Introduction

Dewayne E Perry
ENS 623
perry@mail.utexas.edu
Course Goals

- Create/evaluate empirical studies/data
 - Understand underlying scientific and theoretical bases
 - Understand fundamentals of experimental design
 - Independent and dependent variables
 - Variable manipulation/data gathering
 - Various issues of validity
 - Empirical logic and reasoning
 - Analytic tools for reasoning about the experiment
 - Understand and control confounding variables
 - Random and systematic biases
 - Alternative explanations
 - Understand and apply appropriate data analysis techniques
 - Understand and create the underlying logics of empirical studies in reasoning out conclusions
Experimenter/Evaluator Goals

- Responsible skepticism
 - Look for
 - Failures in experimental designs
 - Failures of observations
 - Gaps in reasoning
 - Alternative explanations
 - Compare new evidence against old
 - Raise counter objections/hypotheses
 - Question grounds for doubt as well
 - Accumulate weight of evidence
Good Research Practices

- Enthusiasm – an enjoyable endeavor
- Open-mindedness – keen, attentive, inquisitive
- Common sense – avoid looking under the lamppost
- Inventiveness – creative
 - Not only in experimental work
 - In resource management as well
- Confidence in one's own judgment
 - Despite detractors when right
 - Know when you are wrong
- Consistency and care about detail
 - No substitute for accuracy - keep complete records, organize and analyses accurately/carefully
- Ability to communicate
 - Writing is a superb, essential research technique
 - Make your discoveries known to others
- Honesty – integrity and scholarship
Review of SWE

- **Factors in software engineered products**
 - **Theory (basis for product)**
 - CS Core
 - Domain specific theory
 - **Experience (basis for judgment)**
 - Feedback
 - Engineering experiments (prototypes)
 - Empirical studies
 - Observations
 - Correlations
 - Causal connections
 - **Process (basis for production)**
 - Methods and techniques
 - Technology
 - Organizational structures
 - Teams
 - Projects
 - Cultures
Review of SWE

- **SW development processes**
 - **Phases**
 - Requirements
 - Architecture
 - Design
 - Construction
 - Deployment and maintenance
 - **Integral to all phases**
 - Documentation
 - Measurement & Analysis
 - Evolution
 - Teamwork
 - Management of artifacts
Daily Life of SWE: Decisions

- Determine what users want/need
- Make architecture, design and implementation decisions
- Evaluate/compare architecture and design choices
- Evaluate functional characteristics
- Evaluate non-functional properties
- Evaluate/compare technologies
 - ★ For supporting tools
 - ★ For product support
 - ★ For process support
- Determine what went wrong
- Determine good resource allocations
- etc
Some Illustrative Examples

- Most frequently stolen car
- Language/Solution comparisons
- Inspection reading techniques
- Exit Interviews
Most Frequently Stolen Car

- **Honda Accord**
 - Study presented in media
 - Honda most frequently stolen automobile
 - What does this study tell us?
 - Actually very little
 - What can we infer from this?
 - Shouldn’t buy a Honda?
 - Buy a Mercedes instead?
 - Very misleading

- More recently
 - Frequency relative to the total number of cars
 - Claims per 1000
 - Different story
 - Lincoln Navigator - 12.2; Cadillac Escalade - 10.3; etc
 - All Escalades recovered - GPS system
 - Honda and Camry didn’t make it anywhere near the top 10
 - Percentage of thefts claims is low compared to the number on road
Language/Solution Comparison

- From a summer project
- Comparing Java/C
- 2 different computers used
 - Pentium III 600MHz 128M
 - C 1.4 times faster than Java
 - AMD 1GHz 256M
 - Java 1.09 times faster than C
- Conflicting evidence
- How do we account for it?
- What are the differences?
- How do we resolve these differences?
- What can we conclude, if anything?
Preview of Confounding Variables
Inspection Reading Techniques

- **Experiment:** evaluate reading techniques for object oriented code inspections
- **Inconclusive results**
- **Possibilities:**
 - ★ There are no differences
 - ★ Poor experimental design
 - ★ Insufficient data
 - ★ Poor analyses and reasoning
Surveys

- Exit Polls
 - Used to predict outcome

- 2004 election
 - Significant disagreement with final vote
 - Early calls retracted

- Pollster’s response
 - Results with in margin of error
 - Data selectively reported

- Possible biases
 - Questions asked
 - slanted, non-uniform (ie general vs specific), etc
 - Time of polls
 - 7am - men on the way to work
 - 10am - soccer mom’s after kids are in school
 - Place of polls
 - East Austin versus Westlake
 - Nature of volunteers
Current State of SE Empirical Work

- Implementation oriented
 - Fenton: poor statistical designs, don’t scale
 - Basili: differences in projects make comparisons difficult
 - Johnson: practitioners resist measurement

- Need to be more requirements oriented
 - Think hard about what experiments really are
 - How they can be most effectively used

- Core problem: conceptualizing and organizing a body of work as a scientific basis
Software Development

- Little hard evidence to inform decisions
 - Correlations suggestive but not sufficient in all cases
 - Many times don’t know exception cases
- Do not know fundamental mechanisms
 - Software tools
 - Methods and techniques
 - Processes
- Empirical studies are the key
 - Show mechanisms
 - Eliminate alternative explanations
 - Empirical validation is standard in some fields
 - Quality of empirical studies in SE is rising
 - Funding agencies recognizing value of empirical studies
 - Increasing number of tutorials, panels, SOTAs, papers, etc
 - Key consciousness raising papers (Tichy et al, Zelkowitz)
 - Several key organizations: SEL, ISERN
Systematic Problems

- Research ideas are not empirically validated
 - Should retroactively validate
 - Should proactively directed
- Search for perfect study
 - Instead of focus on credibility
- Study the obvious
 - OK, but we need deeper insights
- Lots of data
 - Not enough – should answer important questions
- Lack useful hypotheses
- Lack conclusions from data
Empirical Software Engineering Studies

- Individual programmer studies have credibility due to well understood techniques from psychology and statistics.
- Large software development studies with the addition of large population social factors are not well established or credible.
- General goal:
 - Establish a spectrum of empirical techniques that are robust to large variances from social factors present.
Challenges

❖ Create better empirical studies
 ★ Establish principles that are
 ➢ Causal: correlated, temporally ordered, testable theory
 ➢ Actionable: causal agent effectively controllable
 ➢ General: widely applicable
 ★ Answer important questions
 ★ Family of focused studies – illuminate related aspects
 ★ Cost effective and reproducible

❖ Credible interpretations
 ★ Degree of confidence we have in conclusions
 ➢ Eliminate alternative explanations
 ➢ Provide a compelling logic in the discussion
 ★ Validity is critical: construct, internal, external
 ★ Hypothesis is critical: ask important questions
 ★ Resolutions appropriate to the intent of the study
 ★ Make the data public
Some Concrete Steps

- **Designing studies**
 - **Ask significant questions**
 - Knight-Leveson, N-version programming
 - **Families of studies**
 - Schneiderman et al, on the value of flowcharts
 - **Build partnerships**
 - Takes time; multi-person effort; interdisciplinary, industry
 - **Long running in vivo/situ experiments**
 - Subparts; subject rights; know when to stop

- **Collecting data**
 - **Retrospective artifact analysis**
 - Eg, version management systems
 - **Simulation and modeling**
 - Eg, integration studies of Solheim and Rowland

- **Involving others**
 - **Meta-analysis - eg Porter and Johnson**
 - **Educational laboratories**
 - Teach empirical studies basics
 - Populate lab with appropriate data/designs/equipment
Goals for SWE Empirical Studies

- **Some help**
 - Look to other empirical disciplines
 - Adapt what is useful here

- **Goals**
 - Perform better empirical studies
 - Focus on causal mechanisms
 - Generate theories
 - Iterate and improve

- **Good empirical studies enable us to**
 - Encode knowledge more rapidly
 - Prune low payoff ideas rapidly
 - Recognize and value high payoff ideas
 - Exploit important practical ideas
What is Critical

- **Fundamentals**
 - Credible interpretations
 - Repeatability
 - Understanding validity limits
 - Identifying underlying mechanism
 - Practical significance

- **Non-fundamentals**
 - Whether qualitative or quantitative
 - Both have their place and usefulness
 - Identical results
 - Want congruent results
 - Correlation studies
 - Important precursor, but not the goal
 - Opportunistic studies
Structure of an Empirical Study

- Research context
 - Problem definition
 - Research review
- Hypothesis
 - Abstract - about the world
 - Concrete - about the design
- Experimental design
 - Variables - independent and dependent
 - Plan to systematically manipulate variables
 - Control operational context
- Threats to validity: construct, internal, external
- Data analysis and presentation
 - Quantitative: hypothesis testing, power analysis
 - Qualitative
- Results and conclusions
 - Limits, influences
 - Explain how answered question and its practical significance
 - Sufficient information for repeatability