
1

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Introduction

Dewayne E Perry
ENS 623

perry@mail.utexas.edu

2

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Course Goals
Create/evaluate empirical studies/data

Understand underlying scientific and theoretical bases
Understand fundamentals of experimental design

Independent and dependent variables
Variable manipulation/data gathering
Various issues of validity
Empirical logic and reasoning
Analytic tools for reasoning about the experiment

Understand and control confounding variables
Random and systematic biases
Alternative explanations

Understand and apply appropriate data analysis techniques
Understand and create the underlying logics of empirical
studies in reasoning out conclusions

3

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Experimenter/Evaluator Goals
Responsible skepticism

Look for
Failures in experimental designs
Failures of observations
Gaps in reasoning
Alternative explanations

Compare new evidence against old
Raise counter objections/hypotheses
Question grounds for doubt as well
Accumulate weight of evidence

4

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Good Research Practices
Enthusiasm – an enjoyable endeavor
Open-mindedness – keen, attentive, inquisitive
Common sense – avoid looking under the lamppost
Inventiveness – creative

Not only in experimental work
In resource management as well

Confidence in ones own judgment
Despite detractors when right
Know when you are wrong

Consistency and care about detail
No substitute for accuracy - keep complete records, organize and
analyses accurately/carefully

Ability to communicate
Writing is a superb, essential research technique
Make your discoveries known to others

Honesty – integrity and scholarship

5

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Review of SWE
Factors in software engineered products

Theory (basis for product)
CS Core
Domain specific theory

Experience (basis for judgment)
Feedback
Engineering experiments (prototypes)
Empirical studies

Observations
Correlations
Causal connections

Process (basis for production)
Methods and techniques
Technology
Organizational structures

Teams
Projects
Cultures

6

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Review of SWE
SW development processes

Phases
Requirements
Architecture
Design
Construction
Deployment and maintenance

Integral to all phases
Documentation
Measurement & Analysis
Evolution
Teamwork
Management of artifacts

7

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Daily Life of SWE: Decisions
Determine what users want/need
Make architecture, design and implementation decisions
Evaluate/compare architecture and design choices
Evaluate functional characteristics
Evaluate non-functional properties
Evaluate/compare technologies

For supporting tools
For product support
For process support

Determine what went wrong
Determine good resource allocations
etc

8

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Some Illustrative Examples
Most frequently stolen car
Language/Solution comparisons
Inspection reading techniques
Exit Interviews

9

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Most Frequently Stolen Car
Honda Accord

Study presented in media
Honda most frequently stolen automobile

What does this study tell us?
Actually very little

What can we infer from this?
Shouldn’t buy a Honda?
Buy a Mercedez instead?

Very misleading
More recently

Frequency relative to the total number of cars
Claims per 1000

Different story
Lincoln Navigator – 12.2; Cadillac Escalade – 10.3; etc

All Escalades recovered – GPS system
Honda and Camry didn’t make it anywhere near the top 10

Percentage of thefts claims is low compared to the number on road

10

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Language/Solution Comparison
From a summer project
Comparing Java/C
2 different computers used

Pentium III 600MHz 128M
C 1.4 times faster than Java

AMD 1GHz 256M
Java 1.09 times faster than C

Conflicting evidence
How do we account for it?
What are the differences?
How do we resolve these differences?
What can we conclude, if anything?

11

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Preview of Confounding Variables

12

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Inspection Reading Techniques
Experiment: evaluate reading techniques for object
oriented code inspections
Inconclusive results
Possibilities:

There are no differences
Poor experimental design
Insufficient data
Poor analyses and reasoning

13

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Surveys
Exit Polls

Used to predict outcome
2004 election

Significant disagreement with final vote
Early calls retracted

Pollster’s response
Results with in margin of error
Data selectively reported

Possible biases
Questions asked

slanted, non-uniform (ie general vs specific), etc
Time of polls

7am - men on the way to work
10am – soccer mom’s after kids are in school

Place of polls
East Austin versus Westlake

Nature of volunteers

14

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Current State of SE Empirical Work
Implementation oriented

Fenton: poor statistical designs, don’t scale
Basili: differences in projects make comparisons difficult
Johnson: practitioners resist measurement

Need to be more requirements oriented
Think hard about what experiments really are
How they can be most effectively used

Core problem: conceptualizing and organizing a body of
work as a scientific basis

15

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Software Development
Little hard evidence to inform decisions

Correlations suggestive but not sufficient in all cases
Many times don’t know exception cases

Do not know fundamental mechanisms
Software tools
Methods and techniques
Processes

Empirical studies are the key
Show mechanisms
Eliminate alternative explanations
Empirical validation is standard in some fields
Quality of empirical studies in SE is rising
Funding agencies recognizing value of empirical studies
Increasing number of tutorials, panels, SOTAs, papers, etc
Key consciousness raising papers (Tichy etal, Zelkowitz)
Several key organizations: SEL, ISERN

16

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Systematic Problems
Research ideas are not empirically validated

Should retroactively validate
Should proactively directed

Search for perfect study
Instead of focus on credibility

Study the obvious
OK, but we need deeper insights

Lots of data
Not enough – should answer important questions

Lack useful hypotheses
Lack conclusions from data

17

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Empirical Software Engineering Studies

Individual programmer studies have credibility due to well
understood techniques from psychology and statistics.
Large software development studies with the addition of
large population social factors are not well established or
credible.
General goal:

Establish a spectrum of empirical
techniques that are robust to large
variances from social factors present.

18

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Challenges
Create better empirical studies

Establish principles that are
Causal: correlated, temporally ordered, testable theory
Actionable: causal agent effectively controllable
General: widely applicable

Answer important questions
Family of focused studies – illuminate related aspects
Cost effective and reproducible

Credible interpretations
Degree of confidence we have in conclusions

Eliminate alternative explanations
Provide a compelling logic in the discussion

Validity is critical: construct, internal, external
Hypothesis is critical: ask important questions
Resolutions appropriate to the intent of the study
Make the data public

19

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Some Concrete Steps
Designing studies

Ask significant questions
Knight-Leveson, N-version programming

Families of studies
Schneiderman et al, on the value of flowcharts

Build partnerships
Takes time; multi-person effort; interdisciplinary, industry

Long running in vivo/situ experiments
Subparts; subject rights; know when to stop

Collecting data
Retrospective artifact analysis

Eg, version management systems
Simulation and modeling

Eg, integration studies of Solheim and Rowland
Involving others

Meta-analysis – eg Porter and Johnson
Educational laboratories

Teach empirical studies basics
Populate lab with appropriate data/designs/equipment

20

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Goals for SWE Empirical Studies
Some help

Look to other empirical disciplines
Adapt what is useful here

Goals
Perform better empirical studies
Focus on causal mechanisms
Generate theories
Iterate and improve

Good empirical studies enable us to
Encode knowledge more rapidly
Prune low payoff ideas rapidly
Recognize and value high payoff ideas
Exploit important practical ideas

21

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

What is Critical
Fundamentals

Credible interpretations
Repeatability
Understanding validity limits
Identifying underlying mechanism
Practical significance

Non-fundamentals
Whether qualitative or quantitative

Both have their place and usefulness
Identical results

Want congruent results
Correlation studies

Important precursor, but not the goal
Opportunistic studies

22

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 1

Structure of an Empirical Study
Research context

Problem definition
Research review

Hypothesis
Abstract – about the world
Concrete – about the design

Experimental design
Variables – independent and dependent
Plan to systematically manipulate variables
Control operational context

Threats to validity: construct, internal, external
Data analysis and presentation

Quantitative: hypothesis testing, power analysis
Qualitative

Results and conclusions
Limits, influences
Explain how answered question and its practical significance
Sufficient information for repeatability

	Introduction
	Course Goals
	Experimenter/Evaluator Goals
	Good Research Practices
	Review of SWE
	Review of SWE
	Daily Life of SWE: Decisions
	Some Illustrative Examples
	Most Frequently Stolen Car
	Language/Solution Comparison
	Preview of Confounding Variables
	Inspection Reading Techniques
	Surveys
	Current State of SE Empirical Work
	Software Development
	Systematic Problems
	Empirical Software Engineering Studies
	Challenges
	Some Concrete Steps
	Goals for SWE Empirical Studies
	What is Critical
	Structure of an Empirical Study

