EE 322C
Data Structures
Fall 2004

perry@ece.utexas.edu
Office: ENS 623A
Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C- Lecture 1 1

Introductions

+ The Teaching Team

- Instructor - Dewayne E. Perry

+ Programmer, Designer and System Architect

* Visiting faculty at CMU

+ SE Researcher at Bell Labs

+ Motorola Regents Chair in SE at UT Austin
- TA - Matthew Hawthorne

+ MS in SE in the UT Option 3 Program

+ Significant experience in SE & C++

+ PhD Student working with me on SW Architecture
- Grader - [don't know yet]

Fall 2004 322C- Lecture 1 2

ECE322C in Context

Software Dev./

Engineering
Introductory 2y:fems
Programming Data | _—7 Software

Inc :> Structures Embedded
In C++ > Systems

Objectives: o Other ECE
* teach you data structures, and areas
es

* to prepare you for later cours

Other non
ECE areas

Fall 2004 322C - Lecture 1

Goals for this class

* A practical understanding of a variety of common

data structures

- A practical understanding of where they are

applicable

+ Knowledge of the basic constructs of the C++ and

good programming style

* How to use C++ to create appropriate abstractions

to solve programming problems

+ A good understanding of basic software

engineering principles

Fall 2004 322C - Lecture 1 4

High Points of Syllabus

* Prerequisite, EE312- C Programming

- If no prerequisite or not sure the
prerequisite has been met, see me

* You are responsible for all materials
presented in classes, whether you attend
or not. Material presented in class is in
addition to the notes.

* The purpose of the lecture notes is to
help you listen in class.

Fall 2004 322C- Lecture 1 5

Schedule Highlights

Aug 25 is our first day of class, Dec 1is
our last day of class

Lectures every Monday and Wednesday in
CPE 2.210 from 5- 6:15

Exams (3): Sep 27, Oct 27, and Dec 1

Programming assignments (6-8) will come
out throughout the semester

No class Nov 24 (evening before Thanks-
giving)

Fall 2004 322C - Lecture 1 6

Assignments and Grading

* Assignments will be 6 - 8 programs.

- Programs to be completed independently unless
I state otherwise (we may try some pair
programming)

* Three exams during semester.

* Pop quizzes at any time

- all equal to 1 assignment

* Grades made up of:

60 % exams

40 % assighments/quizzes

Fall 2004 322C- Lecture 1 7

Final Grade Criteria

Final Average Letter Grade

Assignments and Grading

+ Exam grades may be curved if warranted.

* Programs are submitted for grading via email
system

- Assignments turned in late will not be accepted.
* Your program must run successfully on the ENS
lab configuration

- Assignments are graded on a 20 point scale

- Each assignment may have different criteria

- Partial credit may be given

- Correctness, style, performance, etc. will be scored

Fall 2004 322C - Lecture 1 9

90 - 100 A
80 - 89 B
70-79 c
60 - 69 D
0 -59 F
Syllabus

+ All the remaining details of the course
policies, rules, grading criteria, and
procedures are in the syllabus document
on the class web page

+ Various C/C++ documents will also be
available on the web page

* Will have the web page set up by next
week

Fall 2004 322C - Lecture 1 10

Questions?

Fall 2004 322C- Lecture 1 1

Software Engineering and Programming

+ Software Engineering (SE) is about

- Building and evolving software systems

- That solve practical problems in the world

- Using appropriate and simplifying abstractions
* Programming is about

- Finding the appropriate representations for
* Processing
* Data

- Implementation details in a programming
language (here C++)

Fall 2004 322C - Lecture 1 12

Standard View of SE Standard View of SE

+ Basic SE life-cycle processes
- Requirements
- Architecture & Design

+ We will become acquainted with aspects of
each of these

: - Requirements: the problem to solve
 Construction - Design: the shape of the problem influencing
- Deployment & Maintenance the shape of the solution
+ Integral to life-cycle processes N : . .
: - Construction: integrating multiple pieces
- Documentation . s .
- Measurement & Evaluation (M&E) - Documentation: describing the solutions
- Teamwork - M&E - various forms of analysis and testing
- Management of system objects - Teamwork: will do some projects in feams
- Evolution - Evolution: will evolve some projects
Fall 2004 322C- Lecture 1 13 Fall 2004 322C - Lecture 1 14
A Different View of SE Wisdom from Fred Brooks
* Three elements in engineering SW systems + Suggestion: read Mythical Man-Month often
- Theory + Essential Characteristics of SW Systems
- Experience - Complexity - our besetting problem
- Process « Software entities are more complex for their size
that perhaps any other human construct
+ We will become acquainted with aspects of - Two kinds of complexity
- Intricacy (may find some of this in some data structures)
each Of These . - Wealth of detail (probably not in this class)
- Will introduce theories for data structures - Lack of Conformity
- Will gain experience with them - Changeability & Evolution
- Will instill good SE & programming practices - Invisibility and Implicitness
Fall 2004 322C - Lecture 1 15 Fall 2004 322C - Lecture 1 16
Wisdom from Fred Brooks Managing Complexity
- Accidental Characteristics * Modularity
- Inadequate abstractions - Divide and conquer .
L . . - Break things up into manageable pieces
+ Our main job as SEs is fo find, create and evolve - E lati
appropriate abstractions ncapsg a !on .
. - Localize similar things
- Inadequate modes of expression

- Localize expected changes
+ Depends on the languages we use . Abstraction

- Language limitations - here C++ - Functional: generalize and parameterize
- Resource limitations - time, PCs, cycles, etc - Implementation:

_ _ . + Define simple interface
Inadequate support - tools, environments, etc - Hide implementation details

Fall 2004 322C- Lecture 1 17 Fall 2004 322C - Lecture 1 18

What is a Program?

+ Algorithms + Data Structures = Program
+ Data

- Is information represented in a manner suitable for
communication or analysis by humans or machines
- A data structure is a systematic way of organizing,
holding, and accessing computerized data
+ An algorithm
- Is alogical sequence of discrete steps that describes

a complete solution to a given problem computable in a
finite amount of time.

- The key to packaging and time Vs. space tradeoff
decisions

Fall 2004 322C- Lecture 1

Structured Programming

- A disciplined style of programming where the

+ Static structure mirrors the dynamic structure
- Modularization and scoping of programs
- Restricted set of control structures
- Indentation of subordinate structures
+ Control Structures
- Sequence
- Selection (if, Case, etc)
- Iteration (for, while, etc)
+ Data Structures
- Tuples
- Ordered elements
- Unordered elements
Fall 2004 322C - Lecture 1 20

Data Structures

Base Types

- int, float, char, bool, enum, pointer
Tuples

- struct

Ordered types

- string, array, vector, stack, queue, linked list,
tree, graph, table, hash table

Un-ordered types
- sets, heaps

Fall 2004 322C - Lecture 1 21

Questions about Data Structures

* When are the different data structures
applicable or appropriate?

- When do we use types, ordered or unordered
structures?

- What are the costs and benefits?
+ How do you design new data types?
- Open structures or abstract data types?
- What operations are needed?
+ Eg, add, remove, access data
- What else is needed?

Fall 2004 322C - Lecture 1 22

Functional vs. Object-Oriented

* Read the problem statement and/or
specification of the software you want to
build.

- Underline the verbs if you want to focus on
procedural aspects,

- Underline the nouns if you want to focus on the
data aspects

* How do you decide which to emphasize in a
system design ?

- it depends on the application

Fall 2004 322C- Lecture 1 23

Two SW Design Approaches

FUNCTIONAL OBJECT-ORIENTED
DECOMPOSITION DESIGN

Identifies various
objects composed of
data and operations,

Divides the problem
into more easily handled
subtasks, until the
functional modules that can be used
(subproblems) can together to solve
be coded. the problem.

FOCUS ON: processes FOCUs ON: data objects

Fall 2004 322C - Lecture 1

Functional Design

Prepare . Find Print
File for Get Data PrintData | weighted Weighted
Reading Average Average
| Print Heading
Fall 2004 322C- Lecture 1

Object-Oriented Design

A technique for developing a program in which
the solution is expressed in terms of objects
-- self- contained entities composed of data
and operations on that data.

Private data

Private data

C get

ignore

Fall 2004 322C- Lecture 1

What is Software Engineering?

+ A disciplined approach to the development of
computer software systems that:

- produces high quality software solutions (i.e. it works
correctly, its reusable, modifiable, etc.),

are developed on time and within cost estimates,

uses technology that help to manage the size and
complexity of the resulting software products.

applies to all types of software systems that are
developed as products

uses general principles and domain specific approaches as
well

Fall 2004 322C - Lecture 1

What is System Software?

+ Operating systems, compilers, linkers, loaders,
middleware

+ Network management tools

+ Computer performance monitors

+ Telecomm

+ NOT end user applications, web aps, games, etc.

+ Issues involved are very close to the machine:
squeezing space, minimizing time, slicing resource
utilization, etc.

Fall 2004 322C - Lecture 1 28

What is Embedded Software?

- Inside a device

*+ Smart appliances

- Automotive, anti lock brakes

- Digitial signal processing

+ System on a chip

« Issues involved are hard real time

Fall 2004 322C- Lecture 1 29

Next Time

+ We geft started on C++

Fall 2004 322C - Lecture 1 30

EE 322C
Data Structures

Lecture 2

Fall 2004
perry@ece.utexas.edu

Office: ENS 623A
Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C - Lecture 2 1

Announcements

+ http://www.ece.utexas.edu/courses/fall_04/ee322c-15515

- Class web site is up

- Basic C to C++ reading notes out

- Syllabus is there

- Class lectures will be there after

- Assignments will be announced there

Fall 2004 322C- Lecture 2 2

C++ References
* Books

- C++ Programming Language, 3rd Edition, B.

Stroustrup, Addison Wesley, 2000

* Online sources
- http://cppreference.com - syntax reference
- http.//www.cprogramming.com/tutorial.htm/
- http://www.cplusplus.com
- Many others - search for them

Fall 2004 322C - Lecture 2 3

Two SW Design Approaches

FUNCTIONAL OBJECT-ORIENTED
DECOMPOSITION DESIGN
Divides the problem Identifies various
into more easily handled objects composed of
subtasks, until the data and operations,
functional modules that can be used
(subproblems) can together to solve

be coded.
FOCUS ON: processes

the problem.
FOCUS ON: data objects

Fall 2004 322C - Lecture 2 4

Introduction to Problem Solving
and Algorithms

* Look at algorithms first
* Fits the functional style of C
* Algorithms + data structures = programs

Fall 2004 322C - Lecture 2 5

Algorithm

* General - a step by step procedure for solving

some problem or accomplishing some goal
(Webster's) - e.g. a recipe

- Computer - A logical sequence of discrete steps

that describes a complete solution to a given
problem that is computable in a finite amount of
time.

- "Find the largest prime number” is NOT amenable

- Often appears at several levels of abstraction/detail

- Algorithms operate on data structures from a
functional viewpoint

Fall 2004 322C - Lecture 2 6

Algorithm (cont.)

* A given problem may be solvable by a number
of different algorithms. Its importance is
crucial in designing a solution program.

+ An algorithm may be transformed into a
working program if its computable

* An algorithm will typically use levels of
abstraction to make the solution clearer and
implementation easier.

Fall 2004 322C - Lecture 2 7

Algorithm (cont.)

* An algorithm may be represented in several ways:

- Pseudocode - structured English language used to help
design an algorithm (free form; e.g. recipe)

- Flowchart - a graphical representation of an algorithm.
It shows control and data flow.

- Formal languages - outside the scope of this course

- Computer program - eventually an algorithm is written
in a programming language

Fall 2004 322C- Lecture 2 8

Algorithms in General

Fall 2004 322C - Lecture 2 9

How To Shampoo Your Hair

Follow these simple steps:
1) Wet your hair
2) Apply shampoo
3) Lather
4) Rinse
5) Repeat
Found on the back of a shampoo bottle - circa 1965

Fall 2004 322C - Lecture 2 10

How To Shampoo Your Hair
Follow these simple steps:

1) Wet your hair
2) Apply shampoo
3) Lather

4) Rinse

5) Repeat

Steps 1 - 4 depict a sequential flow of instructions
Step 5 introduces the notion of repetition/iteration of
instructions

Fall 2004 322C - Lecture 2 1

How To Shampoo Your Hair

Follow these simple steps:
0) If out of shampoo,
then run out and buy some
1) Wet your hair
2) Apply shampoo

3) Lather This is a decision
4) Rinse making statement
5) Repeat

Fall 2004 322C - Lecture 2 12

How To Shampoo Your Hair

Follow these simple steps:

1) Wet your hair

2) Apply shampoo

3) Lather

4) Rinse

5) Repeat steps 1 - 4, if necessary

This is a bounded iteration statement

Fall 2004 322C - Lecture 2 13

How To Shampoo Your Hair

Follow these simple steps:

1) Wet your hair
2) Set the wash hair counter to O
3) Repeat steps 3A - 3D while the value of wash
hair counter is less than 3 (i.e. do it three
times)
A. Apply shampoo
B. Lather
C. Rinse
D. Add1to the wash hair counter
4) Stop

This is what pseudocode looks like

Fall 2004 322C- Lecture 2 14

Algorithm Exercises

Fall 2004 322C - Lecture 2 15

Flowchart Symbology 101
- Primitives -

- Control flow
—_—

Process/ O connector
Task/action

Three Proper Logic Constructs

sequence iteration selection

Lo e

i -

[_]one or ablock of statements
grouped together

Fall 2004 322C - Lecture 2 17

Three Proper Logic Constructs
- pseudocode style -

sequence iteration selection
1. Repeat below steps If condition is true
While condition is frue then
2. .. a) .
b) .. else
3. c) ..
end repeat end if

Use indentation heavily to show the static (ie, block) structure

Fall 2004 322C - Lecture 2 18

Making Cookies

Fall 2004 322C - Lecture 2 19

Judy's Chocolate Chip Cookies
e €D

‘ Step 1 H Step 2 H Step 3 }—" Step 4 H
L’{ Step 5 }—" Step 6 H Step 7 }—'—" Step 8a

Fall 2004 322C- Lecture 2 20

Judy's Chocolate Chip Cookies
A e)

‘ Step 1 H Step 2 H Step 3 H Step 4 h
SO
Step 5 H Step 6 H Step 7 }—* ‘%Step 8a
yes
Do it _no

Fall 2004 322C - Lecture 2 21

Numerics - Example

* Problem - given the right triangle
depicted in the figure below, and given
values for the lengths of sides a and b,
what is the length of side c?

Fall 2004 322C - Lecture 2 22

Algorithm

1. Input values for sides a and b
2. Compute the length of the hypotenuse c
3. Output the answer

Fall 2004 322C - Lecture 2 23

Code Example

#include <iostream>

#include <cmath>

using namespace std;

int main ()
// find the length of the hypotenuse c of a right triangle
// with sides a,b,c
double a, b, ¢;
cout << “enter a value for side a" « endl;
cin > a;
cout <« “enter a value for side b" « endl;
cin» b;
¢ = sqrt (a*a + b*b);
cout << “the value of cis " <« c « endl;
return O;

} // end of main

Fall 2004 322C - Lecture 2 24

Numerics - Exercise

* Problem - given the right triangle
depicted in the figure below, and given
values for the lengths of sides a and b,
what is the length of side ¢?

N
Do this for multiple given values of a and b

Fall 2004 322C - Lecture 2 25

Algorithm

Repeat the following steps until ??

1. input values for sides a and b
2. compute the length of the hypotenuse c
3. output the answer

Fall 2004 322C- Lecture 2 26

Code Example

#include <iostream>
#include <cmath>
using namespace std;
int main ()
{// find the length of the hypotenuse c of a right triangle
// with sides a,b,c
double a, b, c;

cout <« “enter a value for side a" « endl;
cin > a;

cout << “enter a value for side b" « endl;
cin» b;

c= sqrt (a*a + b*b);

cout <« “the value of cis " <« c « endl;

return O;
}// end of main

Fall 2004 322C - Lecture 2 27

How To Solve Complex
Programming Problems

Fall 2004 322C - Lecture 2 28

Problem Solving Process
1) Understand the given problem
2) Devise a high-level plan to solve it
3) Elaborate the plan
4) Implement the plan
5) Revisit and revise the plan as necessary

6) Stop when the solution is correct

Fall 2004 322C - Lecture 2 29

Problem Solving Process

1) Understand the given problem
+—>2) Devise a high-level plan to solve it
+—>3) Elaborate the plan

«—>4) Implement the plan

«—b) Revisit and revise the plan as necessary

——6) Stop when the solution is correct

Fall 2004 322C - Lecture 2 30

Problem Solving Process

Understand the given problem

- Analyze the problem to determine: the goals, the givens,the requirements, the
constraints

Devise a high-level plan to solve it

- Design the top-level system models (algorithm/data) to solve the problem- including
new and reused sub-parts

Elaborate the plan

- Work out the details of the algorithm/data structures and their sub-parts

until it is ready for coding in a programming language

Implement the plan

- Code, test and verify the program

Revisit and revise the plan as necessary

- Fix and/or modify the program as needed

Stop when the solution is correct

Fall 2004 322C - Lecture 2 31

Problem Analysis Process

Identify the inputs (e.g. the data given)

Identify the outputs (i.e. the desired results)

Identify the functions and features needed

Identify the data structures, variables and relationships between
them

Identify additional requirements or constraints on the solution
Identify those processes that transform the input data into the
output data

Identify pre-existing parts that will participate in the solution
(e.g. library classes and methods)

Make assumptions and simplifications as necessary (document
those)

Fall 2004 322C- Lecture 2 32

Problem Analysis Tips

Read the problem statement very carefully.
Use the given analysis process to identify and understand the
required inputs, desired outputs, etc.

+ Parse the problem statement looking for the key concepts; use the

divide and conquer approach
- Noun phrases typically will denote potential data types and variables (and
later: classes, objects)
- Verb phrases will denote potential processes/functions/actions
- Outputs can often be related to inputs by a transformation process
(perhaps needing intermediate variables)
Work examples all the way through by hand
Seek clarification and more information as needed from the problem
specifiers (the teaching team in this case)
Create a high level sketch of the flow of the algorithm

DO NOT start by trying to write C++ codel!

Fall 2004 322C - Lecture 2 33

Divide and Conquer

Programming is a complex task that is made simpler if you
can break the big problem down into smaller subproblems
These smaller pieces are components called modules - e.g.
classes, methods, objects, subroutines, procedures or
functions.

Break down a problem into modules that each just do one
thing using encapsulation and astraction. We will learn
more about what makes a good module later.

A key feature of a well written algorithm will be proper
use of abstraction. This will provide an algorithm that:
- is more understandable
- is easier to implement and test
- provides more reusable modules

Fall 2004 322C - Lecture 2 34

Example Problem

Problem - You have $1,000 to invest ina
Certificate of Deposit (CD) that earns 3% interest
per year. Interest is compounded annually. How
many years will it take to double your initial
investment?

Fall 2004 322C - Lecture 2 35

Example Problem

Problem - You have $1,000 to invest in a Certificate of
Deposit (CD) that earns 3% interest per year. Interest is
compounded annually. How many years will it take to
double your initial investment?

Questions to you (the problem solver):

+ Do you fully understand the problem statement? If not,
what are your questions?

+ Can you solve the problem by hand?

+ Can you then teach the computer how to do it?

+ Ask yourself, if I was a computer, what would I do first?
then next, etc.

+ What if the problem was changed slightly?

+ Can you design a solution to solve this problem?

Fall 2004 322C - Lecture 2 36

The Generic Program Design
Usually Starts With
- IPO System Model -

Inputs — Process — Outputs

To begin, represent the program as a closed, black-box system.
Identify the inputs and outputs before you begin o describe and
outline (plan) the steps inside the process box.

Fall 2004 322C - Lecture 2 37

Example Problem

You have $1,000 to invest in a Certificate of Deposit (CD)
that earns 3% interest per year. Interest is compounded
annually. How many years will it take fo double your initial
investment

. Process
inputs —» — outputs

Fall 2004 322C- Lecture 2 38

Example Problem

You have $1,000 to invest in a Certificate of
Deposit (CD) that earns 3% interest per year.
Interest is compounded annually. How many years
will it take to double your initial investment

outputs

inputs —» Process » Number
of years

Fall 2004 322C - Lecture 2 39

Example Problem

You have $1,000 to invest in a Certificate of
Deposit (CD) that earns 3% interest per year.
Interest is compounded annually. How many years
will it take to double your initial investment

inputs outputs
Rate
ate Process Number
Initial balance of years
Fall 2004 322C - Lecture 2 40

Example Problem

You have $1,000 to invest in a Certificate of
Deposit (CD) that earns 3% interest per year.
Interest is compounded annually. How many years
will it take to double your initial investment

Process

inputs Determine the # of years it outputs
takes to double a given

Rate . ! [» Number
L. investment at a given
Initial balance . . of years
interest rate in my CD
Fall 2004 322 - Lecture 2 4

The Algorithm Design Process

= Design the algorithm to solve the problem

1. Use top down decomposition/stepwise refinement
to break a bigger process down into smaller pieces

2. Continue until code can be written directly from
the detailed algorithm

3. Understand the primitives and piece parts you have
to work with

4. Locate relevant functions/classes/etc. in existing
libraries

5. Modify existing methods/classes where necessary
6. Design new methods/classes where necessary

Fall 2004 322C - Lecture 2 42

Algorithm - First Cut

Why do it
this way?

Input the
rate and initial
balance

number of
years

What is inside

2
the cloud? ')

Fall 2004 322C - Lecture 2 43

Algorithm - First Cut

Input the
rate and initial
balance

Calculate # of
years to double
the CD’s value

— 3/ Output the
number of

years

What is inside
the cloud?

Fall 2004 322C- Lecture 2 44

Algorithm - First Cut

Remember that

interest is compounded
annually - how do I do that?
You must simulate how a CD
account warkx.

Input the
rate and initial
balance

Calculate # of
years to double
the CD’s value

——» / Output the
number of

years

What is inside

Next Level Down

Start with the initial
— > balance as the CD amount

I now have in first year
I

Compute a year’s worth
of interest
I

Go to Add that in to
the next the CD amount
year

Is what I have
Now 2X or more than
the initial balance?

Fall 2004 322C - Lecture 2 46

the cloud?
O
o
Fall 2004 :cture 2 45
Next Level Down
Start with the initial
—_— balance as the CD amount
I now have in first year
i Is what I have
now detailed
Compute a year’s worth enough to write
of interest C++ code from?
I
@i Add that in to
e the CD amount
year

Is what I have
Now 2X or more than
the initial balance?

[

Fall 2004 322C - Lecture 2 47

Pseudocode Form

Input the rate and initial balance
Start with the initial balance as the €D amount in first
year
Repeat the following until new balance >= 2X the initial
balance
Compute a year's worth of interest
Add that in to the CD amount
Go to the next year
Output the number of years

Fall 2004 322C - Lecture 2 48

* Let's look at the program now

Fall 2004 322C - Lecture 2 49

Programming Style and
Documentation

* Appropriate Comments

* Naming Conventions

* Proper Indentation and Spacing Lines
* Block Styles

* For more information see the coding
standards on the class web page

Fall 2004 322C- Lecture 2 50

Appropriate Comments

+ Comments are for the purpose of explaining and
understanding of your program by humans

* Include a summary at the beginning of the
ﬁr‘ogmm to explain what the program does, its

ey features, its supporting data structures,
and any unique techniques it uses.

* Include your name, class section,assignment
number, date, and a brief description at the
beginning of the program.

+ Also document the high level logic of your
program at the key decision and iteration
points.

Fall 2004 322C - Lecture 2 51

Naming Conventions

Choose meaningful and descriptive identifier names that
reflect the problem concepts.

- Variables and method names:

- Use lowercase. If the name consists of several
english words, separate them with underscores

- For example, the variables radius and area, and the
function compute_area.

+ Symbolic Constants:

- Capitalize all letters in constants. For example, the
constant PIL.

+ Class names:
- Capitalize the first letter of each word in the name.
For example, the class name My_math_functions.

Fall 2004 322C - Lecture 2 52

Proper Indentation,Spacing, Blocking

+ Indentation
- Indent three spaces to reflect each level of nesting
+ Spacing
- Use blank line to separate segments of the code.
+ Block styles
- Use next-line style for braces, and end of block comments. e.g.

class Test
{ int function1()

cout << "block style example";
return 0;

} /I end of function1
}// end of Test

Fall 2004 322C - Lecture 2 53

EE 322C
Data Structures

Lecture 3

Fall 2004
perry@ece.utexas.edu

Office: ENS 623A
Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C - Lecture 3

Announcements

+ http://www.ece.utexas.edu/courses/fall_04/ee322c-15515

- Class web site is up

- Basic C to C++ reading notes out

- Syllabus is there

- Class lectures will be there after

- Assignments will be announced there

Fall 2004 322C- Lecture 3 2

Topics for Today

* OO thinking
« C++ starter stuff
* Quick review of strings

Fall 2004 322C - Lecture 3

OO and C++

C++ supports object-oriented programming using
abstraction, encapsulation, inheritance and
polymorphism to provide great flexibility,
modularity and reusability in developing software.
- We will eventually learn how to define, extend and
work with classes and their associated objects
- But first we need to learn about how to think in an
object oriented style
- Jargon - I will often use the term method to mean
both functions and procedures

Fall 2004 322C - Lecture 3 4

Classes and Objects
"Introduction to Object
Oriented (OO) Thinking"

“Objects are good” - Aristotle

Objects And Classes - in Two Worlds
Real World

+ Aclass is an abstract grouping (or

categorization) of related
objects, containing members that
have something in common (e.g. at
least one attribute); it defines a
general kind of or type of object
(e.g. all cars, all students in this
course)

+ Anobject is a specific,

identifiable thing; is a member of
1 or more classes, has attributes,
exhibits behavior (e.g. my Toyota,
your seat)

Objects And Classes - in Two Worlds

Real World

A class is an abstract grouping (or
categorization) of related
objects, containing members that
have something in common (e.g. at
least one attribute); it defines a
general kind of or type of object
(e.g. all cars, all students in this
course)

An object is a specific,
identifiable thing; is a member of

C++ 00 World

A class is a container of
functions, variables, etc.; and is
a generalization of and a
generator for all objects of that
class

An object is a member (or
instance) of a class, it is a
composite data structure with
functions attached, and is a
thing you can create and

Object Model Graphics

manipulate in your program. It

1 or more classes, has attributes, has a state, and behavior.

exhibits behavior (e.g. my Toyota,
your seat)

For some programming problems it is easy to map between these
two worlds - that is what OOP tries to do

ER style UML style
classname
class class attributes
pperations/methods
<:> relationship/
association
—>

A Class Hierarchy

Classification scheme with:

E&nimals Superclasses, subclasses,

inheritance

fish amphibiﬂ mammal
i
| \ \ |
horse dog cat rabbit

Missouri
cottontail

A Class Hierarchy

Classification scheme with:

Superclasses, subclasses,
inheritance
invertebrate vertebrate

fish amphibiaq mammal
i
\ I I |
horse dog cat rabbit
Missouri
My pet rabbit | “Fluffy” cottontail

Membership Relationships Between
Classes and Objects

class class

Class is a template i
Toyota or Blueprint for Mo. ?0tt0ntall
creating rabbit
1 objects

Isa
member
of

Isa
member
of

object object

Object is a member
or instance of a class

My_Toyota my_pet_rabbit

VIN # Name: Fluffy

UML Model Example

Customer Bank Account
SSN: :g)#
Address: wner
balance
'81:)6111 accts 1 N | put $in
G LeeTis *Take $ out
*Check balance
Fall 2004 322C - Lecture 3 12

Purposes of C++ Classes

Classes serve the following purposes:

1. Creates a new programmer defined data type

2. Aclass is like a factory used to create (or construct)
objects of that data type.

3. Specifies the functions (methods) you can use for
objects that belong to that class.

4. Defines the common attributes of all objects in the
class

5. A class defines (and encapsulates) the implementation
details. E.g. data fields and code for methods

6. There are public parts and private parts

Class as Generator of Objects

Used as a
class pattern to

create an object
=

et O O @

Assembly line

Fall 2004 322C- Lecture 3 14

Example Class Definition

class Bank account // this is a class definition,
NOT an object!!
{// function (operations) definitions
public: // means theses are known everywhere
void deposit (double amount)
{// Dbody left out for now
}
void withdraw(double amount)
{// Dbody left out for now
}
double get balance()
{// body left out for now

// member attributes (state) variables definition
private: // means it is known inside the class only
int account_number;
string owners name;
double balance;

OO Style Program

Client Program Data type class
Uses the data type Models all objects of
classes to create and a class. It defines the
then manipulate instance variables,
actual objects. The and methods to be
main function is in used on all objects
here. created from this

class (a template)

Fall 2004 322C - Lecture 3 16

}
Fall 2004 322C - Lecture 3 15
C++ Starter Stuff
Fall 2004 322C - Lecture 3 17

Getting Started With C++

/* a program that does nothing
and just returns a zero */
int main ()
{
// body of the program here
return 0; //return an integer value of zero

}

Amain is required for all C++ programs

+ Unlike C,it must have a return type of int, and should return a zero to
indicate normal execution
The body of main and all other functions should be enclosed within

1.

The statements in the body can (but should not) be written in a free-form where
each statement is terminated by a ;' (semicolon).

The main can have parameters to allow access to command line arguments (more
later)

The source code files can have various prefixes, e.g..cpp to indicate a C++ source
program to the compiler

Multi-line comments use '/* and */' and single line comments use ‘//'

Fall 2004 322C- Lecture 3 18

Header Files

#include <iostream>
#include “myincludes.h”

Prototypes and declarations are kept in header files

#include pre-processor directive inserts the file contents. No
semicolon is needed.

Header files of standard system and library functions are enclosed
within "<>" and the compiler looks for those in the predefined paths.
Header files within double quotes are searched for relative to the
current directory or the user directory defined in the IDE

The system header files do not have the suffix to allow different
compilers to have their own suffix types. In C, the suffix was
required.

Fall 2004 322C - Lecture 3 19

Namespaces

Namespaces allow the same names to be reused under a different
qualifying namespace contexts
All of the standard C++ libraries are wrapped inside of the std
namespace, which has to be explicitly declared, e.g.

#include <iostream>

using namespace std;
Otherwise each use of a library function would need to have the
namespace prefix. For example:

cout << “hello world\n”;

would have to be written as:

std::cout << “hello world\n”;
The names from the namespace are visible only within the scope of
the using directive (file, function, etc.)
Names can be used selectively from a namespace

using namespace std::cout;

You can define your own namespaces in C++

Fall 2004 322C- Lecture 3 20

Hello World

#include <iostream>

using namespace std;

int main ()

{
cout << “Hello World” << endl;
// or cout << “Hello World\n”;
return 0;

}

+ cout or “console output” stream is used to output from a C++ program.
cin is the “console input” stream.

+ endl writes a newline ('\n') and flushes the output buffer. ends only
flushes the buffer. Explicit flush can be done by cout. flush () ;

« Any number of <<operators can be used in one statement

« Some common functions are: fill (char), precision(int),
width (int)

+ Dot operator is used for calling a member function

Fall 2004 322C - Lecture 3 21

Stream I/O Manipulators

= Look at http://www.cppreference.com - under C++ I/O for the
basics and differences

« Some common stream manipulators are: dec, endl, ends
(output a null), flush, hex, oct,
resetflags (long), setfill (char),
setiosflags(long), setprecision(int), setw(int),
ws

« Other "state” modifiers or flags for cout (and other streams,
fstream, etc) that can be used with cout.setf (ios::flags)
skipws, left, right, internal (padding for sign),
dec, oct, hex, showbase, showpoint (trailing
zeros), uppercase, showpos (show sign),
scientific, unitbuf (flush after each op), stdio
(flush after each char), fixed (dddd.dd)

« The effect of manipulators/state modifier flags remain
effective until they are reset

Fall 2004 322C - Lecture 3 22

Variables

#include <iostream>
using namespace std;
int main ()
{ cout << “Enter a number” << endl;
{ int number=0;
cin >> number;
cout <<“you entered ” << number << endl;

}

// cout << “number entered = ” << number<<endl;
// will fail on compile since it’s out of scope
return 0;

}

+ Variables can be defined anywhere and are valid within
the scope of the block in which they are defined

+ They should be defined right before their first use,
but within the scope of all their uses

Fall 2004 322C - Lecture 3 23

Built-in Data Types and Operators

A new data type bool is introduced that has two values, t rue and
false, which are set to 1.and O, respectively.

. E.g, bool married = true;

All the usual C data types such as float, double, int, char,
void, etc as well as specifiers such as short, 1long,
unsigned and signed.

All the usual mathematical, logical, bitwise, sizeof, casting, etc.
operators are supported. The logical operators produce bool
values.

Explicit casting syntax is introduced in C++ in addition to using C
style cast operation and implicit conversions.

* static_cast<type>(var) //regular cast for type conversion

= const_cast<type>(var) //const/volatile to non const and
//non-volatile pointers
//for complete disregard of a type
//for objects

* reinterpret_cast
* dynamic_cast

Fall 2004 322C- Lecture 3 24

Quick Review of strings

+ What are strings? Two answers:

-C s‘rz‘le string is an array of chars terminated
by the NULL char

- C++ style string is a composite object from
the new data type named string (a class
definition); which also contains some useful
operations that can be performed on strings

+ C++ strings are better than C style strings
+ Use the C++ standard library string
- #include <string>

Fall 2004 322C - Lecture 3 25

About strings

An object is composed of values, and has associated
methods that can operate on it (more later)

A string literal is O or more characters enclosed in double
quotes.

""" is the empty or null string.

For example "Spanish Inquisition"

- The quotes are not a part of the string, they delineate

the string.

- If the string is output the double quotes do not appear

— cout << "Spanish Inquisition";

- Spanish Inquisition shows up on the computer screen
String variables are declared and may be initialized, such
as:

string name = “Ned Logan”;
Fall 2004 322C- Lecture 3 26

How characters are stored in strings

Each character(char) in a string is in a sequential
position.

Each position has a humber starting with position O

Position# 1 2 3 4 5 6 7 8

string
contents N € d L o g a n

*The number above each character specifies its position
number (sometimes called its index humber) in the
sequence

Fall 2004 322C - Lecture 3 27

What do we do with strings?

+ Input and output them

* Make a bigger string out of little ones

+ Break big strings into smaller ones

+ Do comparisons (like in chars)

+ Extremely useful in any application that
manipulates text (e.g. translators, word
processors, language puzzles, etc.)

+ Useful methods for manipulating strings can
be found at http://www.cppreference.com -
under C++ strings

Fall 2004 322C - Lecture 3 28

Concatenation

The plus operator, +, has a special meaning for string objects
+is used to concatenate two or more strings
- Means append together, end-to-end, to form a new string, e.g.
string age = “9”;
string s = “He is ” + age + “ years old”;
cout << s; // He is 9 years old
Concatenation can also be used with strings and other data types. -
automatic conversion to string is done
int age = 9;
string s = “He is ” + age + “ years old”;
cout << s; // He is 9 years old

Fall 2004 322C - Lecture 3 29

Other Simple Examples

+ Input/output of strings

#include <string>

cout << “please enter your name: ”;

string s;
cin >> s; // needed storage is then allocated
cout << “Hello ” << s + “!” << endl;

= Simple manipulations

string strl = “test”; // initializes strl

string str2; // null string

str2 = “ing”; // allocates storage for “ing”;

strl = strl+str2; // concats the two strings as “testing”

// frees previous storage for strl

// and reallocates for concat string
cout << strl[3]; // fourth character of string= ‘t’
strl=strl.substr(0,4);//strl="test” from strl=“testing”
if (strl < s) then i++;

Fall 2004 322C- Lecture 3 30

String functions you should know

Given the declarations:

e string str, stringl, search string;

e int index, start index, number of chars;
Here are examples of the most commonly used functions:
e str.length ()

¢ getline (cin, stringl)

* str.find (search_string, start_index)

e str.substr (start_index, number of chars)

e str.insert (index, stringl)

* str.erase (index, number_ of chars)

Fall 2004 322C - Lecture 3 31

EE 322C
Data Structures

Lecture 4

Fall 2004
perry@ece.utexas.edu

Office: ENS 623A
Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C - Lecture 4 1

(gun Busery wonT)

BEDUCE THE BCOPE OF
L FROTICT By

F]L‘ \
T
| ‘—"?j\
1 L
—] T
WO eAR IF T LATER GIVE YOU & [ungRe 06 1 PuT THE
L CHANGE REZULET TO 00 | CHAMGL RLOULSTS?
(L“B 0, } | Gwe rearuat, cous | —.
S VOU DO 17 FOR THE SAME
BUooLT

I

SUrg, e
Fall 2004 322C - Lecture 4 2

Lecture 4 Announcements

+ Homework Assignment on Web

- Details on submission etc
+ Coding standards available on web
* Topics of the day

- More on C to C++ basics

- Building your own data types

- Booleans

- Functions (time permitting)

Fall 2004 322C - Lecture 4 3

What's Wrong with C ?

It's a middle level language

Its not strongly typed

Its not machine independent

It has little run time error checking
+ It allows bit twiddling - OK for systems programming
+ Not block structured, but function based

Its not OO - no mechanisms for abstract data types (ATDs)

It places few restrictions on programmers

Good for embedded systems and system aps

It has no graphical programming capability

Lots of other little nits that are annoying

Fall 2004 322C - Lecture 4 4

C/C++ Language Basics

History, background, context, general programming concepts, program
structure

Expressions - basic data types, vars, operators, cont, expression
evaluation rules

Statements - selection, iteration, case, blocks, jumps

Arrays - 1D, 2D, 3D?

Pointers - vars, operators, with arrays, indirection, dynamic allocation
of memory

Functions - definition, calling, scope, args, parameters, return,
prototypes, recursion?, std fcn library, overloading?

Structs, unions, enums

Console I/0 - C style, C++ style

File I/0 -2

Preprocessor commands - #include

Fall 2004 322C - Lecture 4 5

Keywords in C++ (63 vs 32)

asm else new this
auto enum operator throw
bool explicit private true
break export protected try
case extern public typedef
false register typeid
catch float reinterpret_cast typename
char for return union
class friend short unsigned
const goto size using
const_cast if sizeof virtual
continue inline static void
default int static_cast volatile
delete long struct wchur_'r
do mutable switch while
double namespace template

dynamic_cast

Fall 2004 322C - Lecture 4 6

The Order of A C++ Program

#include statements
Base-class declarations
Derived-class declarations
Non-class function prototypes
Global variables declarations

The block structure of a C++ Program

program R
main

Other functions

int main ()

{ // the body of your main program
}

Non-class function definitions

+ In most projects the class declarations will be in
the standard class library or will be put into a
header file and included with your program

Fall 2004

322C - Lecture 4

d fcn libra

Class-2

w

Fall 2004

322C - Lecture 4

The block structure of a C++ Program

program
main

A‘ function Other functions A function
either CALLS
returns a another
value function by
:‘h;‘oug? its Std fen lib er snar:‘e('r) sTI:

ame o i o0 some ta:
refturns no
value (void) Class-2

Fall 2004 322C - Lecture 4 9

The block structure of a C++ Program

program main
L 1])
. ; A function
A function Other functions CALLS
either sub0 another
r'e"rur‘ns a function by
value ; its name()
through its Std fen 11baiy to do some
hame or task
returns no
. Class-2

value (void)

-

Fall 2004 322C - Lecture 4 10

Calling a Function

What function? Where? How?

° str.translate (“Hello Class™);

Qualifiers of
the function

call. In this case
str is the name
of a string
variable

)

Function name -

A function is called
or invoked by using
its correct name. A
function is like a
preexisting small
program found in your
code file or the

C++ libraries.

Argument(s) are
values that are sent
to the called function

In this case the
function translate
requires a string
parameter (e.g.
“Hello, Herb") as the
value to be operated
on

Teaser - Is this a true function or a procedure being called ?

Fall 2004

322C - Lecture 4

Function Prototypes

+ All functions must be declared (signatures only) before using. This

allows for compatibility and type checking during compilation. E.g.
«int foo1(void);
«double foo2 (int, int, bool);

« void is optional in C++ if a function takes no parameters.

+ Every function must have a prototype with the parameter list.
However, only parameter types need to be declared (names are
optional).

* In C++, the functions must return a value as declared.

+ All default parameters must appear to the right.

«int foo4(int i=0, char); // wrong -- int i=0 should be on the right side of char
+ an example
void square_it (double); // the prototype
int main ()
{ intx=10;
square_it (x); // what's the problem?
return 0;
}
Fall 2004 322 - Lecture 4 12

Build Your Own Data Types

The below are built on top of the C++ built-in data types:
int, float, double, char, void, array, pointer

-struct - aggregate variables under one name

-bit-field - struct with bit level access

-union - two or more types for same memory

-enum - list of int constants

-typedef - alias for another type
Add in two new built-in data types: bool, wchar_t
The following are advanced capabilities for creating new
data types

~class - encapsulates code and data as a logical abstraction

-template - used to create generic classes and functions

Fall 2004 322C - Lecture 4 13

The boolean Data Type

+A boolean variable is used to hold truth values: either
true or false (which are reserved words that stand for
boolean literal values).

*Boolean variables are declared and then used as logic
flags, switches, efc..

For example:
boolean lights on = true;

// Later in the program
lights on = false;

boolean married = true;
If (married) cout << “hitched”;

Fall 2004 322C - Lecture 4 14

Boolean Expressions

Boolean expressions are used in conditional
statement clauses (if, while, for, do), OR on the
right hand side of an assignment to a boolean
variable.

A Boolean Expression is a formula that evaluates to
either true or false, e.g.

int A,B,C;
// assume that A,B, and C get values from input
boolean flag = A < =B + C;

// what’s the value of flag?

Boolean expressions can get complex, just like any
formula

Fall 2004 322C - Lecture 4 15

Relational Operators

Conditions are often mathematical comparisons using these

Mathematics C++ Language
Symbol| Name Symbols | C++ Example
= equal == | balance ==
not equal 1= answer != 332
> greater than > expenses > income
> greater than or equal ~ >= | points >= 60
< less than < pressure < max
< less than or equal <= expenses <= income

Logical Operators

* There are three boolean logical operators
that allow us to create more complex
boolean expressions that contain many sub-
conditions connected by these

+ && Logical AND, all conditions must be
true for the whole boolean expression to be
true
- if (status == SINGLE && income < 21450)

Fall 2004 322C - Lecture 4 17

Logical Operators

There are three boolean logical operators that allow
us to create more complex boolean expressions
that contain many sub-conditions connected by
these

+ && Logical AND, all conditions must be true for
the whole boolean expression to be true
- if (status == SINGLE && income < 21450)

- || Logical OR, if one of the conditions is true the
whole boolean expression is true

- if (month == APRIL || month == JUNE ||
month == SEPTEMBER || month == NOVEMBER)
daysInMonth = 30;

Fall 2004 322C- Lecture 4 18

Logical Operators

+ There are three boolean logical operators that allow us to
create more complex boolean expressions that contain
many sub-conditions connected by these

+ && Logical AND, all conditions must be true for the
whole boolean expression to be true

e if(status == SINGLE && income < 21450)
- || Logical OR, if one of the conditions is true the whole
boolean expression is true
e if (month == APRIL || month == JUNE ||
month == SEPTEMBER || month == NOVEMBER)
. daysInMonth = 30;
I Logical NOT, gives the opposite of the condition

Fall 2004 322C - Lecture 4 19

Boolean Logic

+ If A and B are conditions that are each either
true or false (e.g. A is x <= 10, Bis y > 5) then
the following are the truth tables for our three
boolean logical operators:

A B | Al|lB A&&B A 1A
true true| true true true | false
true false| true false false | true
false true| true false
false false| false false

Boolean data types (more)

boolean variables may be used wherever a boolean
expression may be used.
boolean variables may be assigned the value of a boolean
expression, e.g.
int hours, year; //assume these have values
const int SENIOR = 4; //declaring a constant
boolean happy = false;
happy = (hours <= 12) && (year != SENIOR);
if (happy)
{ // what does such a person do?
}
Boolean variables can be used to simplify the conditional
logic in your program

Fall 2004 322C - Lecture 4 21

Loops — two basic patterns

Count-controlled loop:
Number of iterations is determined before the loop starts.
+ Counts each iteration using a counter variable.
Stops when the desired number of iterations has been performed.

Event-controlled loop:

+ Before each iteration, checks to see whether some event has occurred.
Continues until that event occurs.

Number of iterations not known beforehand.

+ The event signal is in the condition to be tested; and muT change
during an iteration. A boolean variable is often used to flag the signal,
eg.

while (notSatisfied) //a boolean variable
{

// do other stuff
}

Fall 2004 322C - Lecture 4 22

A Function as a Module

in —> Subprocess/ |—> out
subprogram

Defining and using functions are a primary
way of modularizing the procedural aspects
of your programs in C++ (or any language)

Fall 2004 322C - Lecture 4 23

A Function as a Module

in —> Subprocess/ |—> out

subprogram
Values sent in Resultant
from function values
calling —_ e —> r‘e'rumed, or
statement fun;‘ruon
via arguments actions have
(optional) some other
effect
Fall 2004 322C - Lecture 4 24

A Function as a Module

in —> Subprocess/ |—> out

subprogram
Resultant

Values sent in values
from function function s returned, or
calling statement function
via arguments e actions have
(optional) some other

As in, for example: effect

double y = sqrt (x);
getline (cin, stringl);
string2 = str.substr (startIndex, endSpot)

Fall 2004 322C - Lecture 4 25

String Reverser example

int 1 =0;
char ch;
string phrase, reversed;
getline (cin, phrase);
reversed = “7;
while (1 < phrase.length())
{ <ch = phrasel[il];
reversed = ch + reversed;
i=1+41;
}

cout << reversed;

Fall 2004 322C - Lecture 4 26

String Reverser Example

int i =0;
char ch;
string phrase, reversed;
getline (cin, phrase);
reversed = “;
while (i < phrase.length())
{ ch = phrase[i];
reversed = ch + reversed;
i=1i+1;
}
cout << reversed;

Now suppose that we need to reverse many different strings in several places
in our main function - do we really want to cut and paste this code into many
places or should we turn this code into a “module” (function) that can be called
from many places as we have already done with the library functions that we
use?

Fall 2004 322C - Lecture 4 27

The String Reverser Function

string reverseFunction (string phrase)
// function signature/ header

{ int i =0; char ch;
string reversed;

reversed = “”;
while (i < phrase.length())
{ ch = phrase[i];

// concatenate ch onto the front-end of reversed
reversed = ch + reversed;
i=d+ 1;
}
return reversed;
// means send back the answer to the call
}
This function can be called from within your main(or other) function in
the following way:
string result = reverseFunction (“actual text”);

Fall 2004 322C - Lecture 4 28

Call by Value or Reference

void fool (int)

void foo2 (int*)

int main ()

{ int value=1l;
fool (value) ;

cout << value <<endl; //outputs 1;
foo2 (value);

cout << value <<endl; //outputs 2;
return 0;

}

void fool (int a)

{ at+;} //e.g. call by value
void foo2 (int &a)
{ a++;} // e.g. call by reference

Fall 2004 322C - Lecture 4 29

Structures 101

+ Aggregation of variables (elements) under one name

+ Declaration forms a template that can be used to
create structure objects
struct address
{ string house_number;
string street_name;
string city;
string state;
int zip_code;
Yi
+ Use the structure definition to create variables and
objects, e.g.
address my_address;
my_address.city = “Austin”;
address your_address = my_address;

+ We can create arrays of structs too

Fall 2004 322C- Lecture 4 30

EE 322C
Data Structures

Lecture 5

Fall 2004
perry@ece.utexas.edu

Office: ENS 623A
Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C- Lecture 5 1

Rerun Last Part of Lecture 4

Fall 2004 322C- Lecture 5 2

String Reverser Example

int i =0;
char ch;
string phrase, reversed;
getline (cin, phrase);
reversed = “7;
while (i < phrase.length())
{
ch = phrase[i];
reversed = ch + reversed; // chln] .. ch[1]+ ch[0]
i=1i+1;
}

cout << reversed;

Now suppose that we need to reverse many different strings in several
places in our main function - do we really want to cut and paste this code
into many places or should we turn this code into a “module” (function) that
can be called from many places as we have already done with the library
functions that we use?

Fall 2004 322C - Lecture 5 3

The String Reverser Function

String reverseFunction (string phrase)//function signature
{
int i =0; char ch;
string reversed;
reversed = “”;
while (i < phrase.length())
{
ch = phrase[il];
reversed = ch + reversed;
i=1i+1;
}
return reversed; // send back the answer to the call

}
This function can be called from within your main(or other) function in

the following way:
string result = reverseFunction (“actual text”);

Fall 2004 322C - Lecture 5 4

Call by Value or Reference

void fool (int)
void foo2 (int*)
int main ()
{
int value=1;
fool (value) ;

cout << value <<endl; //outputs 1;
foo2 (value) ;

cout << value <<endl; //outputs 2;
return 0;

}

void fool (int a)

{ a++; } //e.g. call by value
void foo2 (int &a)

{ a++; } // e.g. call by reference

Fall 2004 322C- Lecture 5 5

Lecture 5 Announcements

* Change: Assignment 1 due next Monday
* Topics of the day

- Overloaded functions

- structs

- Bit fields

= Unions

- Enumerations

- Typedef

- Classes and objects

Fall 2004 322C- Lecture 5 6

Overloaded Function Names

#include <iostream>
using namespace std;

*Two or more functions o
abs is overloaded three ways
can share the same name s -
H [bs(long 1);
as long as their . fong abelong
parameters are different (Zusaso <o,
*This makes the function oo e
call context sensitive tabs(oty
{ cout << "Using integer abs()\n";
if (i<0) return -i; else return i;
)doub\e abs(double d)
{ cout << "Using double abs()\n";
if (d<0) return -d; else return d;
long abs(long)
{ cout << "Using long abs()\n";

if (1<0) return -; else return I;

}

Fall 2004 322C- Lecture 5 7

Build Your Own Data Types

The below are built on top of the C++ builtin data
types: int, float, double, char, void, array, pointer
-struct - aggregate variables under one name
-bit-field - struct with bit level access
-union - fwo or more types for same memory
-enum - list of int constants
-typedef - alias for another type
Add in two new builtin data types: bool, wchar_t
The following are advanced capabilities for
creating new data types
~-class - encapsulates code and data as a logical abstraction

-template - used to create generic classes and functions

Fall 2004 322C- Lecture 5 8

Structures

+ Aggregation of variables (elements) under one name
+ Declaration forms a template that can be used to create
structure objects
struct address
{
string house_ number;
string street name;
string city;
string state;
int zip_code;

}i

Use the structure definition to create variables and objects, e.g.
address my_address;

my_address.city = “Austin”;

address your_address = my_address;

We can create arrays of structs too

address my_neighborhood [100];

my_neighborhood [3].state = “TX”;

Fall 2004 322C - Lecture 5 9

typedef

Provide an alias for a data type
Used to make code easier to read or easier o port
or create a more familiar language (as in my
thinking in Java) e.g.
typedef bool boolean;
// I can now use the word boolean as well as
// bool when I declare a boolean variable
boolean married = true; // or
bool married = true;

Fall 2004 322C - Lecture 5 10

Bit Fields

+ A special type of struct
+ Allows access to single bits in memory
- E.g. for device drivers and encryption methods
+ Beware of machine dependencies and restrictions

struct device_status_byte
// definition of a status byte from a comm.port
{

unsigned delta_cts: 1;
unsigned delta dsr: 1;
unsigned tr_edge:

unsigned delta_rec:

unsigned dsr:
unsigned ring:
unsigned rec_line:

}

1
1
1
1
unsigned cts: 1;
1
1
1;

Fall 2004 322C - Lecture 5 1

Bit Fields

+ Example

// example usage
device_status_byte status;
status = getiportistatus();

if (status.cts) cout << "clear
to send";

if (status.dsr) cout << "data
ready";
status.ring = 0;

Fall 2004 322C- Lecture 5 12

Unions Enumerations

- Logical: defines variant interpretation of data * An enumeration type lists a named set of values

- Physical: memory locations shared by different variables You may also specify the integer value§ that represent the legal values
usually of different types, at different times, e.g ' for the named values (or use the compiler assigned defaults)

{ PENNY=1, NICKEL=5, DIME=10, QUARTER=25, HALF DOLLAR=50, DOLLAR=100};

union pw US_coin_value money; // declare a variable of that type
{ money = dime;
short int i; if (money == gquarter) cout << "Money is a quarter.\n";
char ch[2]; switch (money)
bi {
.. case PENNY: cout << "pe: break
union pw word; // create a pw object case NICKEL: cout << " break
const int MAGIC_NUMBER = 19813; // its “Me” case DIME: cou break
word.i = MAGIC_NUMBER ; // set it as an integer QUARTER: c "quarter"; break;
cout << word.ch[0]; // write first char HALF_DOLLAR: cout << "half_dollar"; break;
cout << word.ch[1]; // write second char DOLLAR: cout << "dollazt; break;
cout << sizeof (word); // sizeof returns the # bytes of any default: cout << "Money is not a legitimate coin value";
// variable i
Fall 2004 322C- Lecture 5 13 Fall 2004 322C- Lecture 5 14

Purposes of C++ Classes Modeling Bank Accounts (OO)

Classes serve the following purposes:

1. Creates a new programmer defined data type

2. Aclass is like a factory used to create (or construct)
objects of that data type. Bank Account

3. Specifies the functions you can use for objects that
belong to that class.

4. Defines the common attributes of all objects in the
class

5. A class defines (and sometimes hides the)
implementation details. E.g. data fields and code for
functions

Class represents
all bank accounts

Fall 2004 322C - Lecture 5 15 Fall 2004 322C - Lecture 5 16

Modeling Bank Accounts (OO) Modeling Bank Accounts (OO)

Class represents T ¢ Class represents
ank Accoun
Bank Account | 4] bank accounts all bank accounts

Harrys checking
account

Moms savings]

Isa
member

Isa
member
of

many

My checking
account

An object is a specific
member of the class

account

My checking
account

An object is a specific
member of the class

Fall 2004 322C- Lecture 5 17 Fall 2004 322C- Lecture 5 18

Modeling Bank Accounts (OO)

Class represents

Modeling Bank Accounts (OO)

What are the

common Bank Account |]| bank accounts
attributes of and 1

behaviors

associated with all Isa

bank accounts? member

Harrys checking
account

account

My checking
account

Moms savings }

An object is a specific
member of the class

Fall 2004 322C- Lecture 5 19

Class represents
What are the
Bank A t
common ank Account | 3]l bank accounts
attributes of and 1
behaviors
associated with all Isa

bank accounts? member Harrys checking

account

Attributes:
*Account # A .
*Owners name My checkmg Moms savings
*Balance account account
Behaviors
*Deposit $ A . . .

n object is a specific
+Withdraw $) p

«Check current balance member of the class

Fall 2004 322C- Lecture 5 20

Object State

+ Bank account attributes
- Account number
- Account owner's hame
- Current balance
- Instance/member Variables
- accountNumber
- ownersName
- balance

Fall 2004 322C - Lecture 5 21

Abstract Data Type

An abstract data type (ADT) is a high level description
of a new data type to be implemented.

The kind of objects and their common attributes and
operations are described, in general.

E.g. This is a definition of an abstract class of related
bank account objects.

Fall 2004 322C- Lecture 5 23

Object Behaviour

Bank account operations
- deposit money

- withdraw money

- get the current balance
Functions (non static)

- deposit

- withdraw

- getBalance

Fall 2004 322C - Lecture 5 22

Abstract Data Type

Bank Account: a bank account is ...
Common Attributes:
balance - the current value in $$ in this account
owner - the name of the person that this account belongs to

account_ID - a unique number assigned by the bank that identifies this
account

Common Operations:
deposit - updates the current balance by adding in a given amount
post condition: the new balance is increased by the amount of $$
withdraw - updates the current balance by subtracting the given amount
post condition: the new balance is decreased by the given amount of $$
pre condition: the current balance must have at least the given amount in it
get_balance - returns the value of the current balance of the account

Fall 2004 322C- Lecture 5 24

C++ Class Definition Example

class BankAccount // this is a class, NOT an object!!
{
// attributes - instance (state) variables definition
private:
int account_number;
string owners_name;
double balance;
public:
// function protoype definitions
void deposit (double amount);
void withdraw (double amount) ;
double get_balance();

Fall 2004 322C- Lecture 5 25

Creating a new Object of a Class

To declare an object variable of that type we say:
BankAccount myAccount;
To dynamically allocate space for a new object of
that class we say:
new BankAccount ()
To save an object reference in an object variable
myaccount = new BankAccount ();
To apply a function to an object of that class
myAccount.deposit (1000);
To reference an object’s data items we say:
myAccount.ownersName // oops

Fall 2004 322C- Lecture 5 26

In C++'s Object Memory Bank

myAccount

accountNumber]
ownersName [|
balance

Fall 2004 322C - Lecture 5 27

Constructing Several Objects
of the Same Class

// e.g. in the main function
BankAccount myAccount = new BankAccount () ;

BankAccount momsSavings = new BankAccount () ;

BankAccount harrysChecking = new BankAccount () ;

Fall 2004 322C - Lecture 5 28

Bank Account Objects

myAccount momsSavings harrysChecking
accountNumber [__| accountNumber [accountNumber [
ownersName ownersName [ownersName

balance 1] balance [T]| balance []

In C++’s Object Memory Bank

Fall 2004 322C- Lecture 5 29

The Whole Class Definition

class BankAccount
{ // as before . . . plus constructor in public area
BankAccount :: BankAccount (int, string, double);

// function bodies are defined here
void BankAccount :: deposit (double amount)
{ balance = balance + amount; }
void BankAccount :: withdraw(double amount
{ Dbalance = balance - amount; }
double BankAccount :: getBalance ()
{ return balance; }
BankAccount :: BankAccount
(int account, string name, double initialBalance)

{

accountNumber = account; .
ownerName = name; EXphCH
balance = initialBalance; Constructor

function

Fall 2004 322C- Lecture 5 30

Driver Program

Driver (client) Program BankAccount class

Uses the Models bank accounts.
BankAccount It
class to create and defines the instance
then manipulate variables, and
bank account functions to be
objects. used on all objects
The main function is created from this
in here. class (a template)
Fall 2004 322C- Lecture 5 31

BankAccount Driver Program

#include (BankAccount.h)
int main ()
{
BankAccount myAccount = new BankAccount (1, “me”,10000);
const double INTEREST RATE = 5;
int years = 10;
double interest;
// compute and add in interest for 10 years
for (int i =1; i <= years; i++)
{
interest = myAccount.getBalance() * INTEREST RATE/100;
myAccount.deposit (interest);
cout << “Balance after year ” + i + ™ is $”
+ myAccount.getBalance() << endl;
}

return 0;

Fall 2004 322C- Lecture 5 32

ADT/00 Tips

Make data private
Make functions public

Separate the definition of a class from the use
of that class

This defines an APT

Static variables and functions that operate on
the class as a whole can also be defined

Fall 2004 322C - Lecture 5 33

EE 322C
Data Structures

Lecture 6

Fall 2004
perry@ece.utexas.edu

Office: ENS 623A
Office Hours: MW, 4:00- 5:00 pm

Fall 2004 322C - Lecture 6 1

Announcements

+ Assignment 1 due next Monday. Use the
drop box on the black board for our
class

- REMEMBER: Exam 1 date - Sep 27

* Topics of the day
- More on Classes and objects

+ Contruction/destruction
- Inheritance

Fall 2004 322C- Lecture 6 2

Classes and Objects

* A Class is a programmer defined type that
provides modularization, encapsulation and
abstraction. This allows data and its operations
to be accessed only through the defined
interface.

+ AClass
+ Is amodularization structure
+ Localizes related data and its operations together
+ Provides an abstract interface

+ Separates the interface and implementation

+ Logically hides the implementation details from the user -
ie, provides a black box

Fall 2004 322C - Lecture 6 3

Classes and Objects

+ Aninstance of a c/ass is called an object. Objects are
instantiated by declaring a variable of a given class
+ Each object is independent of other objects even though
they are instantiated from the same class (just as for built
in data types)
+ Member functions are called by using
+ the dot operator with the object name

+ orin case of an object pointer, the "->" is used.

Fall 2004 322C - Lecture 6 4

Modeling Bank Accounts (OO)

What are the common
attributes of and behaviors
associated with all bank accounts?

Attributes:
*Account #
*Owners name
*Balance

Class represents
Bank A