
Why Meta-Theories of
Automated Software Design

Are Essential
Don Batory

Department of Computer Science
University of Texas at Austin

Austin, Texas 78712

GTSE13-1

My Introduction
• Worked 30+ years in software product lines and program generation

• contribution: expose elementary mathematics that underlies activities of
automated software development

• To generate a quality (correct) program – you have to know a LOT:
• thoroughly understand the domain
• thoroughly understand the trade-offs that experts make in program design
• encode “best practices” of engineering and design
• goal to mechanize this knowledge/process

• With this in mind, here is what I want to say…

GTSE13-2

We are geniuses at making the simplest things look complicated;
finding the underlying simplicity is the challenge

Definition of Science
• From dictionary.com

• Dominant paradigm in SE insists on a hypothesis evaluation. A set of tests are
conducted by an author and a careful analysis of one or more hypotheses must be
presented. This is the “Scientific Method”

• This matches Definition 2 and the intended use of empirical methods in SE
• We are missing the most important part of science

GTSE13-3

And the Important Part?
• My answer is an analogy from physics…

• In physics, there are lots of poorly related phenomena – they vary some how

• A theoretical physicist would select a set and seek a

mathematical theory that unifies them as manifestations
of the same underlying concepts

• broader the initial set
• fewer the concepts
• more general and significant the theory might be

• Initial test of a theory is a check that it does precisely what it claims

• reproduce, explain phenomena of the initial set
• explain, predict other phenomena as well

GTSE13-4

And the Important Part?
• My answer is an analogy from physics…

• In physics, there are lots of poorly related phenomena – they vary some how

• A theoretical physicist would select a set and seek a

mathematical theory that unifies them as manifestations
of the same underlying concepts

• broader the initial set
• fewer the concepts
• more general and significant the theory might be

• Initial test of a theory is a check that it does precisely what it claims

• reproduce, explain phenomena of the initial set
• explain, predict other phenomena as well

GTSE13-5

Automated Software Design
• Manufacture programs with certain properties
• A software product line (SPL) or generator (𝒢), is a concrete embodiment of an

“implicit” theory of how to automatically build programs in this domain with
lower cost and higher quality

SPL or 𝒢 not only explains and
reproduces initial programs,
but predicts and explains the existence
of other programs as well

𝑃1
𝑃2 𝑃4

𝑃3
𝑃5

SPL or 𝒢

GTSE13-6

History and Experience Tells Us
• Such “theories” must be domain-specific

(DS) to have any chance of success

• DS knowledge is rich and deep, with few
specifics transferable to other domains

• irony: DS theories (𝑡1 … 𝑡𝑛) are not
very interesting to the general SE
community

• Meta-theories (𝑚𝑚) are more valued
• domain-independent concepts
• instances are DS theories
• teach ideas to students; they will

produce instances of their own

𝑡1

𝑃1
𝑃2 𝑃4

𝑃3
𝑃5 𝑄1

𝑄2 𝑄4
𝑄3

𝑄5

𝑡2
𝑡4

𝑡3
𝑡5

𝑚𝑚

GTSE13-7

Familiar SE Meta-Theories
• Just not very “automatic” or mathematical
• OO frameworks are common in today’s libraries

• framework designers understand that a set of similar programs will be built
• their OO framework codes the common objects and activities in this

domain to minimize what others have to write
• ideas of frameworks, abstract classes, plugins are meta-theory
• we teach (meta-theory) to our students
• our students instantiate ideas to create frameworks, plugins of their own

𝑃1
𝑃2 𝑃4

𝑃3
𝑃5

framework

framework + plugins

GTSE13-8

Another Example
• UML asserts than an OO design can be documented in the languages of class

diagrams, state machines, etc. (the meta-theory part)
• We teach UML (meta-theory) to our students; they instantiate to design their own

OO programs

• Not Definition 1, likely Definition 4
 GTSE13-9

Why a Meta-Theory is Important
• How tools should work – gives a precise definition of what “composition” means

• are you aware of the volume of technical papers in SE where
“composition” makes no sense mathematically?

• In mature communities, MT provides a standard way to describe problems and

how to formulate solutions
• type systems for programming languages
• relational algebra and sets for classical databases
• conceptual & technical glue that holds communities together

• MTs bring organization to what would otherwise be intellectual chaos

GTSE13-10

Form of a Theory
• Paraphrasing Dijsktra:

Today’s programs are among the most complex structures ever built by man

• Todays’ tools manipulate and map structures:
• compilers map source structures to byte-code structures
• refactoring tools map source structures to source structures
• model driven engineering is all about transforming models

• Mathematics is the science of structure and structure manipulation

GTSE13-11

My Research
(which I illustrate in my paper)

• Traveled from practice to theory

• Exposed fundamental:

• mathematical structures that underlie program construction in software
product lines

• transformations underlie automated program construction

• how correct by construction can scale to large systems

• Some thoughts for the GTSE attendees…

GTSE13-12

My Perspective
• Chorus: Software design is an art form – it should be treated and taught as such

• Dick Gabriel – software is ‘poetry’

• If you are build/design a 1-of-a-kind product – design is an art form

• Also heard: “We’ve done this so many times, we’ve got it down to a science”

• If you have ever built variants of a program, with different functionalities
• think on a bigger plane, designs are not just for 1-of-a-kind,

but for a family of programs
• “physics” of design is very different

GTSE13-13

Science of Design
• Doesn’t come from 1-of-a-kind designs
• Comes from studying a family of designs of similar systems

1. know the domain
2. know how to engineer software in a domain (which is different from 1)
3. know how to codify design knowledge in abstract structures, rules
4. codify knowledge as grammars (equations)

GTSE13-14

I1

C1

I2
C3

C4 I3

C5

encode
meta-rules

for decision-
making

“Core Engineering” to me is
• Mechanizing, standardizing what experts know to avoid reinvention

• stand on the shoulders of others, not stand on their feet

• In the domains in which I have worked, “SE” has done an exceptionally poor job at
this form of Engineering

• Most software engineering today fits Definition 3, not 1.

GTSE13-15

Applies to LOTS of Domains
• 10 years ago, there were many domains which could be standardized in this

manner

• Today there are more….

• 10 years from now, many more still

• Yet, we as a community don’t teach automated design or how to get there…

• and people wonder where is the science…

GTSE13-16

GTSE13-17

	Why Meta-Theories of �Automated Software Design�Are Essential
	My Introduction
	Definition of Science
	And the Important Part?
	And the Important Part?
	Automated Software Design
	History and Experience Tells Us
	Familiar SE Meta-Theories
	Another Example
	Why a Meta-Theory is Important
	Form of a Theory
	My Research�(which I illustrate in my paper)
	My Perspective
	Science of Design
	“Core Engineering” to me is
	Applies to LOTS of Domains
	Slide Number 17

