
Generating A Useful Theory of
Software Engineering

Steve Adolph & Philippe Kruchten
University of British Columbia

1

Theory is useful if it explains the phenomena
being experienced

  Social processes are an intrinsic part of software
development (socio-technical system).

  Personal values are an intrinsic part of social
processes.

  Logico-deductive approaches from the “arm
chair” to developing software engineering theory
may lead us away from explaining what is
relevant to software development practitioners.

2

Role of Theory In Engineering

3

Software Engineering Theory?

  Picture here of the holy grail

  Still pretty much a pursuit

4

An Opportunity to Display Leadership and
Moral Courage

5

Theory must be useful to practitioners if its
to be applied by practitioners

6

Are “Arm Chair” Theories Created by
“Experts” Useful to Practitioners?

  Picture of a cushy armchair

7

Another Approach to Creating Useful
Theory: Why Not Involve Practitioners?

  Maybe a photo of someone listening and taking
notes.

8

One Approach for Generating Theory By
Asking Practitioners

9

Our Story: Why does a successful middle
age practitioner go back to school?

  Software development: a 1.6 trillion industry that seems to have
been in “crisis” for last 50 years.

  Lack of software engineering discipline a contributing factor.

  Foundation of good software engineering discipline and software
process improvement relies on software methodologies.

  Studies demonstrate benefits from software process improvement.

Yet….

10

…few practitioners use software
methodologies

  Value of methodologies are questioned by both practitioners
and researchers.

“If we ever did it like that we’d never get the job done!”

“The use of software methods and automated development tools
provide no explanation for the variance in either software product
quality or team performance”’ – Sawyer and Guinan 1998

  What is going on here?

11

Our Approach

  Field Study – go and ask practitioners
  Grounded Theory – analyze data, steer the

study and generate a “mid-level” theory
  Use resulting theory to inform the design of

software methodologies

12

Our Results

13

14

Nothing new? Consider…

  Reconciling Perspectives is our participant's story
  Theory emerged from our participant’s stories and our observations of their day-to-day

routines
  Practitioners view software development as a social process
  Has “grab” - is relevant to software practitioners and make extant theory relevant to

practitioners

  Reconciling Perspectives is about Getting the Job Done
  not enough to just Converge, also need to Validate to Get the Job Done
  Reconciling Perspectives explains how the job gets done (end to end)

  Reconciling Perspectives as a theory provides an overarching
framework for understanding:
  Connects theories into a process that explains how people manage the process of software

development.
  highlights the communications tension and the need for managed communications.

15

Is this Useful?
“Yeah, that’s my life!”

16

Software Development is a Social Process

  When asked or observed practitioners described
software development as a social process.

  Reconciling Perspectives is a social process.

“The design focus of software methodologies should
be away from production-centered practices and
toward socially-centered methodologies”
– Sawyer & Guinan 1998

17

Theory is useful if it explains the phenomena
being experienced

  Social processes are an intrinsic part of software
development (socio-technical system).

  Personal values are an intrinsic part of social
processes.

  Logico-deductive approaches from the “arm
chair” to developing software engineering theory
may lead us away from explaining what is
relevant to software development practitioners.

18

Thank you: Now on with the quest for the
Grail!

  Questions…painted target…

19

Steve Adolph & Philippe Kruchten
University of British Columbia

