Introduction

Dewayne E Perry ENS 623 perry@mail.utexas.edu

Course Goals

- * Create/evaluate empirical studies/data
 - **★** Understand underlying scientific and theoretical bases
 - ***** Understand fundamentals of experimental design
 - > Independent and dependent variables
 - > Variable manipulation/data gathering
 - > Various issues of validity
 - > Empirical logic and reasoning
 - > Analytic tools for reasoning about the experiment
 - ***** Understand and control confounding variables
 - > Random and systematic biases
 - > Alternative explanations
 - * Understand and apply appropriate data analysis techniques
 - * Understand and create the underlying logics of empirical studies in reasoning out conclusions

Experimenter/Evaluator Goals

- * Responsible skepticism
 - ***** Look for
 - > Failures in experimental designs
 - Failures of observations
 - \succ Gaps in reasoning
 - > Alternative explanations
 - ***** Compare new evidence against old
 - * Raise counter objections/hypotheses
 - ***** Question grounds for doubt as well
 - ***** Accumulate weight of evidence

Good Research Practices

- * Enthusiasm an enjoyable endeavor
- * Open-mindedness keen, attentive, inquisitive
- * Common sense avoid looking under the lamppost
- * Inventiveness creative
 - \star Not only in experimental work
 - \star In resource management as well
- * Confidence in ones own judgment
 - \star Despite detractors when right
 - ★ Know when you are wrong
- * Consistency and care about detail
 - * No substitute for accuracy keep complete records, organize and analyses accurately/carefully
- * Ability to communicate
 - ***** Writing is a superb, essential research technique
 - ***** Make your discoveries known to others
- * Honesty integrity and scholarship

Review of SWE

* Factors in software engineered products

- * Theory (basis for product)
 - > CS Core
 - > Domain specific theory
- * Experience (basis for judgment)
 - > Feedback
 - > Engineering experiments (prototypes)
 - > Empirical studies
 - \checkmark Observations
 - ✓ Correlations
 - \checkmark Causal connections
- * Process (basis for production)
 - > Methods and techniques
 - > Technology
 - > Organizational structures
 - ✓ Teams
 - ✓ Projects
 - ✓ Cultures

Review of SWE

* SW development processes

- * Phases
 - > Requirements
 - > Architecture
 - Design
 - Construction
 - Deployment and maintenance
- ***** Integral to all phases
 - > Documentation
 - > Measurement & Analysis
 - > Evolution
 - > Teamwork
 - > Management of artifacts

Daily Life of SWE: Decisions

- * Determine what users want/need
- * Make architecture, design and implementation decisions
- * Evaluate/compare architecture and design choices
- Evaluate functional characteristics
- * Evaluate non-functional properties
- * Evaluate/compare technologies
 - ***** For supporting tools
 - ***** For product support
 - ***** For process support
- * Determine what went wrong
- * Determine good resource allocations
- * etc

Some Illustrative Examples

- * Most frequently stolen car
- * Language/Solution comparisons
- * Inspection reading techniques
- * Exit Interviews

Most Frequently Stolen Car

- * Honda Accord
 - * Study presented in media
 - > Honda most frequently stolen automobile
 - * What does this study tell us?
 - > Actually very little
 - \star What can we infer from this?
 - > Shouldn't buy a Honda?
 - > Buy a Mercedez instead?
 - ***** Very misleading
- * More recently
 - * Frequency relative to the total number of cars
 - > Claims per 1000
 - ***** Different story
 - > Lincoln Navigator 12.2; Cadillac Escalade 10.3; etc
 - ✓ All Escalades recovered GPS system
 - > Honda and Camry didn't make it anywhere near the top 10
 - \checkmark Percentage of thefts claims is low compared to the number on road

Language/Solution Comparison

- * From a summer project
- * Comparing Java/C
- * 2 different computers used
 - * Pentium III 600MHz 128M
 - \succ C 1.4 times faster than Java
 - * AMD 1GHz 256M
 - > Java 1.09 times faster than C
- * Conflicting evidence
- How do we account for it?
- * What are the differences?
- * How do we resolve these differences?
- * What can we conclude, if anything?

Preview of Confounding Variables

Inspection Reading Techniques

- Experiment: evaluate reading techniques for object oriented code inspections
- * Inconclusive results
- * Possibilities:
 - ***** There are no differences
 - * Poor experimental design
 - ***** Insufficient data
 - * Poor analyses and reasoning

Surveys

* Exit Polls *****Used to predict outcome * 2004 election *****Significant disagreement with final vote *****Early calls retracted * Pollster's response *****Results with in margin of error *****Data selectively reported * Possible biases *****Questions asked > slanted, non-uniform (ie general vs specific), etc *****Time of polls > 7am - men on the way to work > 10am – soccer mom's after kids are in school *****Place of polls East Austin versus Westlake ***Nature of volunteers**

Current State of SE Empirical Work

* Implementation oriented

- * Fenton: poor statistical designs, don't scale
- * Basili: differences in projects make comparisons difficult
- ***** Johnson: practitioners resist measurement
- * Need to be more requirements oriented
 - ***** Think hard about what experiments really are

***** How they can be most effectively used

 Core problem: conceptualizing and organizing a body of work as a scientific basis

Software Development

- * Little hard evidence to inform decisions
 - ***** Correlations suggestive but not sufficient in all cases
 - * Many times don't know exception cases
- * Do not know fundamental mechanisms
 - ***** Software tools
 - ***** Methods and techniques
 - * Processes
- * Empirical studies are the key
 - ***** Show mechanisms
 - ***** Eliminate alternative explanations
 - * Empirical validation is standard in some fields
 - * Quality of empirical studies in SE is rising
 - * Funding agencies recognizing value of empirical studies
 - * Increasing number of tutorials, panels, SOTAs, papers, etc
 - * Key consciousness raising papers (Tichy etal, Zelkowitz)
 - * Several key organizations: SEL, ISERN

Systematic Problems

- * Research ideas are not empirically validated
 - ***** Should retroactively validate
 - * Should proactively directed
- * Search for perfect study
 - ***** Instead of focus on credibility
- * Study the obvious
 - ***** OK, but we need deeper insights
- * Lots of data
 - ***** Not enough should answer important questions
- * Lack useful hypotheses
- * Lack conclusions from data

Empirical Software Engineering Studies

- Individual programmer studies have credibility due to well understood techniques from psychology and statistics.
- * Large software development studies with the addition of large population social factors are not well established or credible.
- * General goal:

* Establish a spectrum of empirical techniques that are robust to large variances from social factors present.

Challenges

- * Create better empirical studies
 - * Establish principles that are
 - > Causal: correlated, temporally ordered, testable theory
 - > Actionable: causal agent effectively controllable
 - > General: widely applicable
 - \star Answer important questions
 - * Family of focused studies illuminate related aspects
 - ***** Cost effective and reproducible
- * Credible interpretations
 - ***** Degree of confidence we have in conclusions
 - > Eliminate alternative explanations
 - > Provide a compelling logic in the discussion
 - * Validity is critical: construct, internal, external
 - * Hypothesis is critical: ask important questions
 - * Resolutions appropriate to the intent of the study
 - \star Make the data public

Some Concrete Steps

- * Designing studies
 - ★ Ask significant questions
 - Knight-Leveson, N-version programming
 - ***** Families of studies
 - > Schneiderman et al, on the value of flowcharts
 - ***** Build partnerships
 - > Takes time; multi-person effort; interdisciplinary, industry
 - * Long running in vivo/situ experiments
 - > Subparts; subject rights; know when to stop

* Collecting data

- * Retrospective artifact analysis
 - > Eg, version management systems
- \star Simulation and modeling
 - > Eg, integration studies of Solheim and Rowland

* Involving others

- * Meta-analysis eg Porter and Johnson
- * Educational laboratories
 - > Teach empirical studies basics
 - > Populate lab with appropriate data/designs/equipment

Goals for SWE Empirical Studies

- * Some help
 - * Look to other empirical disciplines
 - ***** Adapt what is useful here
- * Goals
 - * Perform better empirical studies
 - ***** Focus on causal mechanisms
 - ***** Generate theories
 - ***** Iterate and improve
- * Good empirical studies enable us to
 - ***** Encode knowledge more rapidly
 - * Prune low payoff ideas rapidly
 - ***** Recognize and value high payoff ideas
 - ***** Exploit important practical ideas

What is Critical

* Fundamentals

- ***** Credible interpretations
- ★ Repeatability
- * Understanding validity limits
- ***** Identifying underlying mechanism
- * Practical significance
- * Non-fundamentals
 - ***** Whether qualitative or quantitative
 - > Both have their place and usefulness
 - ***** Identical results
 - > Want congruent results
 - ★ Correlation studies
 - > Important precursor, but not the goal
 - ***** Opportunistic studies

Structure of an Empirical Study

* Research context

- ***** Problem definition
- ***** Research review

* Hypothesis

- * Abstract about the world
- \star Concrete about the design
- * Experimental design
 - ***** Variables independent and dependent
 - * Plan to systematically manipulate variables
 - * Control operational context
- * Threats to validity: construct, internal, external
- * Data analysis and presentation
 - * Quantitative: hypothesis testing, power analysis
 - ***** Qualitative
- * Results and conclusions
 - ***** Limits, influences
 - ***** Explain how answered question and its practical significance
 - * Sufficient information for repeatability