Empirical Approaches, Questions & Methods

Dewayne E Perry ENS 623 Perry@ece.utexas.edu

[adapted in part from Steve Easterbrook, U Toronto]

Empirical Approaches

* Three approaches

- ***** Descriptive
- * Relational
- * Experimental

* Descriptive

- ★ Goal: careful mapping out a situation in order to describe what is happening
- ***** Necessary first step in any research
 - Provides the basis or cornerstone
 - Provides the what
- * Rarely sufficient often what to know why or how
- ***** But often provides the broad working hypothesis

Empirical Approaches

* Relational

- * Need at least two sets of observations so that some phenomenon can be related to each other
- * Two or more variables are measured and related to each other
- * Coordinated observations -> quantitative degree of correlation
- \star Not sufficient to explain why there is a correlation

* Experimental

- ***** Focus on identification of causes, what leads to what
- * Want X is responsible for Y, not X is related to Y
- * Experimental group versus control group
- ***** Watch out for problems

Discovery

- * Process of Discovery
 - * Plausible: interesting idea
 - ***** Important: is it worthy of further consideration?
 - * Acceptable: do we have a testable theory, can we create an hypothesis for experimental confrontation?
 - ***** Justifiable: amenable to evaluation, defense, confirmation?

* Sources of Discovery

- ***** Intensive case studies
 - Document certain variables/conditions as prerequisite for a more theoretical study
- * Paradoxical incidents
 - > Puzzled by contradictory aspects of a situation
- * Metaphors that stimulate our thinking
- * Rules of thumbs, folk wisdom
- ***** Account for conflicting results
 - > Eg, performance in presence of others

Asking Questions

- Asking questions + systematic process to obtain valid answers
 - ***** Make the question clear
 - ***** Hypothesis should be consistent with questions
 - ***** Statement of the problem
 - * Critical: asking the right or important questions

* Types of Questions

- ***** Existence
- ***** Description/Classification
- \star Composition
- * Relationships
- ***** Descriptive-Comparative
- ***** Causality
- * Causality-Comparative
- * Causality-Comparison Interactions

* Existence questions

- * Does X exist? X is a thing, attribute, phenomenon, behavior, ability, condition, state of affairs etc.
 - \succ Is there a tool that can generate X?
 - > Is there a programmer who can write 200k lines per year?
- \star Important when controversial
- ***** Generalization not important, existence is
- * Requires careful scientific work
- * Rule out alternative explanations
- * Description/Classification
 - * What is it like, is it variable or invariant, characteristic limits, unique of member of a known class, a distinctive description?
 - > What are the limits of tool X?
 - > What are the characteristics of structured programs?
 - ***** Answer requires statements about:
 - > Generality and representativeness of sample
 - > Uniqueness/distinctness to population

* Composition

- * What are the components of X?
 - > What are the principle traits of a good programmer?
 - > What are the main factors in a maintainable program?
- ***** Requires analysis or breakdown of whole into component parts
- ***** Factor analysis requires care and accuracy
- * Need large enough samples to rule out biases

* Relationships

- * What is the relationship between Xand Y?
 - > Are exceptions needed for maintainable programs?
 - > Is elegance a function of age?
- * For predictiveness, can use multiple regression techniques
- \star Or do the relationships fit theoretical models
- * Need valid/reliable measures, sufficient and representative samples, accurate computations, and interpretations supported by the data

- * Descriptive-Comparative
 - * Is group Xdifferent from group Y?
 - > Are Fortran programmers different from Lisp programmers?
 - Do novice C++ programmers make more errors than Java programmers? Experienced programmers?
 - \star An elaboration of the simple description question
 - ***** Comparison may be organismic
 - > Eg, age, weight, height
 - ***** Comparison may be socio-economic
 - > Eg, income, job, neighborhood
 - ***** Must ensure equivalence of other characteristics
 - * Criteria measures critical need validity, reliability

- * Causality
 - * Does X cause, lead to, or prevent changes in Y?
 - > Does C++ lead to complex programs?
 - > Does using exceptions lead to simpler programs?
 - ***** Manipulate independent variables to get changes in dependent
 - * Need control group for non-treatment
 - * Must select sample carefully to rule out biases
 - * Replications to warrant generality
- * Causality-Comparative
 - \star Does X cause more change in Y than Z?
 - > Is C++ better than Java in preventing race conditions?
 - Is the Jackson design method better than the Booch method in producing concurrent systems?
 - * Compare rival treatments, control
 - * Must guarantee that rival treatments are valid and are given in an unbiased manner

- * Causality-Comparison Interactions
 - * Does Xcause more changes in Ythat Zunder certain conditions but not others?
 - Do formal methods work better than informal methods for Europeans but not North Americans?
 - > Is the MacOS easier to use than the Windows by naïve users but not experiences users?
 - ***** Add more independent variables

Many Methods Available:

- * Laboratory Experiments
- * Field Studies
- * Case Studies
- * Pilot Studies
- * Rational Reconstructions
- * Exemplars
- * Surveys
- * Artifact/Archive Analysis ("mining"!)
- * Ethnographies
- Action Research
- * Simulations
- * Benchmarks

Laboratory Experiments

Experimental investigation of a testable hypothesis, in which conditions are set up to isolate the variables of interest ("independent variables") and test how they affect certain measurable outcomes (the "dependent variables")

* Good for

***** Quantitative analysis of benefits of a particular tool/technique

* (demonstrating how scientific we are!)

* Limitations

* Hard to apply if you cannot simulate the right conditions in the lab
* Limited confidence that the lab setup reflects the real situation
* Ignores contextual factors (e.g. social/org'al/political factors)

***** Extremely time-consuming!

See:

Pfleeger, S.L.; Experimental design and analysis in software engineering. Annals of Software Engineering1, 219–253. 1995D.

Perry, A. Porter, L. Votta "Empirical Studies of Software Engineering: A Roadmap". In A. Finkelstein (ed) "The Future of Software Engineering". IEEE CS Press, 2000.

Field Studies

Exploratory study, used where little is currently know about a problem, or where we wish to check that our research goals are grounded in real-life settings; studies organizational practice using anthropological techniques.

* Good for

* Setting a research agenda (what really matters?)

***** Understanding the context for RE problems (naturalistic inquiry)

* Limitations

* Hard to build generalizations (results may be organization specific)
* Observers' bias

See:

Klein, H.K., and Myers, M.D. "A Set of Principles for Conducting and Evaluating Interpretive Field Studies in Information Systems," MIS Quarterly, vol 23 No 1, pp67-93, 1999.

Case Studies

- A technique for detailed exploratory investigations, both prospectively and retrospectively, that attempt to understand and explain phenomenon or test theories, using primarily qualitative analysis
- * Good for
 - \star Answering detailed how and why questions
 - **★** Gaining deep insights into chains of cause and effect
 - * Testing theories in complex settings where there is little control over the variables

* Limitations

- ***** Hard to find appropriate case studies
- ***** Hard to quantify findings

See:

Flyvbjerg, B.; Five Misunderstandings about Case Study Research. Qualitative Inquiry 12 (2) 219–245, April 2006

Pilot Studies

Controlled introduction of a tool/technique into a real project, where the researcher can no longer control the context, but where the net effect can be measured (e.g. against a baseline, or against previous experience)

* Good for

 \star Measuring the benefits in a real setting

*Preparation for tech. transfer

 \star Getting organizations interested in your work

* Limitations

*****Hard to get organizations to adopt unproven ideas

*****Hawthorn effect (and other bias problems)

See:

R. L Glass "Pilot Studies: What, Why and How" J. Systems and Software, vol 36, no 1, pp85-97, 1997

Rational Reconstructions

- A demonstration of a tool or technique on data taken from a real case study, but applied after the fact to demonstrate how the tool/technique would have worked
- * Good for

*Initial validation before expensive pilot studies
 *Checking the researcher's intuitions about what the tool/technique can do

* Limitations

*potential bias (you knew the findings before you started)
*easy to ignore "signal-to-noise ratio"

* Examples

*LAS; BART; ... etc.

See:

Examples in Cohen Empirical Methods for Artificial Intelligence

Exemplars

Self-contained, informal descriptions of a problem in some application domain; exemplars are to be considered immutable; the specifier must do the best she can to produce a specification from the problem statement.

* Good for:

* Setting research goals,

***** Understanding differences between research programs

* Limitations:

 \star No clear criteria for comparing approaches

*Not clear that "immutability" is respected in practice

* Examples:

* Meeting Scheduler; Library System; Elevator Control System; Telephones;...

```
see:
```

M. S. Feather, S. Fickas, A. Finkelstein, and A. van Lamsweerde, "Requirements and Specification Exemplars," Automated Software Engineering, vol. 4, pp. 419-438, 1997.

Surveys

- A comprehensive system for collecting information to describe, compare or explain knowledge, attitudes and behaviour over large populations
- * Good for
 - \star Investigating the nature of a large population
 - ★ Testing theories where there is little control over the variables
- * Limitations
 - ***** Relies on self-reported observations
 - ***** Difficulties of sampling and self-selection
 - ***** Information collected tends to subjective opinion

See:

Shari Lawrence Pfleeger and Barbara A. Kitchenham, "Principles of Survey Research," Software Engineering Notes, (6 parts) Nov 2001 -Mar 2003

Artifact / Archive Analysis

- Investigation of the artifacts (documentation, communication logs, etc) of a software development project after the fact, to identify patterns in the behaviour of the development team.
- * Good for
 - * Understanding what really happens in software projects
 - * Identifying problems for further research
- * Limitations
 - * Hard to build generalizations (results may be project specific)
 - * Incomplete data

See:

Audris Mockus, Roy T. Fielding, and James Herbsleb. Two case studies of open source software development: Apache and mozilla. ACM Transactions on Software Engineering and Methodology, 11(3):1-38, July 2002.

Ethnographies

- Interpretive, in-depth studies in which the researcher immerses herself in a social group under study to understand phenomena though the meanings that people assign to them
- * Good for:
 - ***** Understanding the intertwining of context and meaning
 - ***** Explaining cultures and practices around tool use
- * Limitations:
 - * No generalization, as context is critical
 - * Little support for theory building

See:

Klein, H. K.; Myers, M. D.; A Set of Principles for Conducting and Evaluating Interpretive Field Studies in Information Systems. MIS Quarterly 23(1) 67-93. March 1999.

Action Research

Research and practice intertwine and shape one another. The researcher mixes research and intervention and involves organizational members as participants in and shapers of the research objectives

- * Good for
 - * Any domain where you cannot isolate variables, cause from effect, ...
 - ***** Ensuring research goals are relevant
 - * When effecting a change is as important as discovering new knowledge

* Limitations

* Hard to build generalizations (abstractionism vs. contextualism)
* Won't satisfy the positivists!

See:

Lau, F; Towards a framework for action research in information systems studies. Info.Technology and People 12 (2) 148-75. 1999.
Kock, N.F., (1997), Myths in Organisational Action Research: Reflections on a Study of Computer-Supported Process Redesign Groups, Organizations & Society, V.4, No.9, pp. 65-91.

Simulations

- An executable model of the software development process, developed from detailed data collected from past projects, used to test the effect of process innovations
- * Good for:
 - * Preliminary test of new approaches without risk of project failure
 - * [Once the model is built] each test is relatively cheap
- * Limitations:
 - ***** Expensive to build and validate the simulation model
 - * Model is only as good as the data used to build it
 - * Hard to assess scope of applicability of the simulation
- See:
 - ★ Kellner, M. I.; Madachy, R. J.; Raffo, D. M.; Software Process Simulation Modeling: Why? What? How?Journal of Systems and Software 46 (2-3) 91-105, April 1999.

Benchmarks

- A test or set of tests used to compare alternative tools or techniques. A benchmark comprises a motivating comparison, a task sample, and a set of performance measures
- * Good for
 - ***** Making detailed comparisons between methods/tools
 - ***** Increasing the (scientific) maturity of a research community
 - ***** Building consensus over the valid problems and approaches to them

* Limitations

- ***** Can only be applied if the community is ready
- * Become less useful / redundant as the research paradigm evolves

See:

S. Sim, S. M. Easterbrook and R. C. Holt "Using Benchmarking to Advance Research: A Challenge to Software Engineering". Proceedings, ICSE-2003

Questions

- Do any of these idioms capture your research?
 Do the distinctions make sense?
 Are there other idioms we've missed?
- Are we (as a community) using the right idioms?
 Should we be using some of them more than we do?
 Should we be using some of them less than we do?
- * What standards of reporting should we demand?
 - \star Eg, when reviewing papers for SE conferences
 - * Should we be more explicit about our research methods?
- * What practical steps can we take...
 - ***** Workshops on research validation?
 - * Benchmarking initiatives?

Validating SE models

- * Logical Positivist view:
 - "There is an objective world that can be modeled by building a consistent body of knowledge grounded in empirical observation"
 - *In SE: "there is an objective problem that exists in the world"
 - Build a consistent model; make sufficient empirical observations to check validity
 - > Use tools that test consistency and completeness of the model
 - > Use reviews, prototyping, etc to demonstrate the model is "valid"
- * Popper's modification to logical positivism:
 - "Theories can't be proven correct, they can only be refuted by finding exceptions"
 - ***** In SE: "models must be refutable"
 - > Look for evidence that the model is wrong
 - > Eg, collect scenarios and check the model supports them
- * Post-Modern view:
 - "There is no privileged viewpoint; all observation is value-laden; scientific investigation is culturally embedded"
 - > Eg, Kuhnian paradigms; Toulmin's *weltanschauungen*
 - ***** In SE: "validation is always subjective and contextualised"
 - > Use stakeholder involvement so that they 'own' the requirements models
 - > Use ethnographic techniques to understand the weltanschauungen