e.g. call by value
void foo2(int &a)
{ a++; } // e.g. call by reference

Fall 2004 322C – Lecture 5 6

Lecture 5 Announcements
• Change: Assignment 1 due next Monday
• Topics of the day

– Overloaded functions
– structs
– Bit fields
– Unions
– Enumerations
– Typedef
– Classes and objects

2

Fall 2004 322C – Lecture 5 7

Overloaded Function Names
#include <iostream>
using namespace std;
// abs is overloaded three ways
int abs(int i);
double abs(double d);
long abs(long l);
int main()
{ cout << abs(-10) << endl;
cout << abs(-11.0) << endl;
cout << abs(-9L) << endl;
return 0;

}
int abs(int i)
{ cout << "Using integer abs()\n";
if (i<0) return -i; else return i;

}
double abs(double d)
{ cout << "Using double abs()\n";

if (d<0) return -d; else return d;
}
long abs(long l)
{ cout << "Using long abs()\n";
if (l<0) return -l; else return l;
}

•Two or more functions
can share the same name
as long as their
parameters are different
•This makes the function
call context sensitive

Fall 2004 322C – Lecture 5 8

Build Your Own Data Types
The below are built on top of the C++ builtin data
types: int, float, double, char, void, array, pointer

–struct - aggregate variables under one name
–bit-field - struct with bit level access
–union - two or more types for same memory
–enum - list of int constants
–typedef - alias for another type

Add in two new builtin data types: bool, wchar_t
The following are advanced capabilities for
creating new data types

–class - encapsulates code and data as a logical abstraction
–template - used to create generic classes and functions

Fall 2004 322C – Lecture 5 9

Structures
• Aggregation of variables (elements) under one name
• Declaration forms a template that can be used to create

structure objects
struct address
{
string house_number;
string street_name;
string city;
string state;
int zip_code;

};
• Use the structure definition to create variables and objects, e.g.

address my_address;
my_address.city = “Austin”;
address your_address = my_address;

• We can create arrays of structs too
address my_neighborhood [100];
my_neighborhood [3].state = “TX”;

Fall 2004 322C – Lecture 5 10

typedef

• Provide an alias for a data type
• Used to make code easier to read or easier to port

or create a more familiar language (as in my
thinking in Java) e.g.

• typedef bool boolean;
// I can now use the word boolean as well as
// bool when I declare a boolean variable

boolean married = true; // or

bool married = true;

Fall 2004 322C – Lecture 5 11

Bit Fields
• A special type of struct
• Allows access to single bits in memory

– E.g. for device drivers and encryption methods
• Beware of machine dependencies and restrictions

struct device_status_byte
// definition of a status byte from a comm.port
{

unsigned delta_cts: 1;
unsigned delta_dsr: 1;
unsigned tr_edge: 1;
unsigned delta_rec: 1;
unsigned cts: 1;
unsigned dsr: 1;
unsigned ring: 1;
unsigned rec_line: 1;

}

Fall 2004 322C – Lecture 5 12

Bit Fields
• Example

// example usage
device_status_byte status;
status = get_port_status();
if(status.cts) cout << "clear
to send";
if(status.dsr) cout << "data
ready";
status.ring = 0;
. . .

3

Fall 2004 322C – Lecture 5 13

Unions
• Logical: defines variant interpretation of data
• Physical: memory locations shared by different variables,

usually of different types, at different times, e.g.

union pw
{

short int i;
char ch[2];

};
. . .
union pw word; // create a pw object
const int MAGIC_NUMBER = 19813; // its “Me”
word.i = MAGIC_NUMBER ; // set it as an integer
cout << word.ch[0]; // write first char
cout << word.ch[1]; // write second char
cout << sizeof (word); // sizeof returns the # bytes of any

// variable

Fall 2004 322C – Lecture 5 14

Enumerations

• An enumeration type lists a named set of values
• You may also specify the integer values that represent the legal values

for the named values (or use the compiler assigned defaults)
enum US_coin_value
{ PENNY=1, NICKEL=5, DIME=10, QUARTER=25, HALF_DOLLAR=50, DOLLAR=100};
US_coin_value money; // declare a variable of that type
money = dime;
if(money == quarter) cout << "Money is a quarter.\n";
switch(money)
{

case PENNY: cout << "penny"; break;
case NICKEL: cout << "nickel"; break;
case DIME: cout << "dime"; break;
case QUARTER: cout << "quarter"; break;
case HALF_DOLLAR: cout << "half_dollar"; break;
case DOLLAR: cout << "dollar"; break;
default: cout << ”Money is not a legitimate coin value";

}

Fall 2004 322C – Lecture 5 15

Purposes of C++ Classes

Classes serve the following purposes:
1. Creates a new programmer defined data type
2. A class is like a factory used to create (or construct)

objects of that data type.
3. Specifies the functions you can use for objects that

belong to that class.
4. Defines the common attributes of all objects in the

class
5. A class defines (and sometimes hides the)

implementation details. E.g. data fields and code for
functions

Fall 2004 322C – Lecture 5 16

Modeling Bank Accounts (OO)

Bank Account Class represents
all bank accounts

Fall 2004 322C – Lecture 5 17

Modeling Bank Accounts (OO)

Is a
member

of

1

many

Bank Account

An object is a specific
member of the class

Class represents
all bank accounts

My checking
account

Fall 2004 322C – Lecture 5 18

Modeling Bank Accounts (OO)

Is a
member

of

1

many

Bank Account

An object is a specific
member of the class

Class represents
all bank accounts

My checking
account

Moms savings
account

Harrys checking
account

4

Fall 2004 322C – Lecture 5 19

Modeling Bank Accounts (OO)

Is a
member

of

1

many

Bank Account

An object is a specific
member of the class

Class represents
all bank accounts

My checking
account

Moms savings
account

Harrys checking
account

What are the
common
attributes of and
behaviors
associated with all
bank accounts?

Fall 2004 322C – Lecture 5 20

Modeling Bank Accounts (OO)

Is a
member

of

1

many

Bank Account

An object is a specific
member of the class

Class represents
all bank accounts

My checking
account

Moms savings
account

Harrys checking
account

What are the
common
attributes of and
behaviors
associated with all
bank accounts?

Attributes:
•Account #
•Owners name
•Balance
Behaviors
•Deposit $
•Withdraw $
•Check current balance

Fall 2004 322C – Lecture 5 21

Object State

• Bank account attributes
– Account number
– Account owner’s name
– Current balance

• Instance/member Variables
– accountNumber
– ownersName
– balance

Fall 2004 322C – Lecture 5 22

Object Behaviour

• Bank account operations
– deposit money
– withdraw money
– get the current balance

• Functions (non static)
– deposit
– withdraw
– getBalance

Fall 2004 322C – Lecture 5 23

Abstract Data Type

An abstract data type (ADT) is a high level description
of a new data type to be implemented.

The kind of objects and their common attributes and
operations are described, in general.

E.g. This is a definition of an abstract class of related
bank account objects.

Fall 2004 322C – Lecture 5 24

Abstract Data Type
Bank Account: a bank account is …
Common Attributes:

balance - the current value in $$ in this account
owner - the name of the person that this account belongs to
account_ID - a unique number assigned by the bank that identifies this

account
Common Operations:

deposit - updates the current balance by adding in a given amount
post condition: the new balance is increased by the amount of $$

withdraw - updates the current balance by subtracting the given amount
post condition: the new balance is decreased by the given amount of $$
pre condition: the current balance must have at least the given amount in it

get_balance - returns the value of the current balance of the account

5

Fall 2004 322C – Lecture 5 25

C++ Class Definition Example
class BankAccount // this is a class, NOT an object!!
{

// attributes – instance (state) variables definition
private:

int account_number;
string owners_name;
double balance;

public:
// function protoype definitions
void deposit(double amount);
void withdraw(double amount);
double get_balance();

Fall 2004 322C – Lecture 5 26

Creating a new Object of a Class
• To declare an object variable of that type we say:

BankAccount myAccount;
• To dynamically allocate space for a new object of

that class we say:
new BankAccount()

• To save an object reference in an object variable
myaccount = new BankAccount();

• To apply a function to an object of that class
myAccount.deposit (1000);

• To reference an object’s data items we say:
myAccount.ownersName // oops

Fall 2004 322C – Lecture 5 27

In C++’s Object Memory Bank

accountNumber
ownersName
balance

myAccount

1000

Fall 2004 322C – Lecture 5 28

Constructing Several Objects
of the Same Class

// e.g. in the main function

. . .

BankAccount myAccount = new BankAccount();

BankAccount momsSavings = new BankAccount();

BankAccount harrysChecking = new BankAccount();

Fall 2004 322C – Lecture 5 29

Bank Account Objects

accountNumber
ownersName
balance

myAccount momsSavings harrysChecking

In C++’s Object Memory Bank

accountNumber
ownersName
balance

accountNumber
ownersName
balance

Fall 2004 322C – Lecture 5 30

The Whole Class Definition
class BankAccount
{ // as before . . . plus constructor in public area

BankAccount :: BankAccount (int, string, double);
}
// function bodies are defined here
void BankAccount :: deposit(double amount)

{ balance = balance + amount; }
void BankAccount :: withdraw(double amount)

{ balance = balance - amount; }
double BankAccount :: getBalance()

{ return balance; }
BankAccount :: BankAccount

(int account, string name, double initialBalance)
{

accountNumber = account;
ownerName = name;
balance = initialBalance;

}

Explicit
Constructor
function

6

Fall 2004 322C – Lecture 5 31

Driver Program

BankAccount classDriver (client) Program
Models bank accounts.
It
defines the instance
variables, and
functions to be
used on all objects
created from this
class (a template)

Uses the
BankAccount
class to create and
then manipulate
bank account
objects.
The main function is
in here.

Fall 2004 322C – Lecture 5 32

#include (BankAccount.h)
int main ()
{

BankAccount myAccount = new BankAccount(1, “me”,10000);
const double INTEREST_RATE = 5;
int years = 10;
double interest;

// compute and add in interest for 10 years
for (int i =1; i <= years; i++)
{
interest = myAccount.getBalance() * INTEREST_RATE/100;
myAccount.deposit(interest);
cout << “Balance after year ” + i + “ is $”

+ myAccount.getBalance() << endl;
}

return 0;
}

BankAccount Driver Program

Fall 2004 322C – Lecture 5 33

• Make data private
• Make functions public
• Separate the definition of a class from the use

of that class
• This defines an API
• Static variables and functions that operate on

the class as a whole can also be defined

ADT/OO Tips

1

Fall 2004 322C – Lecture 6 1

EE 322C
Data Structures

Lecture 6

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 6 2

Announcements
• Assignment 1 due next Monday. Use the

drop box on the black board for our
class

• REMEMBER: Exam 1 date – Sep 27
• Topics of the day

– More on Classes and objects
• Contruction/destruction

– Inheritance

Fall 2004 322C – Lecture 6 3

Classes and Objects

• A Class is a programmer defined type that
provides modularization, encapsulation and
abstraction. This allows data and its operations
to be accessed only through the defined
interface.

• A Class
• Is a modularization structure
• Localizes related data and its operations together
• Provides an abstract interface

• Separates the interface and implementation
• Logically hides the implementation details from the user –

ie, provides a black box

Fall 2004 322C – Lecture 6 4

Classes and Objects

• An instance of a class is called an object. Objects are
instantiated by declaring a variable of a given class

• Each object is independent of other objects even though
they are instantiated from the same class (just as for built
in data types)

• Member functions are called by using
• the dot operator with the object name
• or in case of an object pointer, the “->” is used.

Fall 2004 322C – Lecture 6 5

Modeling Bank Accounts (OO)

Is an
instance

of

1

many

Bank Account

An object is a specific
member of the class

Class represents
all bank accounts

My checking
account

What are the common
attributes of and behaviors
associated with all bank accounts?

Attributes:
•Account #
•Owners name
•Balance
Behaviors
•Deposit $
•Withdraw $
•Check current balance

Moms savings
account

Harrys checking
account

Fall 2004 322C – Lecture 6 6

Abstract Data Type
An abstract data type (ADT) is a high level description of a new data type to be
implemented. The kind of objects and their common attributes and operations
are described, in general. E.g. This is a definition of an abstract class of
related bank account objects.
Bank Account: a bank account is a place where someone keeps their money
Common Attributes:

balance - the current value in $$ in this account
owner - the name of the person that this account belongs to
account_ID - a unique number assigned by the bank that identifies this

account
Common Operations:

deposit - updates the current balance by adding in a given amount
post condition: the new balance is increased by the amount of $$

withdraw - updates the current balance by subtracting the given amount
post condition: the new balance is decreased by the given amount of $$
pre condition: the current balance must have at least the given amount

get_balance - returns the value of the current balance of the account

2

Fall 2004 322C – Lecture 6 7

Class Definition - version 1
class BankAccount // the template for bank account objects
{
private: // here are the instance variables

int accountNumber;
string ownersName;
double balance;

public:
// all the member functions are defined here
BankAccount(int account, string name,double initialBalance)

{
accountNumber = account;
ownerName = name;
balance = initialBalance;

}
~BankAccount () { } // do nothing destructor
void BankAccount:: deposit(double amount)

{ balance = balance + amount; }
void BankAccount:: withdraw(double amount)

{ balance = balance - amount; }
double BankAccount:: getBalance() { return balance; }

}

// can also declare global object variables here - e.g. ob1,ob2;

Fall 2004 322C – Lecture 6 8

Class Definition - version 2
class BankAccount // the template for bank account objects
{
private: // or protected if we want them inherited later

int accountNumber;
string ownersName;
double balance;

public: // just the function prototypes here
BankAccount(int, string ,double);
~BankAccount();
void deposit(double);
void withdraw(double);
double getBalance();

}
// all the member functions are fully defined here
BankAccount :: BankAccount(int account, string name, double initialBalance)

{ accountNumber = account;
ownerName = name;
balance = initialBalance;

}
BankAccount ::~BankAccount () { } // do nothing destructor
void BankAccount:: deposit(double amount)

{ balance = balance + amount; }
void BankAccount:: withdraw(double amount)

{ balance = balance - amount; }
double BankAccount:: getBalance() { return balance; }

Fall 2004 322C – Lecture 6 9

Creating and Accessing Objects
• To declare a variable and instantiate an object of that type

we say:
BankAccount my_account; // or
BankAccount my_account(10); // or
BankAccount my_account(1, “me”, 0); // or
BankAccount* my_accountptr = new BankAccount; // or
BankAccount* my_accountptr = & BankAccount;

• To apply a member function to an object of that class we
say:
my_account.deposit (1000); // or
my_account.withdraw (100); // or
double current = my_account.getBalence (); // or
my_accountptr->getBalence ();

To assign one object to another we say, e.g. :
BankAccount your_account = my_account;

Fall 2004 322C – Lecture 6 10

Access Specifiers
Member data and functions of a class are divided into
access control categories:

private (scope only within the class definition) - private
members are known only inside of objects of that class
public (scope within it’s object’s declaration scope), typically
in OOD the public parts provide a controlled interface to the
private parts
protected (similar to private, but access is also available to
derived classes and objects)
In addition friend is an access specifier that provides an
explicit access by a an external function (or class) to private
and protected members of the class in which it is declared to
be a friend.

Fall 2004 322C – Lecture 6 11

Access Specifiers

Purpose of access control is not for security, but just for
containment/isolation.
• Keep the client programmer’ s hands off those data and private

member functions that they are not supposed to touch
• Also to ease the life of the programmer because he/she doesn’ t

have to learn too many interfaces
• Allow the library designer to change the internal structure of a

class, without notifying client programmers - E.g., change a
variable name

Fall 2004 322C – Lecture 6 12

Private Data

• You can't directly access private data from
outside the class:
harrysChecking.balance = 1000;// ERROR, why?

• Must use the public interface for all access:
harrysChecking.deposit(1000);

harrysChecking.withdraw(1000);
harrysChecking.getBalance();

• Hiding implementation = abstraction
– Makes it easy to change implementation

3

Fall 2004 322C – Lecture 6 13

Scope of Variables
Scope - a definition of where a variable is accessible or

visible
Global variable - known everywhere
Local variable - The scope of a local variable starts from its

declaration statement and continues to the end of the
block that contains it. A local variable must be declared
before it can be used.

Instance variable - The scope of an instance variable
depends on its access scope specifier.

public - The variable is visible anywhere
private - The variable can be accessed only within the declaring (containing)
class and objects.
protected - the variable is private but can be accessed by any derived class and
objects

Fall 2004 322C – Lecture 6 14

Class Implementation Issues
• The interface is the set of member functions that

provides external access to the data members of the class
• Each instance of a class is independent of other instances.

However, there are ways to provide sharing. One simple
way is to define a data member as static. Variables
declared as static in a class are essentially class level
variables and have the same value across all objects from
that class. Functions can be static too.
The member functions can be defined
(implementation)either within the class declaration or
defined external to it. External implementation of the
member functions helps keep the interface (the
declaration) independent from the actual implementation,
but requires more housekeeping

Fall 2004 322C – Lecture 6 15

Class Implementation Issues

Generally, the class declaration is kept in a header file,
which is then included in any file that uses that class.
Keeping implementation separate avoids any unnecessary
recompilations when an implementation of a member
function is changed.
External definition of member functions must be provide
the scope resolution, class name followed by “::”
Classes can also be defined inside of or local to a function

Fall 2004 322C – Lecture 6 16

Constructors and Destructor
• Like other variable declarations with built-in types, objects can be

initialized at instantiation (creation) time. This is done by calling a
constructor function defined in the class.

– BankAccount my_account (1, “me”, 0);
• Every class has an implicit default constructor

– BankAccount ();
• Constructor functions can be overloaded and a particular constructor

can be invoked at object creation time based on the initialization
argument value(s) provided

• The Destructor is called when the object space is deallocated. In
addition, the delete function can be used for dynamic deallocation, e.g.

BankAccount::~BankAccount()
{ //no arguments and no overloading

delete [] a; // e.g. deletes the array a
}

• The constructors don’t have a return type and the destructor has no
arguments

Fall 2004 322C – Lecture 6 17

Passing and Returning Objects

• Call by value is used by default for passing
objects as arguments to a function - a copy
is made

• A function may return an object as its result
- a temporary object is used for the return
value

• You can pass a reference or a pointer to the
object if you want the changes (side-
effects) to be reflected after returning

Fall 2004 322C – Lecture 6 18

Inheritance
• Inheritance allows one object to acquire the

properties of another object (from its ancestor)
• Its purpose is to allow us to build classification

schemes,e.g.
– The term ISA means is a specific subtype of
– A red delicious apple isa apple isa fruit isa food

• Makes it possible for an object to be a specific
instance of a more general case

• A general class defines common traits, and a more
specific subclass only adds those things that are
unique to the subclass (or subtype)

• One of the three cornerstones of OOP

4

Fall 2004 322C – Lecture 6 19

Inheritance in C++

• C++ organizes classes into hierarchies.
– The classes defined by your program
– The classes in the various libraries too

• Classes inherit instance variables and functions from
classes above via the superclass/subclass relationship

• Classes can extend inherited characteristics by
– adding instance variables and functions and
– overriding inherited functions.

• Inheritance is an important mechanism for reusing code.
• Once a class has been defined it serves as a template for

creating objects (instances) of that class - one type of
which might be a subclass

Fall 2004 322C – Lecture 6 20

Inheritance Among Classes
Base class

Derived class

B

Is a
subtype

of

A

• A and B are classes that are
hiearchically related

• What does the class B inherit
from A?
• All the non-private functions

and variables
• Accessability properties

• class B can also define
additional functions and
variables, and can also
override the functions
inherited from A

ISA

Fall 2004 322C – Lecture 6 21

Inheritance Example

BankAccount
• Let’s suppose that we need to

create a special type of bank
account for our program - one
which allows interested to be
made on the outstanding
balance (in general, not all bank
accounts are interest bearing).

• Since we already have
BankAccount defined, let’s use
that to define a new subclass

Fall 2004 322C – Lecture 6 22

Inheritance Example
Base class

Derived class

InterestAcct

Is a
sub type

of

BankAccount

• Let’s suppose that we need to
create a special type of bank
account for our program - one
which allows interested to be
made on the outstanding
balance (in general, not all bank
accounts are interest bearing).

• Since we already have
BankAccount defined, let’s use
that to define a new subclass

ISA

Fall 2004 322C – Lecture 6 23

Inheritance Example
Base class

Derived class

InterestAcct

Is a
subtype

of

BankAccount

• What is inherited ?
All non private functions and
variables

• InterestAcct can also define
additional functions and variables

E.g. addInterest ()
• and can also override the functions

inherited
•A new version of withdraw ()

class InterestAcct: public BankAccount
{
// additional stuff defined in here

}

ISA

Fall 2004 322C – Lecture 6 24

Inheritance – Be Careful

BankAccount

InterestAcct

Reuse view of inheritance:
• Separate classes
• Reuses superclass
• Inherits from superclass
• Extends superclass

5

Fall 2004 322C – Lecture 6 25

Inheritance – What Really Happens

BankAccount

InterestAcct

Realistic view of inheritance:
• Sort of separate classes
• Incorporates superclass
• Inherits from superclass
• Extends superclass
• Has access to superclass

I
n
h
e
r
t

Inheritance is a two edged sword:
• A very useful mechanism
• But can break certain assumptions

• No effects on superclass
• Reuse for free without retesting

1

Fall 2004 322C – Lecture 7 1

EE 322C
Data Structures

Lecture 7

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 7 2

Announcements
• Exam 1 date – 27 September
• Topics of the day

– Stream I/O
– File I/O

Fall 2004 322C – Lecture 7 3

C++ Input/Output

Input
device

values Your program
running on the
computer

values
Output
device

Fall 2004 322C – Lecture 7 4

C++ Input/Output

Input
device

values Your program
running on the
computer

values
Output
device

We use the iostream classes for simplifying the process of inputting
and outputting values into/out of the program from/to the std
devices.This allows us to use the four predefined streams:

–cin - standard input stream - keyboard
–cout - standard output stream - screen
–cerr - standard error message output - screen
–clog - buffered version of cerr - screen

One of the iostream classes (ios) contains most of the features that
we need use

Fall 2004 322C – Lecture 7 5

Streams
• A stream (object) is an abstraction of the continuous one-way flow of

data between a program and an external device (e.g., keyboard or
screen) or secondary storage device (e.g. disk).

• The stream classes can be categorized into two types: byte streams
and character streams.

• They provide a buffered, continuous sequence of chars or bytes -
transferred one at a time

Prog ram
In memory

Ou tpu t Str ea m

Da ta on
the dev ice

Inpu t St ream

Fall 2004 322C – Lecture 7 6

I/O Operators, Functions and Flags
Operators
• >> - the extraction operator

– cin >> variable_name;
• << - the insertion operator

– cout << “hello, world” << ‘/n’;
Functions
• width(), precision(), fill()
• Many manipulator functions
Formatting flags (18 of them)
• Use setf() to set them
• Use unsetf() to clear them
== > See cppreference web page for more information

2

Fall 2004 322C – Lecture 7 7

Files
A file is —
1. A named collection of related data

stored on a secondary storage
device, such as disk, diskette,
tape, CD, etc.
• Permanent — data survives
indefinitely.

2. A software object to model the
transfer of data between the
secondary storage device and main
memory.

Files on here: e.g.
•tfgrading.cpp
•ass9data.txt
•myresume.doc
•mypgm.exe

Floppy disk

Fall 2004 322C – Lecture 7 8

Preparing to Use External Files
• Use fstream library of classes: it will link your files to a stream of

the appropriate type
– ifstream - for input
– ofstream - for output
– fstream - for both input/output

• For example:
– ifstream my_input_file;
– ofstream my_output_file;

• Now we need to open it and associate it with a real file name on the
device - use the open() function for that
– my_output_file.open (“actual file name”, ios::out);
– my_input_file.open (“actual file name”, ios::in);

• Shortcut form that declares and opens file is
– ifstream my_input_file (“actual file name”);

• We have to close the file when done processing it
– my_input_file.close ();

Fall 2004 322C – Lecture 7 9

// Purpose: copy one file to another, a line at a time

#include <string>

#include <iostream>

#include <fstream> // includes the file I/O library

using namespace std;

int main()

{ ifstream infile ("Scopy.txt"); // Open for reading

ofstream outfile ("Scopy2.txt");

// Open for writing string s;

while(fstream::getline(infile, s))

// Discards newline char

outfile << s << "\n"; // ... must add it back

return 0;

} // all files get closed at the end of program

Reading and Writing Files - Example 1

Fall 2004 322C – Lecture 7 10

What if the file can’t be opened?

if (! infile) // false if not open
{

cerr << “open failed” << endl;
// etc.

}
// or
if (! infile.is_open ()) // true if open
{

cerr << “not open” << endl;
// etc.

}
// or
if (infile.eof ()) // detects if end of file reached
{

// do whatever
}

Fall 2004 322C – Lecture 7 11

File Processing Functions

• Can still use >> and <<
– Be careful with >> as character translations

can occur on input
• get() and put() - char at a time
• read() and write() - binary blocks
• getline() - strings
• flush() - flushes the buffer

Fall 2004 322C – Lecture 7 12

Coordinating Input and Output

• Plan the format of your output file so that
the data can be read back in easily.

• For example, put a space between numbers, so
an input process can read them easily

3

Fall 2004 322C – Lecture 7 13

Product Inventory Creation
#include <iostream>
#include <fstream>
using namespace std;
int main()
{ ofstream out("INVNTRY"); // output, normal file

if(!out)
{ cout << "Cannot open INVENTORY file.\n";

return 1;
}
out << "Radios " << 39.95 << endl;
out << "Toasters " << 19.95 << endl;
out << "Mixers " << 24.80 << endl;
out.close();
return 0;

}

Fall 2004 322C – Lecture 7 14

Inventory Example Readback
#include <iostream>
#include <fstream>
#include <string>
using namespace std;
int main()
{ ifstream in ("INVNTRY"); // input
if(!in)
{ cout << "Cannot open INVENTORY file.\n";

return 1;
}
string item;
float cost;
do
{ in >> item >> cost;

cout << item << " " << cost << "\n";
} while (!in.eof ());
in.close();
return 0;

}

Fall 2004 322C – Lecture 7 15

File IO Brain Teaser
#include <iostream>
#include <fstream>
#include <string>
using namespace std
int main()
{ ifstream infile ("C:/ee322c/IOtest/test1.txt");

ofstream outfile ("C:/ee322c/IOtest/output1.txt");
string instring;
getline (infile, instring);
cout << " The line in the file is: " << “\n” << instring;
int i;
infile >> i;
cout << “The integer in the file is " << i << “\n”;
double d;
infile >> d;
cout << “The double in the file is " << d << “\n”;
outfile << instring;
outfile << d << “\n”;
outfile << i << “\n”;
outfile.close();
infile.close();
return 0;

} // end of main

Fall 2004 322C – Lecture 7 16

Sample Files for Example
Here are contents of test1.txt used as input in the sample program

My name is Colin.
197608
3.1415926

(Note: There are no empty lines between text or number lines.)

The contents of output1.txt after the sample program is executed
will be:

Fall 2004 322C – Lecture 7 17

Sample Files for Example

Here are contents of test1.txt used as input in the sample program

My name is Colin.
197608
3.1415926

(Note: There are no empty lines between text or number lines.)

The contents of output1.txt after the sample program is executed
will be:

My name is Colin.3.1415926
197608

Fall 2004 322C – Lecture 7 18

Exam Rules and Expectations

• Exam will start at exactly 5PM and finish at exactly
6:15PM on Monday

• Bring one or more pencils
• No other devices are allowed
• No questions answered during the exam

if (confused) then
{

make an assumption
write it down
proceed to answer the question on that basis

}
• Prepare - eg, use cppreference.com and the other links

provided on the web site.

4

Fall 2004 322C – Lecture 7 19

Topic Areas
• Software engineering principles

– Design techniques (OO vs functional), ADTs,
algorithms

• C++ language
– Compiler, builtin features, function library, class

library, preprocessor

• Simple data structures
– string, etc.

• Defining new and richer data types
– Safe array, bank accounts, etc

Fall 2004 322C – Lecture 7 20

The Parts of C++

Compiler

Standard
Functions

Standard
Classes

Preprocessor

C based I/O
String and char manipulations
Math functions
Time,date,location functions
Dynamic allocation
Utility functions
Wide character functions

C++ I/O
String
STL classes
Numerics
Exception handling
Misc.

Linker/
Loader

Fall 2004 322C – Lecture 7 21

Topics Covered (1)

– What is SWE, programming, SWE tracks in ECE, etc.
– How to think about and solve programming problems
– Modularity, encapsulation and abstraction
– OO thinking
– C and C++ basics (EE 312 topics assummed)
– Strings
– Building your own data types
– Booleans
– Functions
– Overloaded functions
– Structs, Bit fields, Unions. Enumerations, Typedef

Fall 2004 322C – Lecture 7 22

Topics Covered (2)
– Classes and objects
– Construction/destruction of objects
– Subclasses and Inheritance
– Stream and File I/O
– Arrays of objects
– Pointers
– References
– Dynamic memory allocation
– Polymorphism & Overloaded operators
– Generic functions and classes
– Exception handling

Fall 2004 322C – Lecture 7 23

Other Hints and Tips

• Make sure you understand the
examples used in class

• Make sure you understand your
assignment solution

1

Fall 2004 322C – Lecture 8 1

EE 322C
Data Structures

Lecture 8

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm in ACES 5.1.4

Fall 2004 322C – Lecture 8 2

Announcements
• Will NOT have exam next Monday

– I will be out next week
– Matt will give lectures on MW
– Will be rescheduled so will get feedback before Q-Drop date

(October 22)
• Topics of the day

– Arrays of objects
– Pointers

• Concepts
• Basic operations
• Advanced operations
• Dangers and problems

– References
– Dynamic memory allocation

Fall 2004 322C – Lecture 8 3

An Inventory of Products

Product

We can model “product” as a general class of all product
objects

- We will design it to be “object oriented”

Envision a retail store with lots of different products on
the shelves that we need to keep track of

Fall 2004 322C – Lecture 8 4

An Inventory of Products

Product

We can model “product” as a general class of all product
objects

- We will design it to be “object oriented”

Envision a retail store with lots of different products on
the shelves that we need to keep track of

Common operations:

•change price

•Change score

Common attributes:
•name
•price
•score

Fall 2004 322C – Lecture 8 5

Product Class
class Product // models each product in a store

{private:
string name;
double price;
int score;
static int numberProducts = 0;

//keeps track of the # of products
public:
Product(string theName, double thePrice,

int theScore)
{ name = theName;
price = thePrice;
score = theScore;
numberProducts++;

}
~Product() {numberProducts--;} // destructor
// more functions on the next slide

Fall 2004 322C – Lecture 8 6

Product Class
// instance variable accessor functions

int getScore() { return score; }
double getPrice () { return price;}
string getName () { return name; }

// instance variable change functions
void changeScore (int newScore)

{ score = newScore; }
void changePrice (double newPrice)

{ price = newPrice;}
};

2

Fall 2004 322C – Lecture 8 7

Array of Product Objects

0
1
2
3
4
5
6
7
8
9

inventory

name
price
score

inventory [3]

Fall 2004 322C – Lecture 8 8

Best Product Example

• Fill up the product inventory
• Then search the inventory and find the “best

buy(s)”
• A “best buy” is indicated by the largest score

to price ratio
• What would be a good modular design for our

solution?

Fall 2004 322C – Lecture 8 9

Best Product Example
• Fill up the product inventory
• Then search the inventory and find the “best buy(s)”
• A “best buy” is indicated by the largest score to price

ratio
Function Calling Hierarchy

main

readProduct bestBuy

printProduct
getLine

cout

All use Product
accessor functions

Fall 2004 322C – Lecture 8 10

Pointer Concepts
• The pointer type supports indirect addressing
• A pointer holds a memory address rather than a value -

what is at the memory address is the value of interest
• Pointer variables have to be declared along with the type

of data that they point to. E.g.
– int *p; // means that pointer p points to an int
– Never use int* p; - its bad style

• Mixed type pointer manipulations are not allowed
– int *p;
– double *q;
– p = q; // not allowed

• Basic unary operations are: & (the address of) and * (the
contents at an address)

Fall 2004 322C – Lecture 8 11

Your Computer’s RAM

00101111
00000001

01011100
01011100
01011100
010111000)

1)
2)
3)

.

.

.

ContentsAddress
Memory is organized
into a sequence of
“bytes” - each byte has
it’s own memory address
and contents

Remember that variable
names are actually
symbolic memory
addresses

RAM = random access memory

Fall 2004 322C – Lecture 8 12

Pointer Implementation

Variables

RAM = random access memory

A pointer variable contains the
memory address of another
variable as its value

int *p = 0; //null
int x:
p = &x;
x = 25;

p

x25

3

Fall 2004 322C – Lecture 8 13

Pointer Manipulations

• Basic operations are: & (the address of) and * (the
contents at that address)

• Pointer arithmetic is done relative to the base type,
e.g.:
int *p, *q; // int *p =0, *q =0; would be better
int x[4] = {25, 37, 77, 99};
p = &x[0]; // or just p = x when x is an array
q = p;
q++;
if (p < q)
cout << “p points to a lower address” <<endl;

cout << *(p+2) // faster but uglier

Fall 2004 322C – Lecture 8 14

Multiple Indirection
Variables

RAM = random access memory

A pointer variable contains the
memory address of another
pointer variable as its value

double **q;
double *p;
double x = 25.7
p = &x;
q = &p;
cout << **q << endl;

q

25.7

p

Fall 2004 322C – Lecture 8 15

Object Pointers
class ExampleClass
{ private: int i;

public:
ExampleClass(int j) { i=j; }
int get_i() { return i; }

};
int main()
{

ExampleClass *p, objects[4] = {1,2,3,4};
p = &objects; // get address of objects
cout << p->get_i() << endl; // use -> to call
get_i()
p = p +2;
cout << p->get_i() << endl; // which object?
return 0;

}
Fall 2004 322C – Lecture 8 16

Object Pointers
class ExampleClass

{ private: int i;

public:

ExampleClass(int j) { i=j; }

int get_i() { return i; }

};

int main()

{

ExampleClass *p, objects[4] = {1,2,3,4};

p = &objects; // get address of objects

cout << p->get_i() << endl; // use -> to call get_i()

p = p +2;

cout << p->get_i() << endl; // which object?

return 0;

}

Also - You can also use a
base class pointer to point
to a derived class object,
but not vice versa - be
careful with pointer
arithmetic because the
compiler thinks its pointing
to a base class object

Fall 2004 322C – Lecture 8 17

The this pointer

• The object which invokes a member function is an
implicit argument passed as a pointer which is called
by the keyword this

• E.g. if I call a member function
– myaccount.withdraw (200);
– Inside of the withdraw function I can refer to the calling

object as this
double withdraw (double amount)

{ cout << this->balance << endl;

…

}

• Doesn’t work for static or friend functions

Fall 2004 322C – Lecture 8 18

Problems with Pointers

• Beware the wild pointer
– It’s the most difficult bug to find

• A bad pointer can get you garbage or cause you to write
over code or even the O/S

• Common errors
– Unitialized pointers
– int x =10, *p;
– *p = x;

– Misunderstood usage of pointers
– int x =10, *p;
– p = x; // oops, p = &x

4

Fall 2004 322C – Lecture 8 19

Problems (cont)

• Incorrect assumptions about where
variables are located

int x, y;
int *p, *q;

p = &x;
q = &y;
if (p < q) …

int x[10], y[10];
int *p, t;

p = x;
for (t=0; t<20; t++)
*p++ = t;

if (p < q) …

OR

Fall 2004 322C – Lecture 8 20

Problems (cont)
/*

This program has a logic bug - can you find it?
It’s purpose is to output the hex equivalent of a
sequence of chars

*/
#include <string>
#include <iostream>
#include <cstdio>
int main()
{

char *p1=0; char s[80];
p1 = s;
cout.setf(ios::hex);
do
{

gets(s); // read a string of chars, puts a null at end
// output the hex equivalent of each character

while(! *p1=“”) {cout << *p1 << endl; p1++;}
} while(!strcmp(s, “QUIT”)); // sentinel check
return 0;

}

Fall 2004 322C – Lecture 8 21

References
• A special kind of pointer that is used for

passing arguments to and returning values
from functions
– There is also an independent reference capability

but it is not useful and we won’t learn about it
• Call by reference is faster than call by value
• Restrictions are:

– You cannot obtain the address of a reference
– You cannot create an array of references
– You cannot reference a bit field
– Null references are prohibited

Fall 2004 322C – Lecture 8 22

Reference Parameters
/* example of using reference parameters */
#include <iostream>
using namespace std;
void swap(int &i, int &j);
int main()
{

int a =1, b =2;
cout << "a and b: " << a << " " << b << endl;
swap(a, b); // no & operator needed
cout << "a and b: " << a << " " << b << endl;
return 0;

}
void swap(int &i, int &j)
{

int t;
t = i;
i = j;
j = t;

}

What’s the output of this program?

Fall 2004 322C – Lecture 8 23

Returning a Reference
#include <iostream>
using namespace std;
char &replace(int i); // returns a reference
char s[80] = "Hello There";
int main()
{

replace(5) = 'X';
cout << s << endl;
return 0;

}
char &replace(int i)
{ return s[i]; }

What’s the output of this program?

Fall 2004 322C – Lecture 8 24

General Memory Mgt. Scheme
• The responsibility of the O/S

The O/S

C++ Compiler Web Browser

Your
Program

Code heap stack

5

Fall 2004 322C – Lecture 8 25

Dynamic Memory Allocation
• Global variables are allocated space at compile time.

Local variables are allocated space on the stack when the
block is entered. Dynamic allocations occur during run
time when a statement is executed and use the heap.

• Pointers are needed to point to the space dynamically
allocated

• Useful in applications where space is constrained and
must be managed by the programmer

• Operators are:
– new - allocate memory NOW and return a pointer to it

• pointer_variable = new type;
– delete - deallocate (free) memory NOW

• delete pointer_variable;
– malloc and free are obsolete

Fall 2004 322C – Lecture 8 26

Variable Example
#include <iostream>
#include <new>
using namespace std;
int main()
{

int *p;
p = new int; // allocate space for an int
*p = 100;
cout << "At " << p << " ";
cout << "is the value " << *p << endl;
delete p; // free the space for an int
return 0;

}

Fall 2004 322C – Lecture 8 27

Array Example

#include <iostream>
#include <new>
using namespace std;
int main()
{

int *p, i;
p = new int [10]; // allocate 10 integer array
for(i=0; i<10; i++) p[i] = i;
for(i=0; i<10; i++) cout << p[i] << " ";
delete [] p; // release the array
return 0;

}

Fall 2004 322C – Lecture 8 28

Objects Example
. . .
int main()
{

BankAccount *p;
p = new BankAccount

(12387, "Ralph Wilson", 2000.00);
double s = p->getBalance();
cout << ”The balance is: " << s << endl;
delete p;
return 0;

}

1

Fall 2004 322C – Lecture 9 1

EE 322C
Data Structures

Lecture 9

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 9 2

Announcements
• Class Email List

– READ YOUR ECE EMAIL
• Topics of the day

– Inheritance nuances
– Dynamic memory allocation
– Random numbers
– Polymorphism

Fall 2004 322C – Lecture 9 3

Access Control

Access to base class members from a derived class:

public access as
before

protected access
as before

no accessPublic

access as
protected

protected access
as before

no accessProtected

access as privateaccess as privateno accessPrivate

PublicProtectedPrivate

Base Class Members

D
e
r
i
v
e
d

C
l
a
s
s

A
c
c
e
s
s

Fall 2004 322C – Lecture 9 4

Constructors, Destructors Nuances
Constructors and destructors are not inherited
Constructors are called in the order of hierarchy starting from the

base to the derived classes
Destructors are called in the reverse order automatically
Arguments can be passed through the initialization lists from a

derived class constructor to a base class constructor, e.g.
//constructor in the derived class
derived (int i, int j):base (i) { // stuff };
// base(i) is base class constructor

No need to specify the base class in the constructor if it doesn’t
have to be called explicitly since the default constructor is called
automatically

Fall 2004 322C – Lecture 9 5

Dynamic Memory Allocation

• Global variables are allocated space at compile time. Local
variables are allocated space on the stack when the block is
entered. Dynamic allocations occur during run time when a
statement is executed and use the heap.

• Pointers are needed to point to the space dynamically allocated
• Useful in applications where space is constrained and must be

managed by the programmer
• Operators are:

– new - allocate memory NOW and return a pointer to it
• pointer_variable = new type;

– delete - deallocate (free) memory NOW
• delete pointer_variable;

– malloc and free are obsolete

Fall 2004 322C – Lecture 9 6

Variable Example
#include <iostream>
#include <new>
using namespace std;
int main()
{ int *p;

p = new int; // allocate space for an int
*p = 100;
cout << "At " << p << " ";
cout << "is the value " << *p << endl;
delete p; // free the space for an int

return 0;
}

2

Fall 2004 322C – Lecture 9 7

Array Example

#include <iostream>
#include <new>
using namespace std;
int main()
{ int *p, i;

p = new int [10]; // allocate 10 integer array
for(i=0; i<10; i++) p[i] = i;
for(i=0; i<10; i++) cout << p[i] << " ";
delete [] p; // release the array
return 0;

}

Fall 2004 322C – Lecture 9 8

Objects Example
. . .
int main()
{ BankAccount *p;

p = new BankAccount
(12387, "Ralph Wilson", 2000.00);

double s = p->getBalance();
cout << ”The balance is: " << s << endl;
delete p;

return 0;
}

Fall 2004 322C – Lecture 9 9

Simulating Randomness
• What is a pseudo-random number?
• What’s a sequence of these?
• Library functions are in cstdlib

– #include <cstdlib>

• srand () - seeds rand (), sets the
starting point

• rand () - returns a random integer
between 0 and RAND_MAX

• RAND_MAX is the largest value that can be
returned by rand () - it will be (231 - 1)

Fall 2004 322C – Lecture 9 10

Simple Examples

• Flip a coin
while (notDone)
{ double x = rand ();

if (x / RAND_MAX <= .5)
cout << “heads”;

else cout << “tails”;

. . .
}

Fall 2004 322C – Lecture 9 11

Random Numbers
/* Random (magic) number guessing program */
#include <iostream>
#include <cstdlib>
using namespace std;
int main(void)
{ int magic, guess;
bool correct = false;
unsigned const int seed = rand();
srand (seed);
cout << ”The number is between 0 and " << RAND_MAX << endl;
magic = rand(); // generate the random magic number
while (!correct)
{ cout << "What is your guess at the magic number: " << endl;

cin >> guess;
if(guess == magic)
{ cout << "** Right ** " << magic << ;" is the magic number"

<<endl;
correct = true;

}
else if(guess > magic)

cout << "Wrong, too high" << endl;
else cout << "Wrong, too low" << endl;

} // end while
return 0;

}

Fall 2004 322C – Lecture 9 12

Intro to Polymorphism

• Polymorphism, which is another key concept in OO programming, is the
ability to control access to a general class of actions through one
interface. The specific action selected is determined by the
contextual situation
– E.g. the thermostat in your house doesn’t care what type of furnace

you have
• There is both compile time and run time polymorphism in C++

– At compile time - overloaded functions and operators
– At run time - inheritance and virtual functions
– The C++ language also uses this extensively in its library system

• The design goal is to define a class hierarchy that moves from the
most general to specific (I.e. base class to derived classes). We use
Polymorphism, Inheritance and Encapsulation to do this

3

Fall 2004 322C – Lecture 9 13

Virtual Functions
• Is declared within a base class and redefined (or overridden)

by a derived class
– The redefinition creates a new specific function

• Identified by the keyword virtual
– virtual return-type function-name (params) {body }

• When a base pointer points to a derived object that contains a
virtual function then C++ determines at run time which version
of the function to call based on the type of object pointed to
(polymorphism)

• A pure virtual function has no definition in the base class and
therefore must be defined by the derived classes

• The virtual attribute can be inherited
• Virtual functions are hierarchical

Fall 2004 322C – Lecture 9 14

Example
#include <iostream>
using namespace std;
class base
{ public:

virtual void vfunc()
{cout << "This is base's vfunc." <<endl;}

};
class derived1 : public base
{ public:

void vfunc()
{ cout << "This is derived1's vfunc." << endl; }

};
class derived2 : public base
{ public:

void vfunc()
{cout << "This is derived2's vfunc." <<endl;}

};

Fall 2004 322C – Lecture 9 15

Example cont.

/* program that demonstrates the use of
virtual functions */

int main()
{ base b, *p;

derived1 d1;
derived2 d2;
p = &b; // point to base class
p->vfunc(); // access base's vfunc()
p = &d1; // point to derived1
p->vfunc(); // access derived1's vfunc()
p = &d2; // point to derived2
p->vfunc(); // access derived2's vfunc()
return 0;

}

Fall 2004 322C – Lecture 9 16

Pure Virtual Function
#include <iostream>
using namespace std;
class number
{ protected: int val;

public:
void setval(int i) { val = i; }
virtual void show() = 0;

// show() is a pure virtual function
};
class hextype : public number
{ public: void show() {cout << hex << val << endl;}
};
class dectype : public number
{ public: void show() {cout << val << endl;}
};
class octtype : public number
{public: void show() {cout << oct << val << endl;}
};

Fall 2004 322C – Lecture 9 17

Pure Virtual Function - cont.
/* demonstrate the use of a pure virtual function */

int main()

{ dectype d;

hextype h;

octtype o;

d.setval (20);

d.show (); // displays 20 - decimal

h.setval (20);

h.show (); // displays 14 - hexadecimal

o.setval (20);

o.show (); // displays 24 - octal

return 0;

}

Fall 2004 322C – Lecture 9 18

Abstract Classes
• Classes that contain one or more pure

virtual functions are called abstract
because no objects can be instantiated

• They serve the role of an incomplete
type that is used as a foundation for
derived classes which will be complete

4

Fall 2004 322C – Lecture 9 19

Generics

car

Fall 2004 322C – Lecture 9 20

Generic Functions
• Defines a general set of operations that will be

applied to various types of data
• Created using the keyword template
• Remember this example from last time that

swaps the values of a and b
// in main
int a =1, b =2;
swap(a, b);
. . .
void swap(int &i, int &j)
{ int t;
t = i;
i = j;
j = t;

}

Fall 2004 322C – Lecture 9 21

Generic Functions
• Defines a general set of operations that will be applied to

various types of data
• Created using the keyword template
• Remember this example from last time that swaps the

values of a and b
// in main

int a =1, b =2;
swap(a, b);

. . .

void swap(int &i, int &j)

{ int t;
t = i;

i = j;

j = t;

}

It only works for ints - suppose
we also want it to work for
doubles, chars, etc.
How can we turn it into a
generic function?

Fall 2004 322C – Lecture 9 22

Generic Swap
/* the purpose of this program is to demonstrate how to swap values
of 2 variables of any data type using a generic function to do so
*/
#include <iostream>
using namespace std;
// This is a generic function template. X is a generic data type.
template <class X> void swapargs(X &a, X &b)
{ X temp;
temp = a;
a = b;
b = temp;

}
int main()
{ int i=10, j=20;
double x=10.1, y=23.3;
char a='x', b='z';
swapargs(i, j); // swap integers
swapargs(x, y); // swap floats
swapargs(a, b); // swap chars
return 0;

}

Fall 2004 322C – Lecture 9 23

More on Generic Functions

• They can be overloaded
– They perform the same actions - only the

data type can differ
• You can mix standard parameters with

generic parameters in the function
template

Fall 2004 322C – Lecture 9 24

Generic Classes

• Used when a class contains logic that
can be generalized across different
data types

• Defines all the functions used by that
class

• the actual type of data being
manipulated will be passed as a
parameter when an object of that class
is created

1

Fall 2004 322C – Lecture 10 1

EE 322C
Data Structures

Lecture 10

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 10 2

Announcements
• Topics of the day

– Overloaded operators
– Generic classes
– Exception handling

Fall 2004 322C – Lecture 10 3

Overloaded Operators
• You can overload operators as well as

functions - this expands the types of data
that it can be applied to
– For example, that is how string concatonation is

defined
• You can use overloaded operators in

expressions just like you use the built-in ones
• How it works is defined inside of the class of

objects it will be used with
• Syntax is:

return-type [class-name::] operator X (arg-list)
{ // implementation body }

Fall 2004 322C – Lecture 10 4

Class with an Overloaded “+”
class location
/* this class represents location points on an 2D x-y grid */
{ private: int xCoordinate, yCoordinate;
public:

location() {}
location(int x, int y)
{ xCoordinate = x;

yCoordinate = y;
}

void show()
{ cout << xCoordinate << " ";

cout << yCoordinate << "\n";
}
// define overloaded "+" operator for locations.

location operator+(location op2)
{ location temp;

temp.xCoordinate = op2.xCoordinate + this.xCoordinate;
temp.yCoordinate = op2.yCoordinate + this.yCoordinate;
return temp;

}
}; // end of class location definition

Fall 2004 322C – Lecture 10 5

Using the Overloaded “+”
#include <iostream>

using namespace std;

// class location definition goes in here

// main program that uses location

int main()

{ location point1(10, 20), point2(5, 30), point3(0,0);

point1.show(); // displays 10 20

point2.show(); // displays 5 30

point3 = point1 + point2;
// use the overloaded + operator

point3.show(); // displays 15 50

return 0;

}

Fall 2004 322C – Lecture 10 6

Nuances and Restrictions
• The object on the left hand side of a binary operator is the calling

object (I.e. this)
• You cannot alter the precedence of an operator
• You cannot change the number of operands that an operator takes
• Operator functions cannot have default arguments
• You cannot overload . :: .* ?
• Operator functions can be inherited by any derived class, but it can

also be overloaded by the derived class (except for the = operator)
• You can overload new and delete if you want to implement a special

dynamic allocation scheme
• Array subscripting, function calling, and class member access are

defined as operators [], (), -> They can therefore be
overloaded too

• You can overload the comma operator ,

2

Fall 2004 322C – Lecture 10 7

Generic Functions - again
/* the purpose of this program is to demonstrate how to swap values
of 2 variables of any data type using a generic function to do so
*/
#include <iostream>
using namespace std;
// This is a generic function template. X is a generic data type.
template <class X> void swapargs(X &a, X &b)
{ X temp;
temp = a;
a = b;
b = temp;

}
int main()
{ int i=10, j=20;
double x=10.1, y=23.3;
char a='x', b='z';
swapargs(i, j); // swap integers
swapargs(x, y); // swap floats
swapargs(a, b); // swap chars
return 0;

}

Fall 2004 322C – Lecture 10 8

Generic Classes
• Used when a class contains logic that can be generalized

across different data types
• Defines all the functions used by that class
• the actual type of data being manipulated will be passed

as a parameter when an object of that class is created
• A generic (aka template) class declaration looks like

template <class Ttype> class class-name
{ // class definition in here }

Ttype is a placeholder for a type name which is specified when the
class is instaniated

• An instance gets created in your program when you say
class-name <actual-type> object-name;

Fall 2004 322C – Lecture 10 9

Generic Class Example
// this is a generic (template) class that provides for accessing
// an array in a safe manner
template <class AType, int size> class arrayType
{ private: AType a[size];
public:
arrayType()
{ register int i;

for(i=0; i<size; i++) a[i] = i;
}

// Provide range checking for arrayType by redefining [].
AType &operator [] (int i)
{ if(i < 0 || i > size-1)

{cout << "\nIndex value of ";
cout << i << " is out-of-bounds.\n";
exit(1); // terminate the program with a return code of 1

}
return a[i];

}
}; // end of class arrayType

Fall 2004 322C – Lecture 10 10

Example (cont.)
#include <iostream>
#include <cstdlib>
using namespace std;
// the arrayType class definition goes in here
int main ()
{ arrayType<int, 10> intob; // create an integer array
arrayType<double, 15> doubleob; // create a double array
int i;
cout << "Integer array: ";
for(i=0; i<10; i++) intob[i] = i;
for(i=0; i<10; i++) cout << intob[i] << " ";
cout << endl;
cout << "Double array: ";
for(i=0; i<15; i++) doubleob[i] = (double) i/3;
for(i=0; i<15; i++) cout << doubleob[i] << " ";
cout << endl;
intob[12] = 100; // generates runtime error
return 0;

}

Fall 2004 322C – Lecture 10 11

Rules and Restrictions for Generic Classes

• Non type parameters can only be int, pointer or
reference - which have constants as arguments - because
this must be known at compile time

• You can put in a default type in the template header
– template <class AType = int> class arrayType { }

• You can create explicit specializations for a specific data
type

• You can use the keyword typename instead of class in the
header (I prefer this way)
– template <typename AType = int> class arrayType { }

• The Standard Template Library (STL) is built out of
template (or generic classes) that have been designed as
abstractions for maximum reuse

Fall 2004 322C – Lecture 10 12

Why Exception Handling
We want to manage run time errors in an orderly fashion
so as to create fault tolerant software systems
1. If an exception is not caught, the program terminates.
2. Advanced error handling can be done that allows for resumption

of execution after correcting for an error
3. Capability to return error information is not limited to just the

return type of an operation.
We want to separate Error Handling Code from Regular
Code
1. Frequent and repetitive testing of return values, and

propagation of error return values, is not required.
2. Using exceptions may be more efficient because the normal

execution path does not need to test for error conditions.
3. Grouping Error Types and Error Differentiation

3

Fall 2004 322C – Lecture 10 13

Why Exception Handling
We want to propagate Errors Up the Call Stack
1. The point at which an error occurs is rarely a suitable place to

handle it, particularly in library code, but by the time an error code
has been propagated to a place where it can be handled, too much
contextual information has been lost.

2. Exceptions bridge this gap - they allow specific error information
to be carried from the point where its available to a point where it
can be utilized.

Fall 2004 322C – Lecture 10 14

Exception Handling - Mechanics

Uses three keywords: try, catch and throw, e.g.
try
{ // block of code to be monitored - could be all of
main ()

if (flag) throw exception-name;
}
catch (type1 parameter)
{ // code to be executed in case of exception
}
catch (type2 parameter)
{ // code to be executed in case of other exception
}

. . .

Fall 2004 322C – Lecture 10 15

Exception Handling - Mechanics
The catch blocks must be right after the try block.
The catch executed will be based on the first data type
match between the exception name and the catch
parameter
A catch (…) will catch any type of a throw and is used
like a default catch.
The whole construct behaves much like a switch block with
breaks. After a catch block is executed the next
statement after all the try/catches is done. Control does
not go back to the try block.
A throw from a function called within the try block can
also cause a catch

Fall 2004 322C – Lecture 10 16

Exception Handling Example
// this example illustrates prevention of a divide by zero error
#include <iostream>
using namespace std;
void divide(double a, double b);
int main()
{ double i, j;
do
{ cout << "Enter numerator (0 to stop): ";

cin >> i;
cout << "Enter denominator: ";
cin >> j;
divide(i, j); //gracefully handle divide by zero

} while(i != 0);
return 0;

}
void divide(double a, double b)
{ try

{ if(b = = 0.0) throw b; // check for divide-by-zero
cout << "Result: " << a/b << endl;

}
catch (double b)
{ cout << "Can't divide by zero.” << endl;
}

}

Fall 2004 322C – Lecture 10 17

Passing an Exception
Passing an exception by throw is similar to passing
an argument to a function, except:

On a throw of an exception, the control flow passes over
to the appropriate catch block.
A copy of the argument is made whether the exception
is passed as a reference or a value.
The thrown object reference is thrown as a const
reference, but it can be caught by a non-const
reference; something not allowed in argument passing
for functions
Implicit type conversion is not done except for const
void* which will catch all pointer type exceptions and
allows inheritance base type conversions

Fall 2004 322C – Lecture 10 18

Passing an Exception
Copy of the object is made because once the
exception is thrown, the control passes over from
the point of exception and any local object will go
out of scope.

The copy is made even if the object is declared as
static.
Any changes to the passed object will therefore only
affect the copy

4

Fall 2004 322C – Lecture 10 19

Standard Exceptions
In <exception> class

bad_alloc - from operator new
bad_exception - any unexpected exception
bad_cast - from dynamic cast
bad_typeid - from dynamic cast

In <stdexcept> class - in function library or run time system
run-time errors

overflow_error - arithmetic overflow occurred
range_error - an internal range error occurred
underflow_error - an underflow occurred

logic errors
domain_error - domain error occurred
invalid_argument - from a function call
length_error - object created was too large
out_of_range - function arg not in required range

Fall 2004 322C – Lecture 10 20

Other Nuances
• Exceptions thrown with no catch cause termination of

program
• Try blocks inside of functions cause reset of handling

code
• An exception can be of any type including a class of

similar exceptions that you define. This class will be
used to create an exception object that describes the
error. This object will be used by the exception handling
code.

• When catching exceptions from both a base and derived
class, catch the derived class first in the catch sequence

Fall 2004 322C – Lecture 10 21

Other Nuances
• You can restrict the type of exceptions that a function can

throw outside of itself - back to its caller
– return-type function-name (parm-list) throw (type-
list) { }

• You can rethrow an exception by saying throw; in which
case it will look for the next matching catch

• uncaught_exception () is true until an exception is
caught

• You can even override the standard exception handling
functions:
– unexpected () - which calls terminate ()
– terminate () - which calls abort ()
– abort () - which causes your program to be flushed out

1

Fall 2004 322C – Lecture 11 1

EE 322C
Data Structures

Lecture 11

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm in ACES 5.104

Fall 2004 322C – Lecture 11 2

With Apologies to PEANUTS

THANKS FOR
TEACHING

THIS CLASS
DR PERRY

I FOUND IT A RARE EXPERI-
ENCE AND FEEL I AM A BET-
TER PERSON FOR TAKING IT

Fall 2004 322C – Lecture 11 3

Announcements
• Exam I – Next Monday, 11 October 5-6:15
• Office Hours – ACES 5.104

– Perry: MW 4-5
• Design issues

– Hawthorne: MW 4-5, 6:30-7:30
• Compiler and Environment issues
• Design issues

• USE YOUR ECE EMAIL ACCOUNTS for class
email

• Today:
– Exceptions
– Review SE issues

Fall 2004 322C – Lecture 11 4

Why Exceptions
• Useful encapsulation and abstraction mechanism
• Separate normal from abnormal processing

– Normal processing often quite straightforward
– Abnormal often quite tangled

• Causes nesting
• Obscures normal processing

• Necessary for reliable, fault tolerant, robust
software systems
– Often 75%+ code dedicated to reliability
– 20% of interface errors are errors in handling

exceptions

Fall 2004 322C – Lecture 11 5

Exceptions - Logic
• Logic of handling exceptions

– Preclude
• Guarantee they do not happen

– Report
• Up to someone else to do something

– Retry
• Works when fault is transient

– Repair
• Fix the problem or compensate for the problem

– Ignore
• Results are satisfactory even with the exception

Fall 2004 322C – Lecture 11 6

Examples
• Nested tangle

if (condition1) then
do something1
if (condition 2) then
do something2
if (condition3) then

do something3
else exception3

else exception2
else exception1

• Exceptions
Something1
Something2
Something3
Exceptions:

ex1: exception1
ex2: exception2
ex3: exception3

2

Fall 2004 322C – Lecture 11 7

Why Exceptions - Details
We want to manage run time errors in an orderly fashion
so as to create fault tolerant software systems
1. If an exception is not caught, the program terminates.
2. Advanced error handling can be done that allows for resumption

of execution after correcting for an error
3. Capability to return error information is not limited to just the

return type of an operation.
We want to separate Error Handling Code from Regular
Code
1. Frequent and repetitive testing of return values, and

propagation of error return values, is not required.
2. Using exceptions may be more efficient because the normal

execution path does not need to test for error conditions.
3. Grouping Error Types and Error Differentiation

Fall 2004 322C – Lecture 11 8

Why Exception - Details
We want to propagate Errors Up the Call Stack
1. The point at which an error occurs is rarely a suitable place to

handle it, particularly in library code, but by the time an error code
has been propagated to a place where it can be handled, too much
contextual information has been lost.

2. Exceptions bridge this gap - they allow specific error information
to be carried from the point where its available to a point where it
can be utilized.

Fall 2004 322C – Lecture 11 9

Exceptions - Mechanics

Uses three keywords: try, catch and throw, e.g.
try
{ // block of code to be monitored - could be all of
main ()

if (flag) throw exception-name;
}
catch (type1 parameter)
{ // code to be executed in case of exception
}
catch (type2 parameter)
{ // code to be executed in case of other exception
}

. . .

Fall 2004 322C – Lecture 11 10

Exceptions- Mechanics
The catch blocks must be right after the try block.
The catch executed will be based on the first data type
match between the exception name and the catch
parameter
A catch (…) will catch any type of a throw and is used
like a default catch.
The whole construct behaves much like a switch block with
breaks. After a catch block is executed the next
statement after all the try/catches is done. Control does
not go back to the try block.
A throw from a function called within the try block can
also cause a catch

Fall 2004 322C – Lecture 11 11

Exception Handling Example
// this example illustrates prevention of a divide by zero error
#include <iostream>
using namespace std;
void divide(double a, double b);
int main()
{ double i, j;
do
{ cout << "Enter numerator (0 to stop): ";

cin >> i;
cout << "Enter denominator: ";
cin >> j;
divide(i, j); //gracefully handle divide by zero

} while(i != 0);
return 0;

}
void divide(double a, double b)
{ try

{ if(b = = 0.0) throw b; // check for divide-by-zero
cout << "Result: " << a/b << endl;

}
catch (double b)
{ cout << "Can't divide by zero.” << endl;
}

}

Fall 2004 322C – Lecture 11 12

Passing an Exception
Passing an exception by throw is similar to passing
an argument to a function, except:

On a throw of an exception, the control flow passes over
to the appropriate catch block.
A copy of the argument is made whether the exception
is passed as a reference or a value.
The thrown object reference is thrown as a const
reference, but it can be caught by a non-const
reference; something not allowed in argument passing
for functions
Implicit type conversion is not done except for const
void* which will catch all pointer type exceptions and
allows inheritance base type conversions

3

Fall 2004 322C – Lecture 11 13

Passing an Exception
Copy of the object is made because once the
exception is thrown, the control passes over from
the point of exception and any local object will go
out of scope.

The copy is made even if the object is declared as
static.
Any changes to the passed object will therefore only
affect the copy

Fall 2004 322C – Lecture 11 14

Standard Exceptions
In <exception> class

bad_alloc - from operator new
bad_exception - any unexpected exception
bad_cast - from dynamic cast
bad_typeid - from dynamic cast

In <stdexcept> class - in function library or run time system
run-time errors

overflow_error - arithmetic overflow occurred
range_error - an internal range error occurred
underflow_error - an underflow occurred

logic errors
domain_error - domain error occurred
invalid_argument - from a function call
length_error - object created was too large
out_of_range - function arg not in required range

Fall 2004 322C – Lecture 11 15

Other Nuances
• Exceptions thrown with no catch cause termination of

program
• Try blocks inside of functions cause reset of handling

code
• An exception can be of any type including a class of

similar exceptions that you define. This class will be
used to create an exception object that describes the
error. This object will be used by the exception handling
code.

• When catching exceptions from both a base and derived
class, catch the derived class first in the catch sequence

Fall 2004 322C – Lecture 11 16

Other Nuances
• You can restrict the type of exceptions that a function can

throw outside of itself - back to its caller
– return-type function-name (parm-list) throw (type-
list) { }

• You can rethrow an exception by saying throw; in which
case it will look for the next matching catch

• uncaught_exception () is true until an exception is
caught

• You can even override the standard exception handling
functions:
– unexpected () - which calls terminate ()
– terminate () - which calls abort ()
– abort () - which causes your program to be flushed out

Fall 2004 322C – Lecture 11 17

Back to Basic SE
• Typical life-cycle process: waterfall model
• 2 critical domains

– Problem domain
– Solution domain

• Our intellectual tools
– Modularity
– Encapsulation
– Abstraction
– Information hiding
– Step-wise refinement
– Virtual machines

• Measurement & Evaluation

Fall 2004 322C – Lecture 11 18

Classic Waterfall

requirements

Analysis/
planning

Architecture & design

coding

testing

delivery
O&MO&M

Pre-
development
Pre-
development

4

Fall 2004 322C – Lecture 11 19

Classic Waterfall

requirements

Analysis/
planning

Architecture & design

coding

testing

delivery
O&MO&M

Pre-
development
Pre-
development

Fall 2004 322C – Lecture 11 20

Classic Waterfall

requirements

Analysis/
planning

Architecture & design

coding

testing

delivery
O&MO&M

Pre-
development
Pre-
development

Feedback
loops

Fall 2004 322C – Lecture 11 21

2 Critical Domains
• Problem Domain

– “The World” – data objects and processing
– Build a Model

• Select critical elements from the world for the problem
• Understand and bound the problem
• Eg, Scenarios, use cases, etc

– Define the Requirements
• What is the system supposed to do
• Critical implementation constraints

– Eg, platform, context, languages, etc

– Critical problem: understanding the domain

Fall 2004 322C – Lecture 11 22

2 Critical Domains
• Solution Domain

– “The Machine”
• modules, data structures and algorithms

– Find or create critical abstractions
– Create an Architecture

• Components
• Interactions

– Refine the design
• Data structures
• Algorithms

– Code the representations

Fall 2004 322C – Lecture 11 23

Useful Intellectual Tools

• Modularity
• Encapsulation
• Abstraction
• Information hiding
• Stepwise Refinement
• Virtual Machine

Fall 2004 322C – Lecture 11 24

Modularity
• Programming is a complex task that is made

simpler if you can break the big problem down
into smaller pieces

• Modular programming is where big programs get
broken down into smaller components called
modules - e.g. classes, methods, objects,
subroutines, procedures or functions.

• Useful advice/style:
– Break down a problem into components that each just

do one thing and do that thing well
– (member) Functions and classes provide modularity

5

Fall 2004 322C – Lecture 11 25

Encapsulation
• The logic to do that one thing is “encapsulated”

inside of the module.
• Encapsulation localizes

– Related type, constant, data definitions
– Related processing – ie, functions, procedures,

methods, etc
• Provides a logic to the organization of your

program
– Eg, classes provide both modularity and encapsulation
– Properly used, functions provide both

Fall 2004 322C – Lecture 11 26

Abstraction
• Fundamental in software engineering
• 3 key ingredients

– Conceptualization
• finding the right concepts
• provides the simplest model for a program/system

– Generalization
• Across various contexts – eg, data, processing etc

– Separation of interface and implementation
• Benefits:

– Easier to understandable
– Easier to implement and test
– Provides more reusable modules

Fall 2004 322C – Lecture 11 27

Information Hiding

• Key element in Interface Abstraction
• Separates interface from implementation
• The practice of hiding the details of a module

with the goal of controlling access to the details
from the rest of the system.

• Enables concurrent development if define
interfaces first

• A programmer can concentrate on one module at
a time.

• Reduces (inter)dependencies

Fall 2004 322C – Lecture 11 28

Stepwise Refinement
• Generally a top-down approach
• A problem is approached in stages.

– Similar steps are followed during each stage
– Primary difference being the level of detail involved.

• Move from very abstract description to more detailed
descriptions
– Data

• Data models
• Data structures
• Data representations

– Processing
• High level pseudo-code often a useful mechanism
• Functional decomposition

– High level main program
– Hierarchical structure – the deeper the more detail

Fall 2004 322C – Lecture 11 29

Virtual Machine
• Generally a bottom up approach
• Begin with basic machine

– Basic operations
– Basic elementary data

• Add layers of abstractions
– Higher level operations
– Richer and more complex data

• Until you reach the appropriate application layer
– Right abstractions for the application
– Simple to understand operations and data

Fall 2004 322C – Lecture 11 30

Measurement & Evaluation: Reviews
• Basic Premise:

– Fresh look at code or document
• Advantages:

– Easier and cheaper to catch faults as early as possible
– Hard faults: ones that compromise system functionality

• Critical functional requirements
• Critical non-functional requirements

– Performance, reliability, etc.

– Soft faults: ones that compromise maintainability
• Coding style
• Architectural structure

6

Fall 2004 322C – Lecture 11 31

• Determine ranges or classes of inputs.
• Determine the expected behavior of the program for

various inputs
– Called “the Oracle”

• Run the program and observe the resulting behavior.
• Compare the “test results” with “the oracle”
• Revise Tests and System until

– Satisfied
– Sufficient “coverage” of

• Requirements (black box testing)
• Implementation (white box testing)

Measurement & Evaluation: Testing

1

Fall 2004 322C – Lecture 12 1

EE 322C
Data Structures

Lecture 12

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm – ACES 5.104

Fall 2004 322C – Lecture 12 2

Announcements
• Exam 1 – Next Wednesday, 5-6:15 (NOT AM ;-)
• Homework Assignment 2
• Topics of the day

– Array review

Fall 2004 322C – Lecture 12 3

Arrays
• An array is sequence of variables of the same data type.

The values can be all: int, double, char, boolean, string,
etc.

• An array is a composite data structure/object (like
string) rather than a primitive data type (like int).

• The whole collection is referred to by a single array name
• The individual variables (sometimes called elements or

cells) are accessed by using an integer index (also called a
subscript) which indicates that value’s position in the set.

• Index values range from 0 to one less than the number of
elements

Fall 2004 322C – Lecture 12 4

Arrays

• The length attribute of an array refers to the number of
elements allocated to the array - fixed at allocation time

• An array allows us to store and process all the values in a
collection (or set) of data, rather than just the most
recent value. They are stored in consecutive memory
locations.
– e.g. what if we wanted to store and manipulate in

various ways all of the EE322C exam 1 scores for this
semester

Fall 2004 322C – Lecture 12 5

Arrays in Memory

0 1 2 3 4

Array cells:
Index:

an element or cell

Array name:
exam1scores

This is called a reference
to the array

Example - a set of 5 EE322C exam 1 scores

Fall 2004 322C – Lecture 12 6

Creating an Array
Declaration statement syntax is:
basetype arrayname [integer expression];

int exam1scores[5];

Sets up a structure in memory like:

exam1scores 0 0 0 0 0
0 1 2 3 4

• Array elements contain default values: 0 for numerics,
false for booleans, null for chars, strings, etc.

• An array element is a full fledged variable

2

Fall 2004 322C – Lecture 12 7

Referring to array elements
array reference syntax: arrayname [index]
index can be a value or an expression, e.g.

int exam1scores [5];
exam1scores[0] = 15;
exam1scores[3] = 82;
exam1scores[4] = exam1scores[2];

exam1scores 15 0 0 82 0
0 1 2 3 4

exam1scores[3]

exam1scores[0]

Fall 2004 322C – Lecture 12 8

Referring to array elements
array reference syntax: arrayname [index]
index can be a value or an expression, e.g.

int exam1scores [5];
exam1scores[0] = 15;
exam1scores[3] = 82;
exam1scores[4] = exam1scores[2];

exam1scores 15 0 0 82 0
0 1 2 3 4

A value from the array can be used anywhere a variable of the base
type can be used. E.g.

int x = 2 * exam1scores[3]
exam1scores[exam1scores[2]];

What’s the value of x?

Fall 2004 322C – Lecture 12 9

Initializing Array Elements
// reading values in for example
const int NUMBEROFSTUDENTS = 5;
int exam1scores [NUMBEROFSTUDENTS];
for (int i = 0; i < NUMBEROFSTUDENTS; i++)

cin >> exam1scores[i];

exam1scores 81 37 65 77 94
0 1 2 3 4

Const int NUMBEROFSTUDENTS = 5;
int exam1scores [NUMBEROFSTUDENTS];
for (int i = 1; i <= NUMBEROFSTUDENTS; i++)

cin >> exam1scores[i];

What is wrong with this code?
It should Lead to an Error! But doesn’t!

Fall 2004 322C – Lecture 12 10

Exam 1 Scores Example

const int NUMBEROFSTUDENTS = 57;
int exam1scores [NUMBEROFSTUDENTS];

Declaring the array

Fall 2004 322C – Lecture 12 11

Represented as a Sequence of ints
exam1scores 0

1
2
3
4

52
53
54
55
56

.

.

.

Fall 2004 322C – Lecture 12 12

Represented as a Sequence of ints
exam1scores 0

1
2
3
4.
.
.

Array
name

Array
reference

Elements
(or cells);
each is also
a variable

Subscripts
(or indicies)

Values
are the
contents
of the
cells

52
53
54
55
56

3

Fall 2004 322C – Lecture 12 13

Exam 1 Scores Example

const int NUMBEROFSTUDENTS = 57;
int exam1scores [NUMBEROFSTUDENTS];
// input all the exam scores from the keyboard
for (int i = 0; i < NUMBEROFSTUDENTS; i++)

{cin >> exam1scores[i];}

Fall 2004 322C – Lecture 12 14

Exam 1 Scores Example
const int NUMBEROFSTUDENTS = 57;
int exam1scores [NUMBEROFSTUDENTS];
// input all the exam scores from the keyboard
for (int i = 0; i < NUMBEROFSTUDENTS; i++)

{cin >> exam1scores[i];}

// find the class average of the exam 1 scores
double average, sum = 0;
for (int i = 0; i < NUMBEROFSTUDENTS; i++)
{ sum = sum + exam1scores [i]; // the running sum

}
average = sum / NUMBEROFSTUDENTS;
cout << “the class average is: ” << average ;

Fall 2004 322C – Lecture 12 15

Using Initializer Lists

int myints = {0, 1, 2, 3, 4};
double mydoubles = {23.1, 0.34, 22};
string mystrings = {"Hi", "there"};
int exam1scores = {81, 37, 65, 77, 94};

exam1scores 81 37 65 77 94
0 1 2 3 4

Another way of creating and initializing an array:

• Can only use in the declaration statement. The length is
figured by the number of values.

• If you already know the values and the set is small and
you want the values hard coded into the program then do
it this way

Fall 2004 322C – Lecture 12 16

Making a Copy of an Array
const int NUMBEROFSTUDENTS = 57;
int exam1scores [NUMBEROFSTUDENTS];
//code to fill exam1scores would be here
int secondArray [NUMBEROFSTUDENTS];

for(int index =0; index < NUMBEROFSTUDENTS; index++)
secondArray[index] = exam1scores[index];

secondArray

exam1scores 81 37 65 77 94
0 1 2 3 4

81 37 65 77 94
0 1 2 3 4

secondArray = exam1scores; //doesn’t make a copy

Fall 2004 322C – Lecture 12 17

Counters Example
• Problem - keep track of how many times a given number in

the range from 1 to 100 was input by the user over a
series of input numbers.

Fall 2004 322C – Lecture 12 18

Counters Example

• Problem - keep track of how many times a given number in
the range from 1 to 100 was input by the user over a
series of input numbers.

Count how many
times

each number is
input by the user

numbers
1
2
3
…
100

13
42
23
…
17

count

Solution ideas - let's use a 100 element array of counters.
What’s the correspondence between input values and array
elements ?

4

Fall 2004 322C – Lecture 12 19

Counters Example
• Problem - keep track of how many times a given number in the range

from 1 to 100 was input by the user over a series of input numbers.

. . .
int counters [100]; // declare, allocate&initialize array
int number;
const int SENTINEL = 999;
cin >> number;
while (number ! = SENTINEL) // repeatedly input & process #s
{ // increment the counter for that number, read the next number

counters [number - 1] = counters [number -1] + 1;
cin >> number;

}
// output how many of each number was input
for (int i =1; i <= 100; i++)

cout << "the counter for number " << i << " is: " <<
counters [i - 1]);

Fall 2004 322C – Lecture 12 20

Initializing an Array of Strings

const string DAYS_OF_WEEK =
{ “Sunday”,

“Monday”,
“Tuesday”,
“Wednesday”,
“Thursday”,
“Friday”,
“Saturday”

};

Fall 2004 322C – Lecture 12 21

DAYS_OF_WEEK

How It Is Stored

Fall 2004 322C – Lecture 12 22

Encapsulate that into a function
// a function (procedure) that prints the day of week
// given a day number from 1 to 7
void printDayName (int day)
{ const string DAYS_OF_WEEK =

{ “Sunday”, “Monday”, “Tuesday”, “Wednesday”,
“Thursday”, “Friday”, “Saturday”

};
cout << DAYS_OF_WEEK [day – 1];

}
// Called from the main or other function like:
printDayName (3); // what is output?

Fall 2004 322C – Lecture 12 23

Partially Filled Array

• Arrays cannot grow after they have been
allocated

• You can allocate more space (i.e. extra) than
you believe your application will need

• If you guess too low, you will still run out of
space and terminate

• You do not need to use all the elements in an
array (but total computer memory is finite)

Fall 2004 322C – Lecture 12 24

Partially Filled Arrays - Ex.
• What if some students dropped before exam 1? or what if I

want to use this program again next semester when I will
have more or fewer students?

• In this case I might wish to treat 100 as a maximum
capacity but not necessarily the actual number of exam
scores - so the array will be partially filled

• Here is an example of how we initialize the values
const int MAX_STUDENTS = 100;
int exam1scores [MAX_STUDENTS];
int arraysize;
cin >> arraysize; // read in the actual size
for (int i = 0; i < arraysize; i++)

cin >> exam1scores[i]; // read in values

• Note - arraysize is a variable that you have to keep track of

1

Fall 2004 322C – Lecture 13 1

EE 322C
Data Structures

Lecture 2

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 13 2

Announcements
• Exam 1 – Wednesday 5 – 6:15pm
• Review:
• Today:

– Exam Rules and Topics
– Wrap up Arrays

Fall 2004 322C – Lecture 13 3

Exam Rules and Expectations

• Exam will start at exactly 5PM and finish at exactly
6:15PM on Monday

• Bring one or more pencils
• No other devices are allowed
• No questions answered during the exam

if (confused) then
{

make an assumption
write it down
proceed to answer the question on that basis

}
• Prepare - eg, use cppreference.com and the other links

provided on the web site.

Fall 2004 322C – Lecture 13 4

Topic Areas

• Software engineering principles
– Design techniques (OO vs functional), ADTs, algorithms

• C++ language
– Compiler, built-in features, function library, class library,

preprocessor

• Simple data structures
– string, etc.

• Defining new and richer data types
– Safe array, bank accounts, etc

Fall 2004 322C – Lecture 13 5

Topics Covered (1)

– What is SWE, programming, SWE tracks in ECE, etc.
– How to think about and solve programming problems
– Modularity, encapsulation and abstraction
– Step-wise refinement, virtual machine
– OO thinking
– C and C++ basics (EE 312 topics assummed)
– Strings
– Building your own data types
– Booleans
– Functions
– Overloaded functions
– Structs, Bit fields, Unions. Enumerations, Typedef

Fall 2004 322C – Lecture 13 6

Topics Covered (2)

– Classes and objects
– Construction/destruction of objects
– Subclasses and Inheritance
– Stream and File I/O
– Arrays of objects
– Pointers
– References
– Dynamic memory allocation
– Polymorphism & Overloaded operators
– Exception handling

2

Fall 2004 322C – Lecture 13 7

Simple Array Algorithms
• Once you have an array with values in it there

are a few common algorithms (and variants)
that are often used in handling arrays

• Ordered Vs Unordered arrays - it depends
– Counting the number of values
– Finding a given value
– Removing a value
– Inserting a value
– Sorting an unordered array into order

Fall 2004 322C – Lecture 13 8

const int NRSTUDENTS = 100;
int exam1scores [NRSTUDENTS];
// code to fill in exam1scores in here
int targetValue = ... ;

// fill in the value to be counted
int count = 0;
for(i = 0; i < NRSTUDENTS; i++)

{
if (exam1scores [i] == targetValue)

count = count + 1;
}

cout << count << " matches were found";

Counting Value Occurrences

Fall 2004 322C – Lecture 13 9

const int NRSTUDENTS = 100;
int exam1scores [NRSTUDENTS];
// code to fill in exam1scores in here
int targetScore = 90 ;
int i = 0;
bool found = false;
// This loop terminates as soon as it finds the value 90
while (i < NRSTUDENTS && !found)

{ if (exam1scores [i] == targetScore)
found = true;

else
i = i + 1;

}
if (found)

cout << "Item was found at index " << i;
// or do other stuff with the found item

Searching For a Given Value

Fall 2004 322C – Lecture 13 10

Adding and Removing Values

• For unordered arrays you can just add the new
value on the end, e.g. (assume that the variable last holds
the index value of the end element in the array)
exam1scores [last +1] = newValue;
last++;

• For unordered arrays you can replace the value
to be removed with the last value
exam1scores [removalindex] = exam1scores [last];
last--;

Removing a Value from an Unordered Array

Take the last value and use it to replace the value to be removed
The array now has one less value in it

before after

Value

Removing a Value from an Unordered Array

All subsequent values must move up one slot

before after

Value

3

Inserting a Value into an Ordered Array

All subsequent values must be moved down to make room
For an unordered array, just stick the new value at the end

before after

Value

Fall 2004 322C – Lecture 13 14

Parallel Arrays
• This loop counts the number of students whose

performance improved from the first exam to
the second exam
int grades1 [NRSTUDENTS];
int grades2 [NRSTUDENTS];

// assume the two arrays get values in here
int improved = 0;
for (int i = 0; i < NRSTUDENTS; i++)
{

if (grades1[i] < grades2[i]) improved++;
}

Fall 2004 322C – Lecture 13 15

• Tabular data to be stored
Name Score
Abe 71
Joe 64
Maximus 72
Summi 98
… …

• A solution: 2 “parallel” arrays
of different types
string names;
int scores;

Or better use an array of
structures

names scores

2

Corresponding elements must stay
in correspondence by matching index

Parallel Arrays
- of different types -

Fall 2004 322C – Lecture 13 17

Simple Sorting
• Goal - Change an unordered array into an ordered

array. The array will now have the values sorted in
either ascending or descending numeric order as
required.

• How can that be done?

Ideas to get started?
1. Find the smallest value in the array and swap it with

the 0th element in the array.
2. ….

Now what?

Fall 2004 322C – Lecture 13 18

Selection Sort - Algorithm
• Goal - Change an unordered array into an ordered array.
• The array will now have the values sorted in ascending numeric order.

There are many ways to do this.
• Given an unordered array named A of length n, for example:

1. Find the smallest element among the elements A[0]..A[n-1] and identify it
as A[min]

2. Swap the values of A[0] and A[min] so A[0] contains the smallest element,
now A[1]..A[n-1] are not sorted

3. Next find the smallest element among the remaining elements A[1]..A[n-1]
and call it A[min]

4. Swap A[1] and A[min] so A[1] contains the second smallest element, now
A[2]..A[n-1] are not sorted

5. Repeat this process similarly starting at A[2], A[3], and so on until the
final element is reached

4

Fall 2004 322C – Lecture 13 19

/* average is a function that computes and returns the average
of the values in a given (passed) integer array*/

double average (int data[], LENGTH)
{ if (LENGTH == 0) return 0;

double sum = 0;
for (int i = 0; i < LENGTH; i++)

sum = sum + data[i];
return sum / LENGTH;

}

• Called from another function as e.g.
double avg;
int exam1scores [100];
// assume that the array gets its values somehow
avg = average (exam1scores, 100);

• Call by reference to the array

Passing an Array as a Parameter

exam1scores

data

Fall 2004 322C – Lecture 13 20

• /* This function constructs and returns an integer
array with random values, each in the range from 0
to n-1 */

• int[] randomData (int size, int n)
{

int data [size];
for (int i = 0; i < size; i++)

data[i] = rand ()% n;
return data;

}

• Called in the main function for example as
int examScores = randomData (classSize, 101);

Returning an Array

Fall 2004 322C – Lecture 13 21

Selection Sort - Algorithm
• Goal - Change an unordered array into an ordered array.
• The array will then have the values sorted in ascending numeric order.

There are many ways to do this.
• Given an unordered array named A of length n, for example:

1. Find the smallest value among the elements A[0]..A[n-1] and
identify it’s position as A[min]

2. Swap the values of A[0] and A[min] so A[0] now contains the
smallest value, now A[1]..A[n-1] are not sorted

3. Next find the smallest value among the remaining elements
A[1]..A[n-1] and identify it’s position as A[min]

4. Swap A[1] and A[min] so A[1] contains the second smallest value,
now A[2]..A[n-1] are not sorted

5. Repeat this process similarly starting at A[2], A[3], and so on until
the final element is reached. The array is now sorted.

Fall 2004 322C – Lecture 13 22

Exercise

• Change the algorithm so that it sorts into
descending numerical order

Fall 2004 322C – Lecture 13 23

Selection Sort - Algorithm(2)
• Goal - Change an unordered array into an ordered array.
• The array will then have the values sorted in descending numeric

order. There are many ways to do this.
• Given an unordered array named A of length n, for example:

1. Find the largest value among the elements A[0]..A[n-1] and identify
it’s position as A[max]

2. Swap the values of A[0] and A[max] so A[0] now contains the
largest value, now A[1]..A[n-1] are not sorted

3. Next find the largest value among the remaining elements
A[1]..A[n-1] and identify it’s position as A[max]

4. Swap A[1] and A[max] so A[1] contains the second largest value,
now A[2]..A[n-1] are not sorted

5. Repeat this process similarly starting at A[2], A[3], and so on until
the final element is reached. The array is now sorted.

Fall 2004 322C – Lecture 13 24

Exercise (cont.)
• Now inspect the algorithm looking for potential

sub-processes that have to be done more than
once

• These become functions/procedures in a
modular solution program

• What are they?

5

Fall 2004 322C – Lecture 13 25

Modular Structure of a Well Formed Program

Find the
maximum
value in part
of an array

Swap two
values in an
array

Sort an array
into descending
order

Main function:
Create & populate
array, call sort and
report results

function
calling
hierarchy

Fall 2004 322C – Lecture 13 26

SelectionSort – part 1
// usual stuff up here
int main ()
{ const int MAXSIZE = . . .; int arraysize;
double myArray [MAXSIZE];
// assume that myArray values are partially filled in here

selectionSort (myArray, arraysize); //call the sort function
// other stuff here

return 0;
}
void selectionSort (double array [], int size)
{ // this function sorts the given array into descending order
int max; // will hold the index of the largest value found
for (int i=0; i < size; i++)

{
max = findMaximum (array, i, size);
swap(array, i, max);

}
}

Fall 2004 322C – Lecture 13 27

SelectionSort – part 2

int findMaximum (double array [], int i, int size)
{// function returns the index of the largest value in array

int j, max = i;
for (j= i + 1; j < size; j++)

if (array[j] > array[max]) max =j;
return max;

}
void swap (double array [], int i, int j)
{//function swaps the 2 values at positions i and j in array

double temp = array[i];
array[i] = array[j];
array[j] = temp;

}

Fall 2004 322C – Lecture 13 28

Two-Dimensional Arrays

• Used for tables and matrices
• Declaration similar to one dimensional arrays
• Need to specify both the number of rows and

columns during allocation
• Example:

const int
ROWS = 5,
COLS = 6;
double energyTable[ROWS][COLS];

Fall 2004 322C – Lecture 13 29

A 2D Array in memory
energyTable

ro
w

s

columns

Fall 2004 322C – Lecture 13 30

Energy Sources

Y
ea

rs

1989

1990

1991

1992

1993

Coal Gas Oil Hydro Nuclear Other

Energy Table

6

Fall 2004 322C – Lecture 13 31

Nested for Loops
• Nested loops are frequently used to process two-

dimensional arrays
• Often the body of inner loop is where the main

computation is done
• Example:

for (i = 0; i < ROWS; i++)
{ // stuff before the inner loop
for (j = 0; j < COLS; j++)
{ // body of inner loop operates on the elements

}
// stuff after the inner loop

}

By convention we usually refer to the specific elements as
tablename [i, j], where i is the row index and j is the column index

Fall 2004 322C – Lecture 13 32

Reading in values for EnergyTable

const int ROWS = 5, COLS = 6;
double energyTable [ROWS][COLS];
int i, j;
// reads 30 numbers needed to fill up the entries in the
// energyTable one row at a time
for (i = 0; i < ROWS; i++)

for (j = 0; j < COLS; j++)
cin >> energyTable[i][j];

Fall 2004 322C – Lecture 13 33

OR Using an Initializer List

double energyTable =
{

{18.9, 19.4, 34.2, 3.9, 5.7, 0.3},
{19.1, 19.3, 33.6, 3.0, 6.2, 0.2},
{18.8, 19.6, 32.9, 3.1, 6.6, 0.2},

{18.9, 20.3, 33.5, 2.8, 6.7, 0.2},
{19.6, 20.8, 33.8, 3.1, 6.5, 0.2}

};

Fall 2004 322C – Lecture 13 34

Computing Year (Row) Totals

double yearTotals [ROWS];

for (i = 0; i < ROWS; i++)
{ // compute total for each year i

yearTotals[i] = 0.0;
for (j =0; j < COLS; j++)

yearTotals[i] =
yearTotals[i] + energyTable [i][j];

}

Fall 2004 322C – Lecture 13 35

Computing Column Totals

double sourceTotals [COLS];

After you have the row and column totals, then output
the energy table with the totals added to it and also with
descriptive labels on the table

Fall 2004 322C – Lecture 13 36

Resultant Output Table
With Labels and Totals

Terminal Window

Fall 2004 322C – Lecture 14 1

EE 322C
Data Structures

Lecture 14

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 14 2

STL
The Standard Template Library, or STL, is a C++ library
which provides many of the basic data structures and
algorithms.
The STL is a generic library, that is, almost every
component in the STL is a template.
It consists of:

Container classes
Algorithms
Iterators
Adaptors

And a set of other special components:
Function Objects
Allocators
Predicates
Comparison functions

Fall 2004 322C – Lecture 14 3

STL
STL started in the 1970s by Stepanov/Lee at SGI/HP and
was accepted into C++ by the ANSI/ISO C++ standards
committee in 1994.
Programming Guide: http://www.sgi.com/tech/stl/index.html

Fall 2004 322C – Lecture 14 4

Containers

• A container is a generic data structure that stores a large
collection of elements. It has common operations for adding,
removing and accessing elements.

• The STL provides 10 container classes for solving a wide
range of problems.

• The elements do not have to be stored in any definite order
for a given Container type.

• A container owns it’s elements and they are deallocated when
a Container object is destroyed.

• STL containers are very close to the efficiency of hand-coded,
type-specific containers.

• An iterator is an integral type associated with Containers that
can be used to to iterate (cycle) through the Container's
elements.

Fall 2004 322C – Lecture 14 5

Container Types

Priority
QueueList

Map,
MutltimapQueueDeque

Set, MultisetStackVector

Associative
Containers

Adapter
Containers

Sequence
Containers

Fall 2004 322C – Lecture 14 6

Container Class Hierarchy

Container

Sequence
container

Adapter
container

Associative
container

vector deque list

stack queue Priority-
queue

set multiset map multimap

Fall 2004 322C – Lecture 14 7

Sequence Containers
A sequence container stores data by position in linear
order Oth element, 1st element, 2nd element, and so

forth.

Position 0 Position 4Position 3Position 2Position 1

Sequence Container

Fall 2004 322C – Lecture 14 8

Sequence Containers
• The array data structure is a sequence container.

It defines a block of consecutive data values of the same type.
Arrays are direct access containers.
An index may be used to select any item in the list without
referencing any of the other items

• The vector sequence container provides direct access
through an index and grows dynamically at the rear as
needed.

Insertion and deletion at the rear of the sequence is very efficient
- these operations inside a vector are not efficient

• The list sequence container stores elements by position.
List containers do not permit direct access
• must start at the first position (front) and move from element to

element until you locate the data value.
The power of a list container is its ability to efficiently add and
remove items at any position in the sequence.

Fall 2004 322C – Lecture 14 9

Adapter Containers

• An adapter contains a sequence container as
its underlying storage structure.

• The programmer interface for an adapter
provides only a restricted set of operations
from the underlying storage structure.

Fall 2004 322C – Lecture 14 10

Adapter Containers
• Stacks and a queues are adapteradapter containers that

restrict how elements enter and leave a sequence.
A stack allows insertion and access at only one end of
the sequence, called the top.
A queue is a container that allows access only at the
front and insertion at the rear of the sequence.

• Similar to a stack or queue, the priority queue
adapter container restricts access operations.

Elements have a priority associated with them
Elements can enter the priority queue in any order.
Once in the container, only the highest priority element
may be accessed.

Fall 2004 322C – Lecture 14 11

Associative Containers

• Associative containers store elements by
key.
– Ex: name, social security number, or part

number.
• A program accesses an element in an

associative container by its key, which may
bear no relationship to the location of the
element in the container.

Fall 2004 322C – Lecture 14 12

Associative Containers
• A set is a collection of unique values, called keys or

set members.
The set container has a series of operations that allow a
programmer to determine if an item is a member of the set
and to very efficiently insert and delete items.

• A map is a storage structure that allows a
programmer to use a key as an index to the data.

Maps do not store data by position and instead use key-
access to data allowing a programmer to treat them as
though they were a vector or array.

Fall 2004 322C – Lecture 14 13

The List Container

front rear

next nextnextnext

15front

46123

Before

front

46123

After

//

Inserting into a List Container

Fall 2004 322C – Lecture 14 14

Stack Containers
A stack allows access at only one end of the

sequence, called the top.

C

A top

Push A

B
A

top

Push B

B
top

Push C
(a)

C

B
A

top

Pop C
(b)

B

A top
Pop B

A

C

Fall 2004 322C – Lecture 14 15

Queue Containers

A queue is a container that allows access only at
the front and rear of the sequence.

A B C D

E

B C D E

A
rear front

Insert Delete

Fall 2004 322C – Lecture 14 16

Priority Queue Containers
A priority queue is a storage structure that has restricted
access operations similar to a stack or queue.
Elements can enter the priority queue in any order. Once in
the container, a delete operation removes the highest (or
lowest) priority element.

18

3

13

15

Value = 8

27

Fall 2004 322C – Lecture 14 17

Set Containers
A set is a collection of unique values, called keys or
set members.

5

3

1

1527

Set A

Ford

Buick

Honda

Set B

BMW

Jeep

Jaguar

Fall 2004 322C – Lecture 14 18

Map Containers
A map is a storage structure that implements a key-
value relationship.

D7B-916

W91-A83

4.95

12.50

Mirage

Calloway

A29-468

D7B-916

W91-A83

Index VendorPricePart#

A29-468 8.75 Martin

Fall 2004 322C – Lecture 14 19

C++ Arrays - Again

An array is a fixed-size collection of values of
the same data type.
An array is a container that stores the n (size)
elements in a contiguous block of memory.

arr[0] arr[1] arr[2]

0 1 2 n-1
. . . arr[n-1]

Fall 2004 322C – Lecture 14 20

Evaluating an Array as a Container

• The size of an array is fixed at the time of
its declaration and cannot be changed during
the runtime.
– An array cannot report its size. A separate

integer variable is required in order to keep track
of its size.

• C++ arrays do not allow the assignment of
one array to another.
– The copying of an array requires the generation

of a loop structure with the array size as an
upper bound.

Fall 2004 322C – Lecture 14 21

Program Analysis Questions

• Does it do what I want it to do?
• Does it work correctly according to the

requirements given?
• Does the documentation describe how to use it

and how it works?
• Is the code of good style?
• Is the program well-designed?

– Good modularity
– Useful encapsulation
– The right abstractions

• How efficient is the program?
Fall 2004 322C – Lecture 14 22

Selection Sort Function
void selectionSort(int array[], int n)
{ int smallIndex;// index of the smallest element in the (sub) array

int pass, j;
int temp;
// pass has the range 0 to n-2

for (pass = 0; pass < n-1; pass++)
{ // scan the sublist starting at index pass

smallIndex = pass;
// j traverses the sublist array[pass+1] to array[n-1]
for (j = pass+1; j < n; j++)
// if smaller element found, assign smallIndex to that position

{ if (array[j] < array[smallIndex]) smallIndex = j;}
// if smallIndex and pass are not the same location, swap the
// smallest item in the sublist with array[pass]
if (smallIndex != pass)
{ temp = array[pass];

array[pass] = array[smallIndex];
array[smallIndex] = temp;

}
}

}

How efficient is this ?

Fall 2004 322C – Lecture 14 23

Performance Analysis

• Performance evaluation questions:
• How much computing time does a certain algorithm take?
• How much storage (memory) does a certain algorithm use?
• A priori estimates can be made
• A posteriori measurements can be taken

• Big-O notation measures the efficiency of an algorithm by
estimating the number of key operations that the algorithm
must perform. It provides an order of magnitude estimate.
• For searching and sorting algorithms, the operation is data comparison.
• Big-O measure is very useful for selecting among competing algorithms.
• Timing data obtained from a program provides experimental evidence to

support the greater efficiency claims
• For selection sort how many comparisons have to be made?

• Can you estimate that?
• What does it depend on?

Fall 2004 322C – Lecture 14 24

Selection Sort

Fall 2004 322C – Lecture 14 25

Selection Sort- 5 Element Array

• Start with the values {50, 20, 40, 75, 35}
• We want to sort the values into ascending order

Pass 0: Select 20 at index 1
 Exchange arr[1] and arr[0]

50 40 75 35

pass = 0

2020

Fall 2004 322C – Lecture 14 26

Selection Sort - 5 Element Array

• Pass 0:
• Scan the entire list from arr[0] to arr[4] and identify 20

at index 1 as the smallest element.
• Exchange 20 with arr[0] = 50, the first element in the list.

Pass 0: Select 20 at index 1
 Exchange arr[1] and arr[0]

50 40 75 35

pass = 0

20

Fall 2004 322C – Lecture 14 27

Selection Sort - 5 Element Array

• Pass 1:
• Scan the sublist 50, 40, 75, and 35.
• Exchange the smallest element 35 at index 4 with arr[1] =

50.

20 50 40 75

pass = 1

35

Pass 1: Select 35 at index 4
 Exchange arr[4] and arr[1]

Fall 2004 322C – Lecture 14 28

Selection Sort - 5 Element Array

• Pass 2:
• Locate the smallest element in the sublist 40, 75, and 50.

20 35 75 50

pass = 2

40

Pass 2: Select 40 at index 2
 No exchange necessary

Fall 2004 322C – Lecture 14 29

Selection Sort - 5 Element Array

• Pass 3:
• Two elements remain to be sorted.
• Scan the sublist 75, 50 and exchange the smaller element

with arr[3].
• The exchange places 50 at index 4 in arr[3].

pass = 3

20 35 40 75 50

Pass 3: Select 50 at index 4
 Exchange arr[4] and arr[3]

Fall 2004 322C – Lecture 14 30

Selection Sort - 5 Element Array

20 35 40

Sorted list

50 75

Fall 2004 322C – Lecture 14 31

Big-O notation
• Summary of 5 element array

– Pass 0: 4 comparisons max
– Pass 1: 3 comparisons max
– Pass 2: 2 comarisons max
– Pass 3: 1 comparison max
– Hence, 10 comparisons = ((n*n)-n)/2 = (5*5)-5)/2 = 10

• For the selection sort, the number of comparisons isT(n)
~= O(n2-n/2).

• For n = 100: T(100) = 1002-100/2 = 10000-100/2 = 9900/2 = 4950

• Entire expression is called the "Big-O" measure for the
algorithm.

Fall 2004 322C – Lecture 15 1

EE 322C
Data Structures

Lecture 15

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 15 2

Exam Results
• Curved – slightly skewed towards lower grades

– Median = 75.5
– Mean = 75.183

• Score Ranges
– A 81-91 15
– B 73-80 21
– C 60-72 22
– D 50-60 2
– F <50 0

• Improvement will count
• Will make the best case for you overall

Fall 2004 322C – Lecture 15 3

Exam Results - Overall
• 91 *
• 89.5 ****
• 87 **
• 86 *
• 83 **
• 82.5 **
• 82 **
• 81 *
• ------------
• 80 *
• 79.5 ****
• 79 **
• 78.5 *
• 77.5 ***
• 77 *
• 76.5 **
• 75.5 **

• 74 **
• 73.5 **
• -----------
• 72.5 *
• 72 *
• 71.5 ***
• 71 ****
• 70.5 *
• 70 **
• 68.5 **
• 68 ***
• 64.5 *
• 64 ***
• 63.5 *
• 61.5 *
• ----------
• 58.5 *
• 56 *

Fall 2004 322C – Lecture 15 4

Exam Results: T/F
• Overall, pretty good – median=16, mean=14.73

– 18 *****
– 16 ***** ***** ***** ***** *****
– 14 ***** ***** ***** ***
– 12 ***** *****
– 10 *
– 8
– 6
– 4
– 2
– 0

Fall 2004 322C – Lecture 15 5

Exam Results: Multiple Choice
• 21 points - median=17.5, mean=17.32

– 21 **
– 20.5 *
– 20 *****
– 19.5 ***
– 19 ****
– 18.5 ***** *
– 18 ***** ***
– 17.5 ***** *
– 17 ***** *
– 16.5 ****
– 16 *
– 15.5 **
– 15 ***
– 14.5 ****
– 14 **
– 13 *
– 12.5 *
– 10.5 *

Fall 2004 322C – Lecture 15 6

Exam Results – Fill In
• Wider spread – median=18.5 , mean=18.87

– 24 ***** ***** **
– 22.5 **
– 21 ***** ***** ****
– 19 *
– 18 ***** ***** ***
– 16.5 **
– 15 ***** *****
– 12 *****
– 9 *

Fall 2004 322C – Lecture 15 7

Exam Results – What’s Wrong
• 12 points – median=9, mean=8.38,

– 12 ****
– 11 ***
– 10.5 ***
– 10 *
– 9.5 *
– 9 ***** ***** ***** ***** ***
– 8 *****
– 7.5 ****
– 7 ****
– 6 ***** ****
– 5 *
– 4 *
– 3 *

Fall 2004 322C – Lecture 15 8

Exam Results - Evaluate
• 9 points – median=6.75, mean=6.275

– 9 ***
– 8.5 **
– 8 ***** ***
– 7.5 ***** *
– 7 ***** *****
– 6.5 ***** *
– 6 ***** *
– 5.5 ***
– 5 **
– 4.5 *****
– 4 **
– 3.5 **
– 3 *****
– 2.5 *

Fall 2004 322C – Lecture 15 9

Exam Results - Debug
• 8 points – median=4, mean=4.24

– 8 ***
– 7.5 *
– 7 *****
– 6 *****
– 5.5 **
– 5 ***** *
– 4.5 ****
– 4 ***** **
– 3.5 ****
– 3 ***** ***** ***
– 2.5 **
– 2 ****
– 1.5 **
– 1 **

Fall 2004 322C – Lecture 15 10

Exam Results - Complete
• 8 points – median=5.5, mean=5.37

– 9 ****
– 8.5 **
– 8 ***** *
– 7.5 **
– 7 ***** *
– 6.5 **
– 6 ****
– 5.5 ****
– 5 *****
– 4.5 ***
– 4 *****
– 3.5 ****
– 3 *****
– 2.5 **
– 2 **
– 1 *
– 0 **

What is Recursion?
• Recursion is when a function calls itself
• It is an important problem solving approach in CS.

Problems that are amenable to recursive solutions have:
– One or more stopping cases with a simple, nonrecursive solutions
– The other cases can be reduced to simpler problems closer to the

stopping cases
– Eventually the problem can be reduced to simple stopping cases

• The classic example is computing the factorial of a non-
negative integer. The mathematical formulation of n! is:
– 0! = 1 by definition
– n! = n * (n-1)! Recursively defined

Fall 2004 322C – Lecture 15 12

• Represents the number of permutations of n
symbols, e.g. the three symbols a,c,r
– 3! = 6: car, rac, arc, acr, rca, cra

• n! = (n-1)! × n (recursively)
• 0! = 1

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120

N!

Fall 2004 322C – Lecture 15 13

N-Factorial Program
// Compute factorial of a given integer
// usual stuff in here
int factorial (int);
int main ()
{

cout.<< "Please enter a nonnegative integer";
int num;
cin >> num;
cout << ”The factorial of " << num << " is " <<
factorial(num);
return 0;
}

// Recursive function for computing the factorial of an
// integer n
int factorial (int n)
{

if (n == 0) return 1; // terminating case
else return n*factorial(n-1);
// Call factorial function recursively for n-1

}
Fall 2004 322C – Lecture 15 14

• Every recursive call is like a call to a new copy of the
function

• Every recursive call must simplify the computation in some
way

• There must be special cases to handle the simplest
computations (terminal cases)

• factorial(4) calls factorial(3)
factorial(3) calls factorial(2)

factorial(2) calls factorial(1)
factorial(1) calls factorial(0)

factorial(0) returns 1
factorial(1) returns 1 * 1 = 1

factorial(2) returns 1 * 2 = 2
factorial(3) returns 2 * 3 = 6

factorial(4) returns 6 * 4 = 24

Recursive Descent and Ascent

Fall 2004 322C – Lecture 15 15

Recursion uses the Stack

• C++ has an internal data structure called the
program stack that is used to store local
variable information

Fall 2004 322C – Lecture 15 16

Recursion uses the Stack
• C++ has an internal data structure called the program

stack that is uses to store local variable information
on

push pop

peek

A Stack enforces a LIFO discipline (last in, first out)

Computing Fibonacci Numbers

• Fibonacci numbers form a sequence of integers in
which each number in the sequence is the sum of
the two preceding numbers.

• The first two numbers in the sequence have the
values 0 and 1.

• Find Fibonacci numbers using recursion.
fib (0) = 0;
fib (1) =1;
fib(n) = fib(n-2) + fib(n-1); for n >= 2

Fall 2004 322C – Lecture 15 18

Fibonacci Program
// usual stuff here
int fib (int)
int main()
{

cout << "Enter a non-negative integer n: ";
int num;
cin >> num;
cout << "the fibonacci number of " << num << " = " << fib(num);
return 0;

}
// Computes the value of the nth Fibonacci number
int fib (int n)
{

if (n == 0) return 0;
else if (n == 1) return 1;

else return fib(n - 1) + fib (n - 2);
}

Towers of Hanoi
Solving the Towers of Hanoi Problem
Check out
http://www.mazeworks.com/hanoi/
• Rules of the game
• Goal - move n discs from starting peg A to the

destination peg C (using an intermediary peg B)
• Move 1 disc at a time from the top of a stack, no

larger disc may be placed on top of a smaller one
• Recursive solution is to break up the n disc problem

into: a 1 disc problem (a stopping condition) and an n-1
disc problem

Fall 2004 322C – Lecture 15 20

Towers of Hanoi- 4 disc example -

A B C

Fall 2004 322C – Lecture 15 21

Tower of Hanoi Program
// usual stuff in here
int main()
{ int numDisks; // number of disks to start with

cout << “how many disks do you want to play with?” << endl;
cin >> numDisks;
// set the initial 3 pegs - A, B and C from left to right.
char sourcePeg = "A";
char destinationPeg = "C";
char sparePeg = "B";
tower(sourcePeg, destinationPeg, sparePeg, numDisks);
cout << "end of run";
return 0;

}
// Tower function moves n disks from fromPeg to toPeg using auxPeg as an intermediary.
// It also displays a list of move instructions that transfer the disks.
void tower(char fromPeg, char toPeg, char auxPeg, int n)
{ if (n == 1)

cout << "Move disk 1 from peg " << fromPeg << " to peg " << toPeg;
else // recursive block
{ tower (fromPeg, auxPeg, toPeg, n-1);

cout << "Move disk " << n << " from peg " << fromPeg << " to peg " << toPeg;
tower (auxPeg, toPeg, fromPeg, n-1);

}
} // end of Tower

1

Fall 2004 322C – Lecture 16 1

EE 322C
Data Structures

Lecture 16

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 16 2

Good Advice ;-)

• Topics of the day: sequence containers in STL
– All about vectors
– More searching and sorting algorithms
– Performance analysis using the Big O
– Homework Problem

Fall 2004 322C – Lecture 16 3

Terminology
• Part of the description of an abstract data type

(ADT) is a precise definition of what each
operation (member function) does. There are
three parts that describe its API.
– Operation name/action summary - this includes an

action statement that specifies the input args, the
type of operation performed on elements of the data
structure, and the output values

– Preconditions - necessary conditions that must apply to
the input args and the current state of the object for
successful execution of the operation

– Postconditions - changes in the data of the structure
caused by performing the operation

Fall 2004 322C – Lecture 16 4

Terminology
• These are found in the documentation header

comments of each defined operation and the user
documentation

• From a function implementers perspective
– preconditions should be tested for and appropriate

action taken if not valid (exception handling is the
preferred method)

– the operation should be thoroughly tested to ensure
that results and postconditions are correct for all valid
args

Fall 2004 322C – Lecture 16 5

Vectors
• The vector isa sequence container that provides direct

access through an index and grows/shrinks dynamically at
the rear as needed.

memory management is automatic.
Supports random access to elements, constant time insertion and
removal of elements at the end, and linear time insertion and
removal of elements at the beginning or in the middle.
Access the elements using an index or iterator

v[0] v[1] v[2] . . . v[n-1] room to grow

0 1 2 n-1

Fall 2004 322C – Lecture 16 6

Constructors
vector();
//Create an empty vector. This is the default constructor.

vector(int n, const T& value = T());
//Create a vector with n elements, each having a specified
//value. If the value argument is omitted, the elements are
//filled with the default value for type T. Type T must have a
//default constructor, and the default value of type T is specified
//by the notation T().

vector(T *first, T *last);
//Initialize the vector using the address range first . . . last.
//The notation *first and *last is an example of pointer notation

2

Fall 2004 322C – Lecture 16 7

Declaring Vector Objects

Syntax:
vector <T> vectorName (size); //T is a type name

Examples:
// vector of size 5 containing the integer values 0

vector<int> intVector(5);
// vector of size 10; each element is the empty string

vector<string> strVector(10);
// create a char vector of 5 elements initialized to ‘x’

vector<char> cv(5, 'x');
// vector of 100 Student objects - each element is?

vector <Student> students (100);

Fall 2004 322C – Lecture 16 8

Operations
T& back();
//Return the value of the item at the rear of the vector.
//Precondition: vector must contain at least one element.

const T& back()const;
//Constant version of back().

bool empty()const;
//Return true if the vector is empty and false otherwise.

Fall 2004 322C – Lecture 16 9

Operations
T& operator[](int i);
//Allow the vector element at index i to be retrieved or modified.
//Precondition:The index, i, must be in the range 0 ≤ i <n, where n is the
// number of elements in the vector.
//Postcondition:If the operator appears on the left of an assignment
// statement, the expression on the right side modifies
// the element referenced by the index.

const T& operator[](int i) const;
//Constant version of the index operator.

Fall 2004 322C – Lecture 16 10

Operations
void push_back(const T& value);
//Add a value at the rear of the vector.
//Postcondition: The vector has a new element at the rear and its size
// increases by 1.

void pop_back();
//Remove the item at the rear of the vector.
//Precondition: The vector is not empty.
//Postcondition: The vector has a new element at the rear or is empty
// and its size decreases by 1.

Fall 2004 322C – Lecture 16 11

Operations
void resize((int n, const T& fill = T());
//Modify the size of the vector. If the size is increased, the
//value fill is added to the elements on the tail of the vector.
//If the size is decreased, the original values at the front
//are retained.
//Postcondition: The vector has size n.

int size()const;
//Returns the number of elements in the vector.

Fall 2004 322C – Lecture 16 12

Operations
int capacity()
//Returns the number of elements for which memory has been
//allocated. capacity() is always greater than or equal to size().
//Memory will be reallocated automatically (by a factor of 2) if more
// than capacity() - size() elements are inserted into the vector.

void reserve (int n)
//Preallocates memory to hold the vector elements. If n is less than
//or equal to capacity(), this call has no effect. The resulting
//capacity() is greater than or equal to n, but size() is unchanged.
//The main reason for using reserve() is efficiency and to control
//possible invalidation of iterators.

3

Fall 2004 322C – Lecture 16 13

Example Use

#include <vector>
. . .
vector<int> intVector(5);
intVector = {9,2,7,3,12};
outputVector <intVector>;

9

43210

2 7 3 12

Fall 2004 322C – Lecture 16 14

Output a Vector Example

// output the elements of a vector - generic
template <typename T>
void outputVector(vector<T> &v)
{ int n = v.size();
for(int i = 0; i < n; i++)
{cout << v[i] << " ";}

cout << endl;
}

Fall 2004 322C – Lecture 16 15

Adding and Removing Vector Elements

12 -5 8 1412 -5 8 14
0

Before

v.size() = 4

43210321

v.size() = 5

After v.push_back(10)

10

4.64.6 6.8

0
Before

v.size() = 2

01

v.size() = 1

After v.pop_back()

Fall 2004 322C – Lecture 16 16

Shifting blocks of elements to insert or
delete a vector item

15 20 30 35 40
Initial Vector

30 3515 40

20

Erase 20 at
Position 1

Shift left
0 4321

15 20 30 35 4025Insert 25 at
Position 2

Shift right

3210 54

15 20 30 35 40
Initial Vector

0 4321 210 3

Fall 2004 322C – Lecture 16 17

Resizing a Vector
int arr[5] = {7, 4, 9, 3, 1};
vector<int> v(arr,arr+5); //v initially has 5 integers
v.resize(10); //list size is doubled
v.resize(4); //list is contracted, data is lost

7 4 9

7 4 9 3 1 0 0 0 0

7 4 9 3

vector<int> v(arr,5)

v.resize(10);

v.resize(4);

1

0

3

Fall 2004 322C – Lecture 16 18

The Insertion Sort - e.g. a vector of names

Insert Dare at
location 1;
the tail of the list
shifts to the right

Start with Monroe

Chin Insert Chin in location 0;
Monroe moves to location 1

FloresChin Insert Flores in location 1;
Monroe moves to location 2

Chin Monroe SteinFlores Element Stein is OK

Chin Dare Monroe SteinFlores

Processing Flores

Processing Chin

Processing Dare

Processing Stein

Monroe

Monroe

Monroe

(at end already)

4

Fall 2004 322C – Lecture 16 19

Insertion Sort Algorithm

// this generic template function performs the sorting
// of a vector of type T using the insertion sort
// technique

template <typename T>
void insertionSort(vector<T> &v)
{ int i, j,

n = v.size(); // n is the size of the vector
T temp;

// pass through the vector in sequence examining each
// element in turn to find and then place it into its
// proper position in the rest of the sublist –
// do this for v[0] ... v[i-1], 1 <= i < n

Fall 2004 322C – Lecture 16 20

Insertion Sort Algorithm
for (i = 1; i < n; i++)
{

//index j scans down list from v[i] looking for
//correct position to locate target. assigns it to v[j]
j = i;
temp = v[i];
//locate insertion point by scanning downward as long
//as temp < v[j-1] and we have not encountered the
// beginning of the list
while (j > 0 && temp < v[j-1])

{
//shift elements up to make room for insertion
v[j] = v[j-1];
j--;

}
// the location is found; insert temp
v[j] = temp;

} //end for loop
} //end insertionsort

Fall 2004 322C – Lecture 16 21

Big-O Analysis
• n is the number of elements in the vector
• the insertion sort requires n-1 passes through the vector
• For pass i the insertion occurs in the sublist v[0] to v[i-

1], which requires on average i/2 comparisons
• T(n) = 1/2 + 2/2 + 3/2 + 4/2 + . . . (n-1)/2
• which is ~equal to n(n-1)/4
• Worst case is when the vector is sorted in the opposite

order requiring i comparisons on each pass
• T(n) = 1 + 2 + 3 + 4 + . . . (n-1) ~= n(n-1)/2
• In both cases it is still quadratic - O(n2)
• Best case is when the vector is already sorted or nearly

sorted - requiring ~ O(n) comparisons

Fall 2004 322C – Lecture 16 22

Iterators
• Special pointer objects used to cycle through the

contents of a container - declared iterator
• Five kinds of iterators

– Random access - store and retrieve values anywhere
– Bidirectional - store/retrieve values in either forward or

backward direction
– Forward - store/retrieve values in forward direction only
– Input - retrieve in forward direction
– Output - store in forward direction

• Can increment, decrement and apply *
• For vector, e.g.

– vector<char> v(10); // create a vector of 10 chars
– vector<char>::iterator p;

// create an iterator named p for char vectors

– Use functions begin(), end() and iterator arithmetic to
move through values

Fall 2004 322C – Lecture 16 23

Homework Problem – Part I
• Dun & Bradstreet Credit Report

– A credit report consists of
– 125 sections (named 1, 2, 3, . . . , 124, 125)
– Sections consists of text

• The amount of text is unknown and varies with each section
• The text may be coded, but for purposes of storage we treat each

section as a string of characters

• Due Friday
– Create the class StoreDBReport to encapsulate one report

• Use STL classes (which two are appropriate?)
• What is the simplest solution that solves the problem?

– And implement the following interface operations
• putSection
• getSection

Fall 2004 322C – Lecture 16 24

Homework – Part I
• Designing the Class StoreDBReport

– What is the logical or modeling view of a report?
• What does a report look like?
• What do you want to do with the report?
• What do you need to do this?

– What does encapsulate a D&B report mean?
• What needs to be localized?
• How do you do that?
• What needs to be public? Private?
• What do you need for the public interface?
• How do you implement the logical structure of the report?

– Do you hide the implementation?
– If so, how? If not, why not and what do you make public?

1

Fall 2004 322C – Lecture 17 1

EE 322C
Data Structures

Lecture 17

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 17 2

Today

• Society of Hispanic Professional Engineers
– Frightening Fiesta Fundraiser
– Last class before Halloween: dress in a costume
– Wearing the scariest costume I could put together ;-)

• Quiz on Monday
– Lectures 12-17
– 30 minutes

• Next Topics: sequence containers in STL
– Lists - Today
– Stacks - Monday
– Queues – next Wednesday (Matt)

Fall 2004 322C – Lecture 17 3

Lists

• The list isa sequence container that stores
elements by position.

List containers do not permit direct access
• No [] operator as in vectors
• must start at the first position (front) and move from

element to element until you locate the data value.
• bi-directional access allowed

The power of a list container is its ability to
efficiently add and remove items at any position in
the sequence.

Fall 2004 322C – Lecture 17 4

Lists
• List uses a list iterator

• Is a generalized pointer that moves through a list
element by element… forward or backward

• At any point, the * operator accesses the value of a list
item.

• Accessed by using the scope operator ::

Fall 2004 322C – Lecture 17 5

Model of a Singly Linked List Object

The links are implemented as pointer variables

front back

Fall 2004 322C – Lecture 17 6

Linked List Nodes
• Each Node is like a piece of a chain

• To insert a new link, break the chain at the desired
location and simply reconnect at both ends of the new
piece.

Individual Piece Pop Chain

Disconnect

Reconnect

2

Fall 2004 322C – Lecture 17 7

Linked List Nodes
• Removal is like Insertion in reverse.

Disconnect

Reconnect

Fall 2004 322C – Lecture 17 8

Linked lists
Each node contains a value and a pointer to the
next node in the list.

class node
{int nodevalue; // the data element

node *next; // pointer to the next node

// other stuff here

};

The list begins with a pointer to the first node of
the list and terminates when a node has a NULL
next pointer.

node *front = null, *temp;

Fall 2004 322C – Lecture 17 9

Node Composition

nodeValue

next

nodeValue next

An individual Node is composed of two parts,
a Data field containing the data stored by
the node, and a Pointer field that contains
the address of the next Node in the list.

Fall 2004 322C – Lecture 17 10

Inserting/Deleting at the front
Insert
Set the pointer in the new node to the previous value of
front. update front to point at the new node.

front = new node (value, front);

Erase
assign front the pointer value of the first node, and then
delete the node.
temp = front;
front = front -> next;

// deallocate node at temp

Fall 2004 322C – Lecture 17 11

Inserting at the Front of a Linked List

(b)

20

front

Before

front

55

20item

front

After

front

55

Fall 2004 322C – Lecture 17 12

Deleting From the Front of a Linked List
front

front

//

front = NULL

Deleting front of a 1-node list

Deleting front of a multi-node list

//

front = front->next

3

Fall 2004 322C – Lecture 17 13

Inserting/Erasing inside

Maintain a pointer to the current list node and a
pointer to the previous node.
node *curr, *previous;

Erase: Change the pointer value in the previous
node to point to the one after the node being
deleted.
previous -> next = curr -> next;

Fall 2004 322C – Lecture 17 14

Inserting an element into a list

front

List object (after)

front rear

List object (before)

newElt
rear

iter

2 55937 2 9374

iter4

Fall 2004 322C – Lecture 17 15

Removing a Target Node

next

front

target

prev curr

// //

Fall 2004 322C – Lecture 17 16

Erasing an element from a list

front

List object (after)

front rear

List object (before)

rear
iter

2 5937 2 593

iter
??

Fall 2004 322C – Lecture 17 17

Insert/Delete at the back
Maintain a pointer to the last list node that has value NULL
when the list is empty.
node *back = NULL;

Assign a “back” pointer the address of the first node added to
the list.
back = front;

To add other nodes at the back:
1) allocate a new node
2) assign the pointer in node “back” to point to the new node
3) assign the pointer “back” the address of the new node.
curr = new node (value, NULL);
back -> next = curr;
back = curr;

Fall 2004 322C – Lecture 17 18

Inserting at the back

... //

item

newNode

front

back

//

4

Fall 2004 322C – Lecture 17 19

What is the Back of the List?

D

C

B

top

A

Stack

D ABC

Linked List

front

Fall 2004 322C – Lecture 17 20

Maintaining an Ordered List

827460

front rear
65

827460front
rear

50 827465

front rear
curr

6065

50

Before Insert After Insert

Position the iterator curr at the front of the list.

Insert 50 in the list:

Fall 2004 322C – Lecture 17 21

Splicing two lists

7 15 16 3 47 15 3 47 3 4
destList

15 16

sourceIter

sourceList pos

5
destList (After insert of 15)

15 16

sourceIter

sourceList pos

5
destList (After insert of 16)

15 16

sourceIter

sourceList pos

5

sourceList.splice (destList, pos);

Fall 2004 322C – Lecture 17 22

List Constructors
list();
• Create an empty list -- the default constructor

list(int n, const T&value = T());
• Create a list with n elements, each having a specified value.
• If the value argument is omitted, the elements are filled

with the default value for type T.
• Type T must have a default constructor, and the default

value of type T is specified by the notation T().

list(T *first, T *last);
• Initialize the list, using the address range [first, last).

Fall 2004 322C – Lecture 17 23

List Operations
T& back();
• Return the value of the item at the rear of the list.
• Precondition: The list must contain at least one element.

bool empty() const;
• Return true if the list is empty, false otherwise

T& front();
• Return the value of the item at the front of the list.
• Precondition: The list must contain at least one element.

Fall 2004 322C – Lecture 17 24

List Operations
void push_back(const T& value);
• Add a value at the rear of the list.
• Postcondition: The list has a new element at the rear, and

its size increases by 1.

void pop_back();
• Remove the item at the rear of the list.
• Precondition: The list is not empty.
• Postcondition: The list has a new element at the rear or is

empty, and size decreases by 1

5

Fall 2004 322C – Lecture 17 25

List Operations
void push_front(const T& value);
• Add a value at the front of the list.
• Postcondition: The list has a new element at the front, and

its size increases by 1.

void pop_front();
• Remove the item at the front of the list.
• Precondition: The list is not empty.
• Postcondition: The list has a new element at the front or is

empty.

int size() const;
• Return the number of elements in the list.

Fall 2004 322C – Lecture 17 26

List Iterator Operations
iterator begin();
• Returns an iterator that references the first position

(front) of the list. If the list is empty, the iterator value
end() is returned.

const_iterator begin();
• Returns a const_iterator that points to the first

position (front) of a constant list.

Fall 2004 322C – Lecture 17 27

List Iterator Operations
iterator end();
• Returns an iterator that signifies a location immediately

past the range of actual elements.
• A program must not dereference the value of end() with

the * operator

const_iterator end();
• Returns a const_iterator that signifies a location

immediately out of the range of actual elements in a
constant list.

• A program must not dereference the value of end() with
the * operator

Fall 2004 322C – Lecture 17 28

List Iteration Operations
void erase(iterator pos);
• Erase the element pointed to by pos.
• Precondition: The list is not empty.
• Postcondition: The list has one fewer element.

void erase(iterator first, iterator last);
• Erase all list elements within the iterator range [first, last].
• Precondition: The list is not empty.
• Postcondition: The size of the list decreases by the number

of elements in the range

Fall 2004 322C – Lecture 17 29

List Iteration Operations
iterator insert(iterator pos, const T& value);
• Insert value before pos, and return an iterator pointing to

the position of the new value in the list.
• The operation does not affect any existing iterators.
• Postcondition: The list has a new element.

Other useful operations can be found at:
http://www.cppreference.com

Fall 2004 322C – Lecture 17 30

List Iteration Operations
* Accesses the value of the item currently pointed to by the iterator.

if we have list<int>::iterator iter;
**iteriter;;

++ Moves the iterator to the next item in the list.
iteriter++;++;

-- Moves the iterator to the previous item in the list.
iteriter----;;

== Takes two iterators as operands and returns true when they both point
at the same item in the list.

iter1 == iter2iter1 == iter2
!= Returns true when the two iterators do not point at the same item in

the list.
iter1 != iter2iter1 != iter2

6

Fall 2004 322C – Lecture 17 31

Simple List Example
// example of list processing basics
#include <iostream>
#include <list>
using namespace std;
int main()
{

list<int> lst; // create an empty list
int i;
for(i=0; i<10; i++) lst.push_back(i);

// add items to the list
cout << "Size = " << lst.size() << endl;
cout << "Contents: ";
list<int>::iterator p = lst.begin();
while(p != lst.end())
{

cout << *p << " ";
p++;

}
cout << endl << endl;

Fall 2004 322C – Lecture 17 32

// change the contents of the list
p = lst.begin();
while(p != lst.end())
{

*p = *p + 100; // add 100 to each item
p++;

}
cout << "Contents modified: ";
p = lst.begin();
while(p != lst.end())
{

cout << *p << " ";
p++;

}
cout << endl << endl;
return 0;

}

Fall 2004 322C – Lecture 17 33

Simple List Example

cout << "List printed backwards:\n";
p = lst.end();
while(p != lst.begin())
{

p--; // decrement pointer before using
cout << *p << " ";

}

Or go backwards

Fall 2004 322C – Lecture 17 34

Model the Poker Table as a
Circular Forward-Only List

dealer

You could build this data type by specializing the list data type
to logically connect the back to the front

Fall 2004 322C – Lecture 17 35

Model of a Doubly Linked List Object

front back

The links are implemented as pointer variables

Fall 2004 322C – Lecture 17 36

Doubly linked lists
• Provides the most flexible implementation for the

sequential list.
- Its nodes have pointers to the next and the previous

node, so the program can traverse a list in either the
forward or backward direction.

• Traverse a list by starting at the first node and
follow the sequence of next nodes until you arrive
back at the header.

• To traverse a list in reverse order, start at the
last node and follow the sequence of previous nodes
until arriving back at the header.

7

Fall 2004 322C – Lecture 17 37

Inserting a Node at a Position

next prev

prevNode = curr->prev
prev item next

1
43 2 curr

newNode

Fall 2004 322C – Lecture 17 38

Inserting a Node at a Position

prev next

succNode = curr->next

1

2

//
//
//

//

prevNode = curr->prev curr

Fall 2004 322C – Lecture 17 39

Circular Doubly Linked Lists

• A Watch Band provides a good Real Life analogue for this
Data Structure

First Element

Second Element

Last Element

Fall 2004 322C – Lecture 17 40

Circular Doubly Linked Lists
• Implemented on a Computer it might look something like

this.

header
23 4 9

Fall 2004 322C – Lecture 17 41

Updating a Doubly Linked List

prev next

header

Before Insert: Empty list

prev next

header

newNode

After Iinsert: List with one element

Fall 2004 322C – Lecture 17 42

Hints on Debugging and Testing
• Scaffolding

– Code used to test and debug
– Not permanent – often thrown away

• Print statements
• Test drivers

• Easiest way to debug:
– Print out important data
– At critical points in the program

• Easiest way to test:
– Test driver that performs various operations

• Declares variables – perhaps with initialization
• Call functions and class operations
• Print input and results

– Eg, see list example

8

Fall 2004 322C – Lecture 17 43

Sample Test Driver for Homework
// example of homework test driver
#include . . .
#include <string>
#include <vector>
. . .
//class definition of storeDBReport
. . .
using namespace std;
int main()
{

// first create any variables needed
// create an empty report
storeDBReport dbr;
. . .
// exercise your class code in various ways
int i;
for(i=0; i<125; i++) putSection(i, “default section text”);
putSection(23, “this is section 23 – changed from the default”);
putSection(126, “this is an exception test case”);
putSection(23, “this is the revised section 23”)
. . .
// Print out the results of the test
for(i=0; i<125; i++)

cout << i << “-” <<getSection(i) << endl;
}

1

Fall 2004 322C – Lecture 18 1

EE 322C
Data Structures

Lecture 18

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 18 2

Today
• Stacks
• Homework – Part II
• Quiz

Fall 2004 322C – Lecture 18 3

What is a Stack?

• ADT level: A stack is an ordered group of
homogeneous items (elements), in which the
removal (pop) and addition (push) of stack items
can take place only at the top of the stack.

• Only the top item is usable
• A stack is a LIFO “last in, first out” structure.
• A stack is used:

• Extensively in compilers and O/S support
• Program run-time support
• Implementing any concept that behaves like a

stack
Fall 2004 322C – Lecture 18 4

Stack of Trays

Fall 2004 322C – Lecture 18 5

Stacks of Money

Fall 2004 322C – Lecture 18 6

Pushing/Popping a Stack

Because a pop removes the item last pushed
onto the stack, we say that it enforces a LIFO
discipline

2

Fall 2004 322C – Lecture 18 7

Stack Operations
• Constructors

– stack(); //Creates an empty stack
• Comparison Operators

– The following comparison operators are defined:
= =, <, < =, ! =, >, > =

Fall 2004 322C – Lecture 18 8

Stack Operations
void push(const T& item);
• Insert the argument item at the top of the stack.
• Postcondition: The stack has a new item at the

top.

void pop();
• Remove the item from the top of the stack.
• Precondition: The stack is not empty
• Postcondition: Either the stack is empty or

the stack has a new topmost item from a previous
push.

Fall 2004 322C – Lecture 18 9

Stack Operations
int size() const;
• Return the number of items on the stack.
T& top() const;
• Return a reference to the value of the item at the

top of the stack.
• Precondition: The stack is not empty.
const T& top() const;
• Constant version of top().
bool empty(); const
• Check whether the stack is empty. Return true if

it is empty and false otherwise.

Fall 2004 322C – Lecture 18 10

Example stack declarations

• #include <stack>
• stack <int> intstk;
• stack <char> digits;
• stack <Card> deck;
• stack <Student> pile;

Fall 2004 322C – Lecture 18 11

Using a Stack to Convert a Decimal
Number to Hex

'1'
'A'
'F'

'A'
'F''F'

431 % 16 = 15
431 / 16 = 26

26 % 16 = 10
26 / 16 = 1

1 % 16 = 1
1 / 16 = 0

 Push Digit Characters

'1'

'A'
'F'

'A'

'F' 'F'
Pop '1'
numStr = "1"

 Pop Digit Characters

Pop 'A'
numStr = "1A"

Pop 'F'
numStr = "1AF"

Convert 431 10 to ??? 16

Look at example code

Fall 2004 322C – Lecture 18 12

System Support

• Supports Recursion
• The system maintains a stack of activation

records that specify:
1.the function arguments
2.the local variables/objects
3.the return address

• The system pushes an activation record onto the
system stack when calling a function and pops it
when returning.

3

Fall 2004 322C – Lecture 18 13

Arguments
int n

Return Address
RetLoc or RetLoc2

Activation Record

In main():
 call fact(4) Argument 4 Return RetLoc1

System Stack

In fact(4):
call fact(3)

Argument 3

Argument 4

Return RetLoc2

Return RetLoc1

Fall 2004 322C – Lecture 18 14

Used to Evaluate Expressions
Handles Postfix/RPN Expression Notation
• places the operator after its operands
• easy to evaluate using a stack to hold operands.
• The rules:

1.Immediately push an operand onto the stack.
2.For a binary operator, pop the stack twice, perform

the operation, and push the result back onto the
stack.

3.At the end a single value remains on the stack. This is
the value of the entire expression.

Fall 2004 322C – Lecture 18 15

Used to Evaluate Expressions
Infix notation
• A binary operator appears between its operands.
• More complex than postfix, because it requires

the use of operator precedence and parentheses.
• Most compilers convert infix to RPN and use the

above process

Fall 2004 322C – Lecture 18 16

RPN (Reverse Polish Notation) expression 2 3 +

3

2

operandStack empty

3. Identify + as an operator
 Begin the process of evaluating +.

4. getOperands() pops stack
 twice and assigns 3 to
 right and 2 to left.

5. compute() evaluates left + right
 and returns the value 5. Return
 value is pushed on the stack.

5

1. Identify 2 as an operand.
 Push integer 2 on the stack.

Current operandStack
2

3

2

2. Identify 3 as an operand.
 Push integer 3 on the stack.

Scan of Expression and Action

Fall 2004 322C – Lecture 18 17

Uncoupling Stack Elements

Train Before Uncoupling E
A B C D E

Get C out of the middle of the stack

Fall 2004 322C – Lecture 18 18

Uncoupling Stack Elements

Uncouple E. Move to side track
A B C D

E

4

Fall 2004 322C – Lecture 18 19

Uncoupling Stack Elements

Uncouple D. Move to side track
A B C

D

E

Fall 2004 322C – Lecture 18 20

Uncoupling Stack Elements

Uncouple C Move aside
A B C

D

E

Fall 2004 322C – Lecture 18 21

Uncoupling Stack Elements

Attach D to end of train
A B D C

E

Fall 2004 322C – Lecture 18 22

Uncoupling Stack Elements

Attach E to end of train
A B D E C

Fall 2004 322C – Lecture 18 23

Homework Part II
• In the real development from which the homework

is taken (The D&B Credit Report System),
– Space was of fixed sizes both in main memory and on

disk.
– So we had to break string up into pieces
– For the example here we will only do that inside the

report class
• Change in requirements:

– Inside the storeDBReport class, strings can only be 128
characters in length

– Outside the class they can still be of arbitrary size (ie,
the interface to the class stays the same)

Fall 2004 322C – Lecture 18 24

Homework Part II

• Homework:
– Change the internal representation of report structure

to satisfy this requirement (ie the private part)
– Change getSection and putSection so that they do the

appropriate thing when getting and putting sections
• Hints:

– Use another STL data structure we have discussed to
decompose and recompose the strings put and gotten
from the report

1

Fall 2004 322C – Lecture 19 1

EE 322C
Data Structures

Lecture 19

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 19 2

Today

• Topics: adaptor containers in STL
– An adaptor container uses another STL container as its

implementation, e.g., a stack can be implemented using
vector, list or deque (default), and a queue can be
implemented using list or deque (default)

– Stacks continued
– Queues

- Deque
- Queue ADT
- Radix Sort
- Priority Queue

Fall 2004 322C – Lecture 19 3

More example stack declarations

• #include <stack>
• stack <int> intstk;
• stack <int, list <int> > intstk;
• stack <Card, vector <Card> > deck;

Fall 2004 322C – Lecture 19 4

System Stack Uses
• Program call stack (also supports Recursion)
• The system maintains a stack of activation

records that specify:
1.the function arguments
2.the local variables/objects
3.the return address

• The system pushes an activation record onto the
system stack when calling a function and pops it
when returning.

• Remember the factorial example - e.g. call to find
the factorial of 4 – fact(4);

Fall 2004 322C – Lecture 19 5

Arguments
int n

Return Address
RetLoc or RetLoc2

Activation Record

In main():
 call fact(4) Argument 4 Return RetLoc1

System Stack

In fact(4):
call fact(3)

Argument 3

Argument 4

Return RetLoc2

Return RetLoc1

Fall 2004 322C – Lecture 19 6

Used to Evaluate Expressions
Handles Postfix/ReversePolishNotation
Expressions
• Places the operator after its operands
• Easy to evaluate using a stack to hold operands.
• The rules:

1. Immediately push an operand onto the stack.
2. For a binary operator, pop the stack twice,

perform the operation, and push the result back
onto the stack.

3. At the end a single value remains on the stack.
This is the value of the entire expression.

2

Fall 2004 322C – Lecture 19 7

Used to Evaluate Expressions
Infix notation
• A binary operator appears between its operands.
• More complex than postfix, because it requires

the use of operator precedence and parentheses.
• Most compilers convert infix to RPN and use the

above process.

Fall 2004 322C – Lecture 19 8

RPN (Reverse Polish Notation) expression 2 3 +

3

2

operandStack empty

3. Identify + as an operator
 Begin the process of evaluating +.

4. getOperands() pops stack
 twice and assigns 3 to
 right and 2 to left.

5. compute() evaluates left + right
 and returns the value 5. Return
 value is pushed on the stack.

5

1. Identify 2 as an operand.
 Push integer 2 on the stack.

Current operandStack
2

3

2

2. Identify 3 as an operand.
 Push integer 3 on the stack.

Scan of Expression and Action

Fall 2004 322C – Lecture 19 9

Double Ended Queue (deque)

A deque is a combination LIFO and FIFO Data
Structure.

Elements are inserted in the Front or Back of
the deque and are removed from the Front or
Back.

front back

Fall 2004 322C – Lecture 19 10

Deque Constructors
deque();
• Create an empty deque.

deque(int num, const T &val = T());
• Create a deque with num elements of the value val.

deque(const T, &ob);
• Create a deque with the same elements as ob.

deque(InIter start, InIter end);
• Create a deque with the elements in the range specified

by iterator values of start and end.

Fall 2004 322C – Lecture 19 11

Deque Operations
Comparison operators: = =, <, < =, ! =, >, > =

bool empty() const;
• Check whether the deque is empty. Return true if it is empty and false

otherwise.

T& front();
• Return a reference to the value of the item at the font of the deque

without removing the item.
• Precondition: The deque is not empty.

const T& front() const;
• Constant version of front().

T& back();
• Return a reference to the value of the item at the back of the deque

without removing the item.
• Precondition: The deque is not empty.

const T& back() const;
• Constant version of back().

Fall 2004 322C – Lecture 19 12

Deque Operations
void push_back (const T& item);
• Insert the argument item at the back of the deque.
• Postcondition: The deque has a new item at the back
void push_front (const T& item);
• Insert the argument item at the front of the deque.
• Postcondition: The deque has a new item at the front.
void pop_front ();
• Remove the item from the front of the deque.
• Precondition: The deque is not empty.
• Postcondition: A new element at the front of the deque is

revealed or the deque is empty.

3

Fall 2004 322C – Lecture 19 13

Deque Operations
void pop_back ();
• Remove the item from the back of the deque.
• Precondition: The deque is not empty.
• Postcondition: A new element at the back of the

deque is revealed or the deque is now empty.
int size() const;
• Return the number of elements in the deque.

Iterator operations: just like list
erase and insert: just like list
Other useful operations: see cppreference.com

Fall 2004 322C – Lecture 19 14

Double Ended Queue (deque)

• Is used as an implementation class for many
other STL classes because of its flexibility

• Every class in the STL has an allocator defined
for it. The allocator is an object that manages
the memory allocation scheme for that
container.
– We will use the default allocators for each class, but

you could define your own specialized allocator if you
wanted to

Fall 2004 322C – Lecture 19 15

Queue

• A queue is a sequence container that supports a
first-in-first-out (FIFO) data discipline.
Sometimes called first-come-first-served.
• Insertion operations (push()) occur at the back of the

sequence
• deletion operations (pop()) occur at the front of the

sequence.
• There are lots of examples of queues in the real

world, as well as in the system software world

Fall 2004 322C – Lecture 19 16

Grocery Store Checkout:
An Example of a Queue

Fall 2004 322C – Lecture 19 17

The Queue

A Queue is a FIFO (First
in First Out) Data
Structure. Elements are
inserted in the Rear of the
queue and are removed at
the Front.

C

B C

A B C

A

back
front

push A

A B
front back

push B

front back
push C

front back
pop A

front
back

pop B

Fall 2004 322C – Lecture 19 18

Queue Operations
• Constructor:

• queue();
• Create an empty queue.

• Basic Operations
• bool empty() const;

• Check whether the queue is empty. Return true if it is empty
and false otherwise.

• T& front();
• Return a reference to the value of the item at the font of the

queue without removing the item.
• Precondition: The queue is not empty.

• const T& front() const;
• Constant version of front().

4

Fall 2004 322C – Lecture 19 19

Queue Operations
void push(const T& item);
• Insert the argument item at the back of the queue.
• Postcondition: The queue has a new item at the back.
void pop();
• Remove the item from the front of the queue.
• Precondition: The queue is not empty.
• Postcondition: The element at the front of the queue is the

element that was added immediately after the element
just popped or the queue is empty.

int size() const;
• Return the number of elements in the queue.

Fall 2004 322C – Lecture 19 20

Queue Scheduler Example
/* the program creates and outputs the interview schedule for a

personnel director. The schedule is constructed using a queue
of appointment times by reading the times from the keyboard.
By then cycling through the queue, the appointment times are
output.

*/
#include <iostream>
#include <queue>
using namespace std;
int main()
{

int interviewTime; // using a simple 24 hour clock
// queue to hold hourly appointment time for job applicants
queue <int> apptQ;
// build the schedule from inputs
cout << "First interview of the day: ";
cin >> interviewTime;

Fall 2004 322C – Lecture 19 21

Queue Scheduler Example
// construct the queue until input is 17:00 or later
while (interviewTime < 17)
{

// push the interview time on the queue
apptQ.push(interviewTime);
// prompt for the next interview time
cout << "Next interview: ";
cin >> interviewTime;

}
// output the day's appointment schedlule
cout << endl << "Appointment Schedule" << endl;
while (!apptQ.empty())
{

interviewTime = apptQ.front();
// pop the next applicant appointment time and output it
apptQ.pop();
cout << " " << interviewTime << endl;

}
return 0;

}

Fall 2004 322C – Lecture 19 22

Sorting with Queues
The radix (bin) sort algorithm
• Orders an integer vector by using queues (bins).
• This sorting technique has running time O(n) but has

only specialized applications.
• The more general in-place O(n log2n) sorting

algorithms are preferable in most cases.

Fall 2004 322C – Lecture 19 23

The Radix Sort
Order a sequence of 2-digit numbers in 10 bins from
smallest number to largest number.
Initial Sequence: 91 6 85 15 92 35 30 22 39
Pass 0: Distribute the numbers into bins

according to the 1's digit (100).

9130

0

39

987

6

6

35
15
85

543

22
92

21

New Sequence: 30 91 92 22 85 15 35 6 39
Fall 2004 322C – Lecture 19 24

The Radix Sort
Pass 1: Take the new sequence and distribute the numbers

into bins determined by the 10's digit (101). Then
un-queue them L to R, front to back

6

0

92
91

9

85

87654

39
35
30

3

22

2

15

1

Final Sequence: 6 15 22 30 35 39 85 91 92

5

Fall 2004 322C – Lecture 19 25

Priority queue
• Pop() returns the highest priority item (assumed

to be the largest value).
• The push() and pop() operations have running

time O(log2n)
• Normally implemented by a heap data structure

Fall 2004 322C – Lecture 19 26

Priority Queue

Job # 3
Clerk

Job # 4
Supervisor

Job # 2
President

Job # 1
Manager

A Special form of queue from which items are removed
according to their designated priority and not the order
in which they entered.

Items entered the queue in sequential order but will
be removed in the order #2, #1, #4, #3. As an HR
person might process the resume queue.

Fall 2004 322C – Lecture 19 27

Priority Queue Operations
• Constructor

• priority_queue();
• Create an empty priority queue. Type T must implement the

operator <.

• Basic Operations
• bool empty() const;

• Check whether the priority queue is empty. Return true if
it is empty, and false otherwise.

• void pop();
• Remove the item of highest priority from the queue.
• Precondition: The priority queue is not empty.
• Postcondition: The priority queue has 1 less element or is

empty.

Fall 2004 322C – Lecture 19 28

Priority Queue Operations
• void push(const T& item);

• Insert the argument item into the priority queue.
• Postcondition: The priority queue contains a new

element.
• int size() const;

• Return the number of items in the priority queue.
• T& top();

• Return a reference to the item having the highest
priority without removing the item.

• Precondition: The priority queue is not empty.
• const T& top();

• Constant version of top().

Fall 2004 322C – Lecture 19 29

Example
priority_queue <int> mypq;
int n;
mypq.push (20);
mypq.push (10);
mypq.push (67);
n = mypq.pop ();
cout << n;

Fall 2004 322C – Lecture 19 30

miniQueue
The miniQueue class

- Provides a class with STL queue class interface.
- Uses the list class by object composition.

6

Fall 2004 322C – Lecture 19 31

miniQ.push(10)

miniQ.push(25)

miniQ.push(50)

n = miniQ.front() // n = 10

miniQ.pop()

Queue Statement ListList StatementQueue
10

backfront
qlist.push_back(10) 10

backfront

10 25

backfront
qlist.push_back(25) 10 25

backfront

5010 25

backfront

qlist.push_back(50)
10 25

front

50

back

return qlist.front() // return 10

25 50

backfront
qlist.pop_front() 25 50

miniQueue<int> miniQ; // declare an empty queue

Fall 2004 322C – Lecture 19 32

The Bounded queue

A

BC

qfrontqback

Insert elements A,B, C
BC qfront

qback

Remove element A

D

C
qfront

qback

Insert element D,

Cqfront

qback

Remove element B

D

Cqfront

qback

Insert element D,

Cqfront qback
Insert element E

Circular ViewArray View

D E

Insert element D, Insert element E

C D

qfrontqback
E C D

qfrontqback

Fall 2004 322C – Lecture 19 33

Implementation Considerations

Implementing a queue with a fixed-size
array

• Indices qfront and qback move circularly around
the array.

• Gives O(1) time push() and pop() operations with
no wasted space in the array.

Fall 2004 322C – Lecture 19 34

Removing Elements From a Heap

45

1511

35102520

4228

Heap after erasing 50

50

101511

35422520

4528

Heap before erasing 50

1

Fall 2004 322C – Lecture 19 – Quiz
Results

1

EE 322C
Data Structures

Lecture 19 – Quiz Results

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 19 – Quiz
Results

2

General Problems
• True & False

– Almost every one missed 1 and 7
– In 1 the key word is “ordered” – that makes it false
– In 7 the key word is “free” which in this case means

“arbitrary”
• Multiple choice

– Many missed 9.4 – an array does allows efficient
insertion and deletion of back elements

– In 12, vectors do not provide efficient arbitrary
capacity – at some point a new structure must be
allocated and copied into

– In 13, lists do not have direct access

Fall 2004 322C – Lecture 19 – Quiz
Results

3

General Problems
• Completion

– 14: preconditions and postconditions
– 15: nested (for) loops
– 16: iterators
– 17: stacks and queues
– 18: performance, efficiency or complexity
– 19: doubly linked lists

Fall 2004 322C – Lecture 19 – Quiz
Results

4

Overall Distribution
• 46.5 x
• 46 xxxx
• 45.5 xxx
• 44.5 x
• 43.5 x
• 43 xxx
• 42.5 xx
• 42 xx
• 41.5 xxxx
• 41 xxxx
• 40.5 x
• 40 xxx
• 39.5 xx
• 39 x
• 38.5 xxx

• 38 x
• 37.5 x
• 37 xx
• 36.5 xxx
• 36 x
• 35.5 xx
• 34.5 xxx
• 34 x
• 33.5 xx
• 32.5 x
• 32 x
• 31 x
• 30.5 x
• 29.5 x
• 26 x

Fall 2004 322C – Lecture 19 – Quiz
Results

5

True & False
• 14 xxx
• 12 xxxxx xxxxx xxxxx xxx
• 10 xxxxx xxxxx xxxxx xxxxx
• 8 xxxxx xxxxx xxx
• 6 xx

Fall 2004 322C – Lecture 19 – Quiz
Results

6

Multiple Choice
• 17.5 x
• 17 x
• 16.5 xxxx
• 16 xxxxx
• 15.5 xxxxx
• 15 xxxx
• 14.5 xxxx
• 14 xxxxx xxxxx
• 13.5 xxxxx xxxx
• 13 xxx
• 12.5 xxxxx
• 11.5 x
• 11 x
• 10.5 x
• 10 x

2

Fall 2004 322C – Lecture 19 – Quiz
Results

7

Completion
• 18 xxxxx xxxxx xxxxx xx
• 16.5 xxxx
• 15.5 x
• 15 xxxxx xxxxx xxx
• 14 xxx
• 13.5 xxxxx
• 13 xx
• 12 xxxx
• 11.5 x
• 10.5 x
• 9 xxx
• 7.5 xx
• 7 x

Fall 2004 322C – Lecture 19 – Quiz
Results

8

Grading
• Medians and Means

– T/F – median: 10, mean: 10.28
– MC - median: 14, mean: 14.14
– C - median: 15, mean: 14.68
– All - median: 40, mean: 39.11

• Uncurved:
– 90+% 8
– 80+% 21
– 70+% 16
– 60+% 10
– <60% 2

Fall 2004 322C – Lecture 19 – Quiz
Results

9

Grading
• Curved

– A 42.5 – 46.5 15
– B 38 - 42 21
– C 29.5 – 37.5 20
– D <29.5 1

1

Fall 2004 322C – Lecture 20 1

EE 322C
Data Structures

Lecture 20

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 20 2

All Toooo True

Fall 2004 322C – Lecture 20 3

Popular Science 1954

Fall 2004 322C – Lecture 20 4

Announcements
• Today’s topics - associative containers

(elements are stored by key and not by
position)
– sets, multisets
– maps, multimaps

• Homework – Part III
• Quiz 2 -

Fall 2004 322C – Lecture 20 5

ADT Set Definitions
Set: is an unordered collection of distinct elements (or

values) chosen from the possible values of a base data
type

• Base type: The data type of the elements in the set
• Cardinality: The number of elements in a set
• Universal set: the set containing all values of the base data type
• Empty set: a set with no elements
Subset: A set X is a subset of set Y if each element in X is

also in Y; if there is at least one element of Y that is not
in X, then X is a proper subset of Y.

Common set binary operations:
• Union of two sets: A set made up of all the items in either of two

given sets
• Intersection of two sets: A set made up of all the items in both sets
• Difference of two sets: A set made up of all the items in the first

set that are not in the second set
Fall 2004 322C – Lecture 20 6

Implications
• Sets can not contain duplicates. Storing an item that is

already in the set does not change the set.
• If an item is not in a set, deleting that item from the

set does not change the set.
• Sets are not ordered.
• A multiset (the STL container) is like a set, except a

value can occur more than once

2

Fall 2004 322C – Lecture 20 7

Set Examples
• Let’s assume that we have 2 sets of integers

called A and B
• A = { 1, 3, 8, 9, 10 }
• B = { 9, 6, 3, 2}
• Or as they might be declared in C++

– set <int> A = {1,3,8,9,10};
– set <int> B = {9,6,3,2};

Fall 2004 322C – Lecture 20 8

Set-Union Operator + (A + B):
The set of all elements x such that x is an element
in set A OR x is an element in set B.
Example: A + B = { 1, 2, 3, 6, 8, 9, 10}

Set-Intersection Operator * (A * B):
The set of all elements x such that x is an element
in set A and x is an element in set B.
Example: A * B = { 3, 9}

Set-Difference Operator - (A - B):
The set of all elements x such that x is an element
in set A but x is not an element in set B.
Example: A - B = { 1, 8, 10}

Fall 2004 322C – Lecture 20 9

Implementing the Set ADT
Implementation as a bit vector
• Each item in the base type has a representation in each instance of a

set.
• The representation is either true (item is in the set) or false (item is

not in the set).
• Space is proportional to the cardinality of the base type.
• Algorithms use Boolean operations.
Implementation as a list/vector
• The items in an instance of a set are on a list that represents the

set.
• Those items that are not on the list are not in the set.
• Space is proportional to the cardinality of the set instance.
• Algorithms use ADT List operations.
Using the STL set container
• Uses an iterator that defines an ordering of the keys
• Underlying structure is actually a bstree stored as a vector

Fall 2004 322C – Lecture 20 10

Example Sets

18

8954
67

12
45

intSet: Set of ints

"if"

"template""class"

"operator"
"while"

keyword: Set of strings

Hand: set of Card objects
As

Kh

Qd
Js

Xc

Fall 2004 322C – Lecture 20 11

Sets defined by a key along with other data

record object

key field other fields

Fall 2004 322C – Lecture 20 12

Set Constructors/Operations
Constructors
set();
• Create an empty set. This is the Default Constructor.
set(T *first, T *last);
• Initialize the set by using the address range [first, last).

Operations
bool set() const;
• Is the set empty?
int size() const;
• Return the number of elements in the set.

3

Fall 2004 322C – Lecture 20 13

Set Operations
int count(const T& key) const;
• Search for key in the set and return 1 if it is in the set

and 0 otherwise.

iterator find(const T& key);
• Search for key in the set and return an iterator pointing

at it, or end() if it is not found.
• Note: Iterators define an ordering of the keys, not

positions

Const_iterator find(const T& key) const;
• Constant version of find.

Fall 2004 322C – Lecture 20 14

Set Operations
pair<iterator, bool> insert(const T& key);
• If key is not in the set, insert it and then return a pair

whose first element is an iterator pointing to the new
element and whose second element is true. Otherwise,
return a pair whose first element is an iterator pointing at
the existing element and whose second element is false.

• Postcondition: The set size increases by 1 if key is not in
the set.

int erase(const T& key);
• If key is in the set, erase it and return 1; otherwise,

return 0.
• Postcondition: The set size decreases by 1 if key is the

set.

Fall 2004 322C – Lecture 20 15

Set Operations
void erase(iterator pos);
• Erase the item pointed to by pos.
• Preconditions: The set is not empty, and pos points to a

valid set element.
• Postcondition: The set size decreases by 1.

void erase(iterator first, iterator last);
• Erase the elements in the range [first, last).
• Precondition: The set is not empty.
• Postcondition: The set size decreases by the number of

elements in the range.

Fall 2004 322C – Lecture 20 16

Set Iterators
iterator begin();
• Return an iterator pointing at the first member in the set.
• (smallest by default)

const_iterator begin(const);
• Constant version of begin()

iterator end();
• Return an iterator pointing just past the last member in the set

const_iterator end() const;
• Constant version of end()

Fall 2004 322C – Lecture 20 17

Sieve of Eratosthenes

• Goal: Find all the prime numbers in the range
from 2 to n

• Look at an example
• Look at the code using sets

Fall 2004 322C – Lecture 20 18

Sieve of Eratosthenes
Pass m = 2:
remove all
mult iples of 2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 252 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Pass m = 3:
remove all
mult iples of 3 st ill
in the set

2 3 5 7 9 11 13 15 17 19 21 23 25

Pass m = 3:
remove all
mult iples of 3 st ill
in the set

2 3 5 7 9 11 13 15 17 19 21 23 25

7, 11, 13, 17, 19, and 23 contain no multiples in the range 2 to 25
Primes {2, 3, 5, 7, 11, 13, 17, 19, 23}

Pass m = 5:
remove all
mult iples of 5 st ill
in the set

2 3 5 7 11 13 17 19 23 25

7, 11, 13, 17, 19, and 23 contain no multiples in the range 2 to 25
Primes {2, 3, 5, 7, 11, 13, 17, 19, 23}

Pass m = 5:
remove all
mult iples of 5 st ill
in the set

2 3 5 7 11 13 17 19 23 25

4

Fall 2004 322C – Lecture 20 19

STL Template Algorithms

• All template functions in the STL that are
associated with many container types

• Operate on containers using iterators
• There are approximately 60 of these
• For sets we have:

– set_difference
– set_intersection
– set_union
– set_symmetric_difference

Fall 2004 322C – Lecture 20 20

Multiset Operations
• Multiset is just like a set, except a key can occur more than once.
• int count(const T& item) const;

• Return the number of duplicate occurrences of item in the
multiset.

• pair<iterator, iterator> equal_range(const T& item);
• Return a pair of iterators such that all occurrences of item are in

the iterator range[first member of pair, second member of pair).
• iterator insert(const T& item);

• Insert item into the multiset and return an iterator pointing at the
new element.

• Postcondition: The item is added to the multiset.
• int erase(const T& item);

• Erase all occurrences of item from the multiset and return the
number of items erased.

• Postcondition: The size of the multiset is reduced by the number of
occurrences of item in the multiset.

Fall 2004 322C – Lecture 20 21

Map
• A map is a collection of key-value pairs that

associate a key with a value.
• In a map, there is only one value associated with a key.

• A map is often called an associative array
because applying the index operator with the key
as its argument accesses the associated value

• The map STL class has all the same operations
found in set, however the elements are pairs not
a single data item

• Balanced binary search tree is used for the STL
implementation

Fall 2004 322C – Lecture 20 22

Key-Value Data

key value

A map stores data as a key-value pair. In a pair, the first
component is the key; the second is the value. Each
component may have a different data type.

A lookup operation takes the key and returns an iterator
that points to a matching (key, value) pair.

Only unique keys are allowed in maps

Fall 2004 322C – Lecture 20 23

Maps

Key-value Pair

Map as a Set of Pairs

key value

key value

key value

key value

key value

Fall 2004 322C – Lecture 20 24

Map Example

English 117

Music 40

Computer Science 240

Economics 75

Business 290

degreeMajor: Map of string-int pairs

map <string, int> degreeMajor;
// assume values have been filled in as above
cout << degreeMajor [“English”];
degreeMajor [“ECE”] = 322;

5

Fall 2004 322C – Lecture 20 25

Homework Part III
• History

– Once the D&B Credit Reporting Systems was completed, it was
subjected to load tests.

– Result: only could store half the projected number of reports
– Turned out the requirements were incorrect:

• A report consists of at most 125 sections
• The number of sections depends on the report type
• Half of the reports only have 5 sections

– Created a data structure keyed by the report type to tell me how
many elements to have in the section list

– Changed the report representation
• from an array of pointers to the sections (strings) indexed by the

section number
• to an data structure with elements of <section identifier, pointer to

section> the size of which is determined by the report type;
• further I had to allow for the possibility that there might be more

than the usual number of sections

Fall 2004 322C – Lecture 20 26

Homework – Part III
• There are 5 report types

– RT1 has 25 sections typically (but may more or less)
– RT2 has 5 sections typically (but may more or less)
– RT3 has 10 sections typically (but may more or less)
– RT4 has 5 sections typically (but may more or less), and
– RT5 has 15 sections typically (but may more or less)

• Assignment:
– Define a type to capture the concept of report types
– Define an appropriate data structure to represent the report type

information (an appropriate STL we have talked about)
– Add createReport that uses report type as a parameter and information

above to create a data structure that has space for the usual number of
sections for that report type

– Change putSection and getSection to reflect this new representation.
– Make sure that you can handle more then the usual number of sections

1

Fall 2004 322C – Lecture 21 1

EE 322C
Data Structures

Lecture 21

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 21 2

Today

• Topics of the day - start non sequential
data structures:
– Trees
– Binary trees

Fall 2004 322C – Lecture 21 3

Tree Definitions
• Hierarchical structures that place elements in

nodes along branches that originate from a
root.

• Nodes in a tree are subdivided into levels in
which the topmost level holds the root node.
• Any node in a tree may have multiple successors at

the next level. Hence a tree is a non-linear
structure.

• Tree terminology with which you should be
familiar:
• root | parent | child | descendents | leaf node |

interior node | subtree | level | ancestors |.

322C – Lecture 21 4

Owner
Jake

Manager Chef
Brad Carol

Waitress Waiter Cook Helper
Joyce Chris Max Len

Jake’s Pizza Shop

•position
•person

are the attributes of interest
in an organization chart

322C – Lecture 21 5

Owner
Jake

Manager Chef
Brad Carol

Waitress Waiter Cook Helper
Joyce Chris Max Len

ROOT NODE

A Tree Has a Root Node

322C – Lecture 21 6

Owner
Jake

Manager Chef
Brad Carol

Waitress Waiter Cook Helper
Joyce Chris Max Len

LEAF NODES

Leaf Nodes have No Children

2

322C – Lecture 21 7

Owner
Jake

Manager Chef
Brad Carol

Waitress Waiter Cook Helper
Joyce Chris Max Len

LEVEL 0

A Tree Has Levels

322C – Lecture 21 8

Owner
Jake

Manager Chef
Brad Carol

Waitress Waiter Cook Helper
Joyce Chris Max Len

LEVEL 1

Level One

322C – Lecture 21 9

Owner
Jake

Manager Chef
Brad Carol

Waitress Waiter Cook Helper
Joyce Chris Max Len

LEVEL 2

Level Two

322C – Lecture 21 10

Owner
Jake

Manager Chef
Brad Carol

Waitress Waiter Cook Helper
Joyce Chris Max Len

LEFT SUBTREE OF ROOT NODE

A Subtree

322C – Lecture 21 11

Owner
Jake

Manager Chef
Brad Carol

Waitress Waiter Cook Helper
Joyce Chris Max Len

RIGHT SUBTREE
OF ROOT NODE

Another Subtree

322C – Lecture 21 12

A binary tree isa tree structure in which:

Each node can have at most two children, and in
which a unique path exists from the root to every
other node.

The two children of a node are called the left child
and the right child, if they exist.

Binary Tree

3

322C – Lecture 21 13

A Binary Tree

Q

V

T

K S

AE

L

322C – Lecture 21 14

How many leaf nodes?

Q

V

T

K S

AE

L

322C – Lecture 21 15

How many descendants of Q?

Q

V

T

K S

AE

L

322C – Lecture 21 16

How many ancestors of K?

Q

V

T

K S

AE

L

322C – Lecture 21 17

Implementing a Binary Tree with Pointers
and Dynamic Data

Q

V

T

K S

AE

L

322C – Lecture 21 18

Node Terminology for a BTree Node

value

4

Fall 2004 322C – Lecture 21 19

Model Node of a Binary Tree
// this generic class models a node of a binary tree

template <typename T> class btnode

{ public:

T nodeValue; // the data value being stored

btnode <T> *left; // pointer to left subtree
btnode <T> *right; // pointer to right subtree

btnode () { nodeValue = T ();

left = NULL; right = NULL; }

btnode (const T &val) {nodeValue = val;

left = NULL; right = NULL; }

btnode (const T &val, btnode <T> *leftTemp = NULL,

btnode <T> *rightTemp = NULL)

{ nodeValue = val; left = leftTemp;
right = rightTemp; }

~btnode () { }

}
Fall 2004 322C – Lecture 21 20

Model Node of a N-ary Tree
// this generic class models a node of a N-ary tree
template <typename T> class ntnode
{ public:

T nodeValue; // the data value being stored

}

322C – Lecture 21 21

A special kind of binary tree in which:

1. Each node contains a distinct data value,

2. The key values in the tree can be compared using
“greater than” and “less than”, and

3. The key value of each node in the tree is
less than every key value in its right subtree, and
greater than every key value in its left subtree.

A Binary Search Tree (BST) is . . .

322C – Lecture 21 22

Depends on its key values and their order of insertion.

Insert the elements ‘J’ ‘E’ ‘F’ ‘T’ ‘A’ in that order.

The first value to be inserted is put into the root node.

Shape of a binary search tree . . .

‘J’

322C – Lecture 21 23

Thereafter, each value to be inserted begins by
comparing itself to the value in the root node,
moving left it is less, or moving right if it is greater.
This continues at each level until it can be inserted
as a new leaf.

Inserting ‘E’ into the BST

‘J’

‘E’

322C – Lecture 21 24

Begin by comparing ‘F’ to the value in the root node,
moving left it is less, or moving right if it is greater.
This continues until it can be inserted as a leaf.

Inserting ‘F’ into the BST

‘J’

‘E’

‘F’

5

322C – Lecture 21 25

Begin by comparing ‘T’ to the value in the root node,
moving left it is less, or moving right if it is greater.
This continues until it can be inserted as a leaf.

Inserting ‘T’ into the BST

‘J’

‘E’

‘F’

‘T’

322C – Lecture 21 26

Begin by comparing ‘A’ to the value in the root node,
moving left it is less, or moving right if it is greater.
This continues until it can be inserted as a leaf.

Inserting ‘A’ into the BST

‘J’

‘E’

‘F’

‘T’

‘A’

322C – Lecture 21 27

is obtained by inserting the elements ‘A’ ‘E’ ‘F’ ‘J’
‘T’ in that order?

What binary search tree . . .

‘A’

322C – Lecture 21 28

obtained by inserting the elements ‘A’ ‘E’ ‘F’ ‘J’ ‘T’
in that order.

Binary search tree . . .

‘A’

‘E’

‘F’

‘J’

‘T’

322C – Lecture 21 29

Another binary search tree

Add nodes containing these values in this order:

‘D’ ‘B’ ‘L’ ‘Q’ ‘S’ ‘V’ ‘Z’

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’ ‘P’

322C – Lecture 21 30

Is ‘F’ in the binary search tree?
‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’

6

Fall 2004 322C – Lecture 21 31

Traversing Through a Tree
There are six simple recursive algorithms for
tree traversal.
The most commonly used ones are:

1. inorder (LNR)
2. postorder (LRN)
3. preorder (NLR).

Another technique is to move left to right from
level to level.

• This algorithm is iterative, and its implementation
involves using a queue.

Fall 2004 322C – Lecture 21 32

Recursive Btree Example
// algorithm for counting the # of nodes

// in a given binary tree

if tree is NULL
return 0

else
return CountNodes(Left(tree)) +

CountNodes(Right(tree)) + 1

Fall 2004 322C – Lecture 21 33

Recursive B-Tree Example
{ // in main

int number = CountNodes(root);
}

int CountNodes(btnode *tree)
// Recursive function that counts the # of nodes
{

if (tree == NULL)
return 0;

else
return CountNodes(tree->left) +

CountNodes(tree->right) + 1;

}

Fall 2004 322C – Lecture 21 34

Update Operations

• Insertion is easy but deletion is hard
• The removal of an item from a binary search

tree is more difficult and involves finding a
replacement node among the remaining values.

Fall 2004 322C – Lecture 21 35

Insert Operations: 1st of 3 steps
1)-The function begins at the root node and compares item 32 with the
root value 25. Since 32 > 25, we traverse the right subtree and look at
node 35.

25

4012

3520

parent

t

 (a)
Step 1: Compare 32 and 25.
Traverse the right subtree.

Goal:
Insert the
value 32

Fall 2004 322C – Lecture 21 36

Insert Operations: 2nd of 3 steps

2)- Considering 35 to be the root of its own subtree, we compare item
32 with 35 and traverse the left subtree of 35.

 (b)
Step 2: Compare 32 and 35.
Traverse the left subtree.

25

4012

3520

t

parent

7

Fall 2004 322C – Lecture 21 37

Insert Operations: 3rd of 3 steps
3)-Create a leaf node with data value 32. Insert the new node as the
left child of node 35.

newNode = getSTNode(item,NULL,NULL,parent);
parent->left = newNode;

 (c)
Step 3: Insert 32 as left child
of parent 35

25

4012

3520 parent

32

Fall 2004 322C – Lecture 21 38

Remove - Case1: No Subtrees

10D

P

Delete leaf node 10.
pNodePtr->left is dNode

No replacement is necessary.
pNodePtr->left is NULL

Before After

40

35

6530

50

3326

25

3429

28

P

40

35

6530

50

3326

25

3429

28

Fall 2004 322C – Lecture 21 39

Remove - Case 2: Left Subtree

D

P

Delete node 35 with only a left child:
 Node R is the left child.

Before

R

40

35

6530

50

3310 26

25

3429

28

P

Attach node R to the parent.

After

R

40

33

6530

50

10 26

25

34

29

28

Fall 2004 322C – Lecture 21 40

Remove - Case 3: Right Subtree

P

Delete node 26 with only a right child:
 Node R is the right child.

P

Attach node R to the parent.

Before After

R

R

40

35

6530

50

3310 26

25

3429

28

40

35

6530

50

3310 29

25

3428

D

Fall 2004 322C – Lecture 21 41

Remove - Case 4: Left/Right Subtrees

40

35

6530

Delete node 30 with two children.

50

3310 26

25

3429

28

40

35

65

Orphaned subtrees.

50

3310

25

34

26

29

28

Fall 2004 322C – Lecture 21 42

Remove – Case 4

P

D

R

pOfRNodePtr = dNodePtr

rNodePtr

pNodePtr

40

35

6530

50

3310 26

25

3429

28

P

R

R

40

35

6530

50

3310

26

34

29

28

Before replacing D by R After replacing D by R

8

Fall 2004 322C – Lecture 21 43

Remove – Case 4

D

R

dNodePtr

rNodePtr
pOfRNodePtr

P
pNodePtr 40

35

6530

50

3310 26

25

3429

28

P

R

40

35

6530

50

3410

26

33

29

28

pNodePtr

DR

rNodePtr

pOfRNodePtr

Before unlinking R After unlinking R

Fall 2004 322C – Lecture 21 44

Removing an Item

P

40

35

6533

50

3410

26

29

28

pNodePtr

R
rNodePtr

P

40

35

6530

50

3410

26

29

28

pNodePtr

D33R

rNodePtr

Before replacing D by R After replacing D by R

Fall 2004 322C – Lecture 21 45

Binary Trees

• Most effective as a storage structure if it has
high density

• data are located on relatively short paths
from the root.

• A complete, full binary tree has the highest
possible density

• an n-node complete binary tree has depth
int(log2n).

• At the other extreme, a degenerate binary tree
is equivalent to a linked list and exhibits O(n)
access times.

1

Fall 2004 322C – Lecture 22 1

EE 322C
Data Structures

Lecture 22

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 22 2

Lecture 25 Announcements

• Course survey
• Finish trees
• Matrices

Fall 2004 322C – Lecture 22 3

Survey Information

• Instructor: Dewayne Perry
• Course #: EE322C
• Unique #: 15515
• Semester: Fall 2004

Fall 2004 322C – Lecture 22 4

A binary tree isa tree structure in which:

Each node can have at most two children, and in
which a unique path exists from the root to every
other node.

The two children of a node are called the left child
and the right child, if they exist.

Binary Tree

Fall 2004 322C – Lecture 22 5

A Binary Tree

Q

V

T

K S

AE

L

Fall 2004 322C – Lecture 22 6

Definitions

Full Binary Tree: A binary tree in which all
of the leaves are on the same level and
every nonleaf node has two children

2

Fall 2004 322C – Lecture 22 7

Definitions (cont.)

Complete Binary Tree: A binary tree that
is either full or full through the next-to-
last level, with the leaves on the last level
as far to the left as possible

Fall 2004 322C – Lecture 22 8

Different Types of Binary Trees

Fall 2004 322C – Lecture 22 9

Traversing Through a Tree
There are six simple recursive algorithms for
tree traversal.
The most commonly used ones are:

1. inorder (LNR)
2. postorder (LRN)
3. preorder (NLR).

Another technique is to move left to right from
level to level.

• This algorithm is iterative, and its implementation
involves using a queue.

Fall 2004 322C – Lecture 22 10

Three Tree Traversals
1. inorder (LNR)
2. preorder (NLR
3. postorder (LRN)

Fall 2004 322C – Lecture 22 11

Recursive Btree Example
// algorithm for inorder traversal of the
// nodes in a given binary tree

if tree is NULL
return

Else
traverse the Left sub tree
output the node value
traverse the Right subtree
return

Fall 2004 322C – Lecture 22 12

Recursive Btree Example
{ // in main

traverseNodes(root);

}

void traverseNodes(btnode *tree)

// Recursive function that traverses the nodes

{

if (tree = = NULL)

return;

else

traverseNodes(tree->left);

cout << tree -> nodeValue << endl;

traverseNodes(tree->right);

return;

}

3

Fall 2004 322C – Lecture 22 13

A special kind of binary tree in which:

1. Each node contains a distinct data value,

2. The key values in the tree can be compared using
“greater than” and “less than”, and

3. The key value of each node in the tree is less than
every key value in its right subtree, and greater
than every key value in its left subtree.

A Binary Search Tree (BST) is . . .

Fall 2004 322C – Lecture 22 14

Is ‘F’ in the binary search tree?

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’

Fall 2004 322C – Lecture 22 15

Binary Trees

• Most effective as a storage structure if it has
high density

• data are located on relatively short paths
from the root.

• A complete, full binary tree has the highest
possible density

• Best used as a search structure in which inserts
occur at the leaves and there are no deletes in
the non leaf nodes

Fall 2004 322C – Lecture 22 16

Matrices
• A Matrix is a two-dimensional array that corresponds

to a row-column table of entries of a specified data
type.

• Matrices are referenced using a pair of indices that
specify the row and column location in the table.

8 1 7 -2

0 -3 4 6

10 -14 1 0

0 1 2 3

0
1

2

Example:
The element mat[0][3] is -2
The element mat[1][2] is 4.

Fall 2004 322C – Lecture 22 17

Energy Sources

Y
ea

rs

1989

1990

1991

1992

1993

Coal Gas Oil Hydro Nuclear Other

Energy Table

Fall 2004 322C – Lecture 22 18

Energy Table

Energy Sources

Coal Gas Oil Hydro Nuclear Other

4

Fall 2004 322C – Lecture 22 19

As a 2D Array
• Need to specify both the number of rows and columns

during allocation
• Example:

const int ROWS = 5, COLS = 6;
double energyTable[ROWS][COLS];

• Typically processed like:
for (i = 0; i < ROWS; i++)
{ //stuff before the inner loop
for (j = 0; j < COLS; j++)
{
//inner loop operates on the [i,j]th element

}
// stuff after the inner loop

}

Fall 2004 322C – Lecture 22 20

Limitations

• C++ treats a matrix as an array of 1D arrays, of
fixed size
– No size attribute

• It is stored in memory by rows, one after the
other

• Array elements cannot be correctly accessed
unless the compiler knows the number of
elements in each row (i.e. the number of
columns)

Fall 2004 322C – Lecture 22 21

Limitations
• When passing a 2D array as an argument you must

specify a constant value for the number of
columns

• These limitations, flexibility and potential
growth/shrinkage requirements drive us to use
vectors to implement a template-based matrix
container
– vector <vector <T> > mat;

– // the internal structure used

Fall 2004 322C – Lecture 22 22

A New Matrix Template* * Not in the STL

template <typename T> class matrix
{

private: int nRows, nCols;
vector <vector <T> > mat;

public:
// need constructors, accessor functions, resize
// function, a new indexing operator, and
// other common matrix operations as needed

}

Fall 2004 322C – Lecture 22 23

Dynamic Matrix Template* * Not in the STL

template <typename T> class matrix
{ private:

int nRows, nCols;
vector <vector <T> > mat;

public:
matrix (int numRows = 1, int numCols = 1,

const T &initVal = T ()):
nRows (numRows), nCols (numCols),

mat (numRows, vector <T> (numCols, initVal))
vector <T> & operator [] (int i); //index operator
{

if (i < 0 | | i > nRows)
throw indexRangeError (“ matrix: invalid row #, i , nRows);

return mat [i] ;
}
int getRows () {return nRows;}
int getCols () {return nCols; }
void resize (int numRows, int numCols); // TBD

}

Fall 2004 322C – Lecture 22 24

Using Your Matrix Template

• matrix <double> energyTable (5, 6, 0.0);

• matrix <Square> checkerBoard (8, 8);
• matrix <Pixel> screen (1024, 768);

1

Fall 2004 322C – Lecture 23 1

EE 322C
Data Structures

Lecture 23

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 23 2

Lecture 26 Announcements

• Today’s topics
– Heaps
– Graphs

• Extra credit homework
• Final exam coverage

Fall 2004 322C – Lecture 23 3

What is a Heap?

A heap is a binary tree that satisfies these
special SHAPE and ORDER properties:

– Its shape must be a complete binary tree.
– Maximum Heap: For each node in the heap, the

value stored in that node is greater than or equal
to the value in each of its children.

– Minimum Heap: For each node in the heap, the
value stored in that node is less than or equal to
the value in each of its children.

Fall 2004 322C – Lecture 23 4

Are these Both Heaps?

C

A T

tree

50

20

18

30

10

tree

Fall 2004 322C – Lecture 23 5

Is this a Heap?

70

60

40 30

12

8 10

tree

Fall 2004 322C – Lecture 23 6

Where is the Largest Element in a Max Heap
Always Found?

70

60

40 30

12

8

tree

2

Fall 2004 322C – Lecture 23 7

We Can Number the Nodes Left to Right by Level
This Way

70

0

60

1
40

3

30

4

12

2

8

5

tree

Fall 2004 322C – Lecture 23 8

And use the Numbers as Indexes into A Vector to
Store the Tree Nodes

70

0

60

1

40

3

30

4

12

2

8

5

tree[0]

[1]

[2]

[3]

[4]

[5]

[6]

70

60

12

40

30

8

tree.nodes

Fall 2004 322C – Lecture 23 9

Common Heap Operations

Insertion: place the new value at the back of the heap
and filter it up the tree (aka push).
Deletion: exchanging root value with the back of the
heap and then filtering the new root down the
tree,which now has one less element (aka pop)
• Insert and delete running time: O(log2 n)
Heapifying: apply the filter-down operation to the
interior nodes, from the last interior node in the tree
up to the root - running time: O(n)
Heapsort : The O(n log2 n) heapsort algorithm
heapifies a vector and deletes repeatedly from the
heap, putting each deleted value in its final position.

Fall 2004 322C – Lecture 23 10

Heap Before and After Insertion of 50

63

1835

3882510

4030

v[0]

v[1] v[2]

v[9]

v[4]

v[8]v[7]

v[5]v[3] v[6]

63

1835

3882510

4030

v[0]

v[1] v[2]

v[9]

v[4]

v[8]v[7]

v[5]v[3] v[6]

(a) (b)

50

v[10]

Fall 2004 322C – Lecture 23 11

Reordering the tree in pushHeap()

63

18 25

30

v[0]

v[1]

v[9]

v[4]

50

v[10]

. . .

. . .

Step 1 Compare 50 and 25
(Exchange v[10] and v[4])

63

18 25

30

v[0]

v[1]

v[9]

v[4]

50

v[10]

. . .

. . .
63

18 25

30

v[0]

v[1]

v[9]

v[4]

50

v[10]

. . .

. . .

Step 2 Compare 50 and 30
(Exchange v[4] and v[1])

Step 3 Compare 50 and 63
(50 in correct location)

Fall 2004 322C – Lecture 23 12

Exchanging elements in popHeap()

63

1835

3882510

4030

v[0]

v[1] v[2]

v[9]

v[4]

v[8]v[7]

v[5]v[3] v[6]

Before a deletion After exchanging the root
and last element in the heap

63

18

35

3882510

4030

v[0]

v[1] v[2]

v[9]

v[4]

v[8]v[7]

v[5]v[3] v[6]

3

Fall 2004 322C – Lecture 23 13

Adjusting the heap for popHeap()

Step 1: Exchange 18 and 40

18

388

40

v[0]

v[2]

v[5] v[6]

. . .

Step 2: Exchange 18 and 38

18

38

8

40

v[0]

v[2]

v[5] v[6]

. . .

Fall 2004 322C – Lecture 23 14

Implementing heap sort

75

2520

5035

Heapified Tree

int arr[] = {50, 20, 75, 35, 25};
vector<int> h(arr, arr + 5);

Fall 2004 322C – Lecture 23 15

Implementing heap sort (Cont….)

50

7520

2535

35

7550

2520

Calling popHeap() with last = 5
deletes 75 and stores it in h[4]

Calling popHeap() with last = 4
deletes 50 and stores it in h[3]

25

7550

3520

20

7550

3525

Calling popHeap() with last = 3
deletes 35 and stores it in h[2]

Calling popHeap() with last = 2
deletes 25 and stores it in h[1]

Fall 2004 322C – Lecture 23 16

Heapifying a Vector
9

19465

60205030

1712

Initial Vector

4

9

1965

60205030

1712

adjustHeap() at 4 causes no changes
(A)

Fall 2004 322C – Lecture 23 17

Heapifying a Vector (Cont…)

4

9

1930

60205065

1712

adjustHeap() at 3 moves 30 down
(B)

50

4

9

1930

172065

6012

adjustHeap() at 2 moves 17 down
(C)

50

4

9

1912

172030

6065

adjustHeap() at 1 moves 12 down two levels
(D)

19

4

65

912

172030

6050

adjustHeap() at 0 moves 9 down three levels
(E)

Fall 2004 322C – Lecture 23 18

STL Template Functions
These assume that the heap is represented by a
sequence (vector)

• make_heap(iterator start,iterator end,Comp lessThanFcn)

– constructs a heap from a sequence
• push_heap(start, end)

– pushes an element onto the end of the heap and rebuilds it
• pop_heap(start, end)

– exchanges the first and last-1 elements and then rebuilds the heap
• sort_heap(start, end)

– sorts a heap into descending order

4

Fall 2004 322C – Lecture 23 19

Graph Definitions
• Graph: A data structure that consists of a set of

nodes and a set of edges that relate the nodes to
each other

• Vertex: A node in a graph
• Edge (arc): A pair of vertices representing a

connection between two nodes in a graph
• Undirected graph: A graph in which the edges

have no direction
• Directed graph (digraph): A graph in which each

edge is directed from one vertex to another (or
the same) vertex

Fall 2004 322C – Lecture 23 20

Formally
• A graph G is defined as follows:

– G = (V,E)
• where

– V(G) is a finite, nonempty set of vertices
– E(G) is a set of edges

• (written as pairs of vertices)

Fall 2004 322C – Lecture 23 21

An Undirected Graph

Fall 2004 322C – Lecture 23 22

A Directed Graph

Fall 2004 322C – Lecture 23 23

A Directed Graph

Fall 2004 322C – Lecture 23 24

More Definitions
• Adjacent vertices: Two vertices in a graph that

are connected by an edge
• Path: A sequence of vertices that connects two

nodes in a graph
• Complete graph: A graph in which every vertex is

directly connected to every other vertex
• Weighted graph: A graph in which each edge

carries a value

5

Fall 2004 322C – Lecture 23 25

A Complete Graph

J

K

L

N

M

Fall 2004 322C – Lecture 23 26

A Weighted Directed Graph

austin

dallas

houston

chicago

denver

Washing-
ton DC

atlanta

200

900

780

600

600

800

1300

160

200

Fall 2004 322C – Lecture 23 27

Definitions

• Depth-first search algorithm: Visit all the nodes
in a branch to its deepest point before moving up

• Breadth-first search algorithm: Visit all the nodes
on one level before going to the next level

• Single-source shortest-path algorithm: An algorithm
that displays the shortest path from a designated
starting node to every other node in the graph (e.g,
what is the shortest path from Austin to Atlanta in
the previous graph)

Fall 2004 322C – Lecture 23 28

Breadth-First Search

E

D

A

CB

F

G

For example: A B G C D E F

Fall 2004 322C – Lecture 23 29

Depth-First Search

E

D

A

CB

F

G

For example: A B D F G E C

Fall 2004 322C – Lecture 23 30

Matrix-Based Implementation

• Adjacency Matrix: for a graph with N nodes,
an N by N table that shows the existence
(and weights) of all edges in the graph

• You can use the matrix template class to do
this

6

Fall 2004 322C – Lecture 23 31

Adjacency Matrix for Flight Connections
int N = 7;
vector <string> cityNames (N); // contains the cities
matrix <int> cityConnections (N, N); // adjacency matrix
cityConnections [1] [3] = 200;
cityConnections [3] [1] = 200;

200

200Atlanta
Austin
Chicago
Dallas
Denver
Houston
Wash.DC

0
1
2
3
4
5
6

from

to

Fall 2004 322C – Lecture 23 32

Linked Implementation
• Adjacency List: A linked list that identifies all

the vertices to which a particular vertex is
connected; each vertex has its own adjacency list

Fall 2004 322C – Lecture 23 33

Adjacency List Representation of Graphs
int N = numCities;
vector <cityNodes> cityNet (N);

class cityNode
{ string cityName;

adjacencyNode *nodelist;
}

class adjacencyNode
{ int nodeNumber;

int weight;
adjacencyNode *next;

}

0
1
2
3
4
5
6

Fall 2004 322C – Lecture 23 34

Extra Credit Homework
• Basic rule: you have to do this on your own with

no help from me, Matt or friends
• Use the adjacency list representation of graphs

– See the example from the previous slide
• A transitive closure in a graph from a specific

node is defined is defined to be all the nodes
that can be reach from that specified node
– It can reach all its adjacent nodes
– It can reach all the adjacent nodes of its adjacent

nodes, etc.

Fall 2004 322C – Lecture 23 35

Extra Credit Homework
1) Define an undirected graph of 20 nodes using the

adjacency list representation
2) Write a function that given a node in the graph

returns a list of nodes.
Hints:
• Control structures

– When is iteration appropriate?
– When is recursion appropriate?

• Hard part: when to stop
– Obviously, when you have done the whole graph
– Need more: don’t want to keep going indefinitely

Fall 2004 322C – Lecture 23 36

Final Exam
• Topics

– Software Engineering & object oriented principles
– Classes, their structures etc
– All the data structures

• Parts of the exam
– True/False
– Multiple Choice
– Fill in the blank
– What does this program do
– Programming: data structures, functions

1

Fall 2004 322C – Lecture 24 1

EE 322C
Data Structures

Lecture 24

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Lecture 24 2

Lecture 28 Announcements
• Exam (last exam, last day of class)

– Wednesday 1 December 5:00 – 6:15 here
• Today’s topics – more on associative containers

(elements are stored by key and not by
position)
– More on Maps
– Hashing

Fall 2004 322C – Lecture 24 3

Map
• A map is a collection of key-value pairs that

associate a key with a value.
• In a map, there is only one value associated with a key.

• A map is often called an associative array
because applying the index operator with the key
as its argument accesses the associated value

• The map STL class has all the same operations
found in set, however the elements are pairs not
a single data item

• Balanced binary search tree is used for the STL
implementation

Fall 2004 322C – Lecture 24 4

Key-Value Data

key value

A map stores data as a key-value pair. In a pair, the
first component is the key; the second is the value.
Each component may have a different data type.

A lookup operation takes the key and returns an
iterator that points to a matching (key, value) pair.

Only unique keys are allowed in maps

Fall 2004 322C – Lecture 24 5

Maps

Key-value Pair

Map as a Set of Pairs

key value

key value

key value

key value

key value

Fall 2004 322C – Lecture 24 6

Map Example

English 117

Music 40

Computer Science 240

Economics 75

Business 290

degreeMajor: Map of string-int pairs

map <string, int> degreeMajor;
// assume values have been filled in as above
cout << degreeMajor [“English”];
degreeMajor [“ECE”] = 322;

2

Fall 2004 322C – Lecture 24 7

Map Examples
/* this example creates a map of elements which are

(capital letter, ascii value) pairs. The program then
accepts user input of a letter and finds and reports
the associated ascii value of that letter if it is in the map.

*/
#include <iostream>
#include <map>
using namespace std;
int main()
{

map<char, int> m;
int i;
// put (capital letter, ascii value) pairs into the map
for (i =0; i < 26; i++)
{ m.insert (pair <char, int> ('A' + i, 65 + i));

//pair is a template struct with first&second components
}

Fall 2004 322C – Lecture 24 8

Map Examples
char ch;
cout << "enter the key character: ";
cin >> ch;
map <char, int>:: iterator p;
// find the value given the key
p = m.find (ch);
if (p ! = m.end())

cout << "the ascii value of " << ch << " is "
<< p -> second;

else
cout << "the key of " << ch << " is not in the

map";
return 0;

}

Fall 2004 322C – Lecture 24 9

Map Examples
/* this example creates a phone directory map in which the

elements are (name, phone number) string pairs. Several
elements are inserted into the map, and then the user puts
in a name and the program finds and reports the associated
phone number if the name is in the map.

*/
#include <iostream>
#include <map>
#include <string>
using namespace std;
int main()
{ map<string, string> directory;

directory.insert(pair<string, string>("Tom", "555-4533"));
directory.insert(pair<string, string>("Chris", "555-9678"));
directory.insert(pair<string, string>("John", "555-8195"));
directory.insert(pair<string, string>("Rachel", "555-0809"));

Fall 2004 322C – Lecture 24 10

Map Examples
string s;
cout << "Enter name: ";
cin >> s;
map<string, string>::iterator p;
p = directory.find(s);
if(p != directory.end())

cout << "Phone number: " << p->second;
else

cout << "Name not in directory.\n";
return 0;

}

Fall 2004 322C – Lecture 24 11

Hash Tables
• The hash table is organized as sequential storage

divided into b buckets, each bucket with s slots.
Each slot holds one element.

• The address of an identifier X in the table is
gotten by computing some arithmetic function ~
f(X)
– f(X) maps the set of possible identifiers onto the

bucket numbers 0 to b-1; we will use the bucket # as
the index

– f(X) should be easy to compute and should spread out
the elements to be stored - given a random value for X
it should have an equal chance of hashing into any of
the b buckets (uniformity)

Fall 2004 322C – Lecture 24 12

Hash Tables
• Collision occurs when 2 different identifiers are

hashed into the same bucket #
• Overflow occurs when a new identifier to be

stored hashes into a full bucket
• If the bucket size is 1 then collision and overflow

occurs simultaneously
• average time for a search of a hash table is O(1) -

the worst case is O(n) where n is the total slots
available

• Load factor a = m / (s * b), m is the # elements
stored

3

Fall 2004 322C – Lecture 24 13

Hashing Concept

0
1
2
. . .

i
. . .
n-1

Hash table

key
(X)

Hashing
Function
f(X) or hf(X)

value

index

Collision resolution
Overflow handling

Fall 2004 322C – Lecture 24 1414

1
• Modulo division technique
• Let’s assume that we wish to store integer values X in the

hash table
f (X) = X % N (N is the number of buckets)

• After obtaining an index by dividing the value from the
hash function by the table size and taking the remainder,
access the table.

• Normally, the number of elements in the table is much
smaller than the number of possible data values, so
collisions occur.

• To handle collisions, we must place a value that
collides with an existing element into the table in such a
way that we can efficiently find it later.

Fall 2004 322C – Lecture 24 15

Hash Table Example
• Modulo division technique
• Let’s assume that we wish to store integer values X in the

hash table
f (X) = X % N (N is the number of buckets)

• After obtaining an index by dividing the value from the
hash function by the table size and taking the remainder,
access the table.

• Normally, the number of elements in the table is much
smaller than the number of possible data values, so
collisions occur.

• To handle collisions, we must place a value that collides
with an existing element into the table in such a way that
we can efficiently find it later.

Fall 2004 322C – Lecture 24 16

Example Hash Function

hf(22) = 22 22 % 7 = 1

hf(4) = 4 4 % 7 = 4

0
1

4

6

2
3

5

tableEntry[1]

tableEntry[4]

N (table size) is 7,
and we want to store the values: 22, 4
Now let’s try to add 36

Fall 2004 322C – Lecture 24 17

Collision Occurs

Now what do we do?

Fall 2004 322C – Lecture 24 18

Collision Resolution
Linear open probe addressing
• The table is a vector or array of static size
• After using the hash function to compute a table index, look up the

entry in the table.
• If the values match, perform operation as necessary.
• If the table entry is empty, insert the value in the table.
• Otherwise, probe forward circularly, looking for a match or an empty

table slot.
• If the probe returns to the original starting point, the table is full.
• You can find table items that hashed to different table locations.
• Deleting an item is difficult in this scheme.

4

Fall 2004 322C – Lecture 24 19

Hash Table: Linear Open Probe Addressing
77

89

14

94

0

1

2

3

4

5

6

7

8

9

10

(a)

1

1

1

1

1

Insert
54, 77, 94, 89, 14

2

77

89

45

14

94

0

1

2

3

4

5

6

7

8

9

10

(b)

1

1

1

1

1

Insert
45

2

77

89

45

14

35

94

0

1

2

3

4

5

6

7

8

9

10

(c)

1

1

1

1

1

Insert
35

3

2

77

89

45

14

35

76

94

0

1

2

3

4

5

6

7

8

9

10

(d)

1

1

1

1

1

Insert
76

3

7

54 54 5454

Fall 2004 322C – Lecture 24 20

Collision Resolution
Chaining with separate lists.

• The hash table is a vector of list objects
• Each list (bucket) is a sequence of colliding items.
• After applying the hash function to compute the table

index, search the list for the data value.
• If it is found, update its value; otherwise, insert the

value at the back of the list.
• You search only items that collided at the same table

location
• There is no limitation on the number of values in the

table, and deleting an item from the table involves only
erasing it from its corresponding list

Fall 2004 322C – Lecture 24 21

Chaining with Separate Lists

< Bucket1 > 89(1) 45(2)

< Bucket0 >

< Bucket3 > 14(1)

< Bucket2 > 35(1)

< Bucket10> 54(1) 76(2)

< Bucket6 > 94(1)

< Bucket9 >

< Bucket8 >

< Bucket7 >

< Bucket5 >

< Bucket4 >

77(1)

Fall 2004 322C – Lecture 24 22

Other Common Hash Functions

• Did Square
• Folding
• Digit analysis
• String combinations (use all characters)
• Custom hashing functions you design

Fall 2004 322C – Lecture 24 23

Efficiency of Hash Methods

)1(2
1

2
1

λ−
+

2)1(2
1

2
1

λ−
+

m2
1

2
1 −+

λ

Hash table size = m, Number of elements in hash
table = n, Load factor l = n / m

Average Probes
for Successful Search

Average Probes
for Unsuccessful

Search

Open
Probe

Chaining
�

2

Fall 2004 322C – Lecture 24 24

Extra Credit Homework
• Basic rule: you have to do this on your own with

no help from me, Matt or friends
• Use the adjacency list representation of graphs

– See the example from the previous slide
• A transitive closure in a graph from a specific

node is defined is defined to be all the nodes
that can be reach from that specified node
– It can reach all its adjacent nodes
– It can reach all the adjacent nodes of its adjacent

nodes, etc.

5

Fall 2004 322C – Lecture 24 25

Extra Credit Homework
1) Define an undirected graph of 20 nodes using the

adjacency list representation
2) Write a function that given a node in the graph

returns a list of nodes.
Hints:
• Control structures

– When is iteration appropriate?
– When is recursion appropriate?

• Hard part: when to stop
– Obviously, when you have done the whole graph
– Need more: don’t want to keep going indefinitely

Fall 2004 322C – Lecture 24 26

Final Exam
• Topics

– Software Engineering & object oriented principles
– Classes, their structures etc
– All the data structures

• Parts of the exam
– True/False
– Multiple Choice
– Fill in the blank
– What does this program do
– Programming: data structures, functions

1

Fall 2004 322C – Last Exam 1

EE 322C
Data Structures

Last Exam

Fall 2004

perry@ece.utexas.edu
Office: ENS 623A

Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C – Last Exam 2

Last Exam - Totals
• 90-100 xxxxx xx
• 85+ xxxxx xxx
• 80+ xxxxx xxxxx xxxxx xxxxx
• 75+ xxxxx xxxxx x
• 70+ xxxxx x
• 65+ xxxxx
• 60+ xxxx
• Median: 80.5
• Mean: 79.5

Fall 2004 322C – Last Exam 3

Last Exam - Grades
• A 85 – 100 15
• B 80.5+ 20
• C 64+ 23
• D 63- 2

Fall 2004 322C – Last Exam 4

Last Exam – T/F
• 16 xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx
• 14 xxxxx xxxxx xxxxx xxxxx xxxx
• 12 xxx
• 10 xx

• Median: 16
• Mean: 14.77

Fall 2004 322C – Last Exam 5

Last Exam - MC
• 21 xx
• 20.5 xxxxx
• 20 xxx
• 19.5 xxxxx x
• 19 xxxxx xxxxx xxx
• 18.5 xxxxx xxxxx
• 18 xxxx
• 17.5 xxxx
• 17 xxxxx
• 16.5 xx
• 16 xx
• 15.5 xxx
• 15 x

• Median: 18.5
• Mean: 18.45

Fall 2004 322C – Last Exam 6

Last Exam – Fill In
• 21 xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xx
• 20 xxxxx x
• 19 x
• 18 xxxxx xxx
• 17 xx
• 16 xxx
• 15 xx
• 14 xx
• 13.5 xx
• 13 xx

• Median: 21
• Mean 19.31

2

Fall 2004 322C – Last Exam 7

Last Exam – ID DS
• 16 xxxxx xxxxx xxxxx xxxxx xxx
• 14 xxxxx xxxx
• 12 xxxxx xxxxx xxxxx xx
• 11 x
• 10 xx
• 8 xxxxx x
• 6 x
• 4 x
• Median: 14
• Mean: 13.2

Fall 2004 322C – Last Exam 8

Last Exam – ID Function
• 17 x
• 16 xxxxx
• 15 xx
• 14 x
• 13 xxxx
• 12 xxxxx xxxxx x
• 11 xxxxx
• 10 xxxxx xxxxx xx
• 9 xxxxx xxxxx
• 7 xxxx
• 6 x

• 5 xxx
• 1 x

• Median: 10.5
• Mean: 10.67

Fall 2004 322C – Last Exam 9

Last Exam – Virtual Machine
• 9 xxxxx
• 8 xxx
• 6 xxx
• 5 xxxxx xx
• 4.5 x
• 4 xxxxx xx
• 3.5 x
• 3 xxxxx
• 2 xxxxx xxxxx x
• 1.5 xx
• 1 xxxxx xxx
• 0.5 xx
• 0 xxx

• Median: 3
• Mean: 3.62

Fall 2004 322C – Last Exam 10

Last Exam - Comments
• You all did fairly well on the first three parts –

the parts that were basically memorization
• Slightly less well on identifying data structures
• Less well on understanding what the functions did
• And not very well on the virtual machine

– Too much dancing around
– Too much extraneous and erroneous stuff
– Too little focus on what gets extended and what gets

hidden

