
1

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Empirical Approaches, 
Questions & Methods

Dewayne E Perry
ENS 623

Perry@ece.utexas.edu

[adapted in part from Steve Easterbrook, U Toronto]



2

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Empirical Approaches
Three approaches

Descriptive
Relational
Experimental

Descriptive
Goal: careful mapping out a situation in order to describe 
what is happening
Necessary first step in any research

Provides the basis or cornerstone
Provides the what

Rarely sufficient – often what to know why or how
But often provides the broad working hypothesis



3

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Empirical Approaches
Relational

Need at least two sets of observations so that some 
phenomenon can be related to each other
Two or more variables are measured and related to each 
other
Coordinated observations -> quantitative degree of 
correlation 
Not sufficient to explain why there is a correlation

Experimental
Focus on identification of causes, what leads to what
Want X is responsible for Y, not X is related to Y
Experimental group versus control group
Watch out for problems



4

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Discovery
Process of Discovery

Plausible: interesting idea
Important: is it worthy of further consideration?
Acceptable: do we have a testable theory, can we create an 
hypothesis for experimental confrontation?
Justifiable: amenable to evaluation, defense, confirmation?

Sources of Discovery
Intensive case studies

Document certain variables/conditions as prerequisite for a 
more theoretical study

Paradoxical incidents
Puzzled by contradictory aspects of a situation

Metaphors that stimulate our thinking
Rules of thumbs, folk wisdom
Account for conflicting results

Eg, performance in presence of others



5

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Asking Questions
Asking questions + systematic process to obtain valid 
answers

Make the question clear
Hypothesis should be consistent with questions
Statement of the problem
Critical: asking the right or important questions

Types of Questions
Existence
Description/Classification
Composition
Relationships
Descriptive-Comparative
Causality
Causality-Comparative
Causality-Comparison Interactions



6

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Types of Research Questions
Existence questions

Does X exist? X is a thing, attribute, phenomenon, behavior, 
ability, condition, state of affairs etc.

Is there a tool that can generate X?
Is there a programmer who can write 200k lines per year?

Important when controversial
Generalization not important, existence is
Requires careful scientific work
Rule out alternative explanations

Description/Classification
What is it like, is it variable or invariant, characteristic limits, 
unique of member of a known class, a distinctive description?

What are the limits of tool X?
What are the characteristics of structured programs?

Answer requires statements about:
Generality and representativeness of sample
Uniqueness/distinctness to population



7

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Types of Research Questions
Composition

What are the components of X?
What are the principle traits of a good programmer? 
What are the main factors in a maintainable program?

Requires analysis or breakdown of whole into component parts
Factor analysis requires care and accuracy
Need large enough samples to rule out biases

Relationships
What is the relationship between Xand Y?

Are exceptions needed for maintainable programs? 
Is elegance a function of age?

For predictiveness, can use multiple regression techniques
Or do the relationships fit theoretical models
Need valid/reliable measures, sufficient and representative 
samples, accurate computations, and interpretations 
supported by the data



8

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Types of Research Questions
Descriptive-Comparative

Is group Xdifferent from group Y?
Are Fortran programmers different from Lisp programmers? 
Do novice C++ programmers make more errors than Java 
programmers? Experienced programmers?

An elaboration of the simple description question
Comparison may be organismic

Eg, age, weight, height 
Comparison may be socio-economic

Eg, income, job, neighborhood
Must ensure equivalence of other characteristics
Criteria measures critical – need validity, reliability



9

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Types of Research Questions
Causality

Does X cause, lead to, or prevent changes in Y?
Does C++ lead to complex programs? 
Does using exceptions lead to simpler programs?

Manipulate independent variables to get changes in dependent
Need control group for non-treatment
Must select sample carefully to rule out biases
Replications to warrant generality

Causality-Comparative
Does X cause more change in Y than Z?

Is C++ better than Java in preventing race conditions? 
Is the Jackson design method better than the Booch method in 
producing concurrent systems?

Compare rival treatments, control
Must guarantee that rival treatments are valid and are given 
in an unbiased manner



10

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Types of Research Questions
Causality-Comparison Interactions

Does Xcause more changes in Ythat Zunder certain conditions 
but not others?

Do formal methods work better than informal methods for 
Europeans but not North Americans? 
Is the MacOS easier to use than the Windows by naïve users 
but not experiences users?

Add more independent variables



11

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Many Methods Available:
Laboratory Experiments
Field Studies
Case Studies
Pilot Studies
Rational Reconstructions
Exemplars
Surveys
Artifact/Archive Analysis (“mining”!)
Ethnographies
Action Research
Simulations
Benchmarks



12

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Laboratory Experiments
Experimental investigation of a testable hypothesis, in which 

conditions are set up to isolate the variables of interest 
("independent variables") and test how they affect certain 
measurable outcomes (the "dependent variables")
Good for

Quantitative analysis of benefits of a particular tool/technique
(demonstrating how scientific we are!)

Limitations
Hard to apply if you cannot simulate the right conditions in the lab
Limited confidence that the lab setup reflects the real situation
Ignores contextual factors (e.g. social/org’al/political factors)
Extremely time-consuming!

See:
Pfleeger, S.L.; Experimental design and analysis in software engineering. 

Annals of Software Engineering1, 219-253. 1995D. 
Perry, A. Porter, L. Votta “Empirical Studies of Software Engineering: A 

Roadmap”. In A. Finkelstein (ed) "The Future of Software Engineering". 
IEEE CS Press, 2000.



13

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Field Studies
Exploratory study, used where little is currently know about a 

problem, or where we wish to check that our research goals are 
grounded in real-life settings; studies organizational practice 
using anthropological techniques.
Good for

Setting a research agenda (what really matters?)
Understanding the context for RE problems (naturalistic inquiry)

Limitations
Hard to build generalizations (results may be organization specific)
Observers’ bias

See:
Klein, H.K., and Myers, M.D. "A Set of Principles for Conducting and 

Evaluating Interpretive Field Studies in Information Systems," MIS 
Quarterly, vol 23 No 1, pp67-93, 1999.



14

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Case Studies
A technique for detailed exploratory investigations, both 

prospectively and retrospectively, that attempt to 
understand and explain phenomenon or test theories, using 
primarily qualitative analysis
Good for

Answering detailed how and why questions
Gaining deep insights into chains of cause and effect
Testing theories in complex settings where there is little 
control over the variables

Limitations
Hard to find appropriate case studies
Hard to quantify findings

See:
Flyvbjerg, B.; Five Misunderstandings about Case Study 

Research. Qualitative Inquiry 12 (2) 219-245, April 2006



15

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Pilot Studies
Controlled introduction of a tool/technique into a real 

project, where the researcher can no longer control the 
context, but where the net effect can be measured (e.g. 
against a baseline, or against previous experience)
Good for

Measuring the benefits in a real setting
Preparation for tech. transfer
Getting organizations interested in your work

Limitations
Hard to get organizations to adopt unproven ideas
Hawthorn effect (and other bias problems)

See:
R. L Glass “Pilot Studies: What, Why and How” J. Systems 

and Software, vol 36, no 1, pp85-97, 1997



16

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Rational Reconstructions
A demonstration of a tool or technique on data taken from 

a real case study, but applied after the fact to 
demonstrate how the tool/technique would have worked
Good for

Initial validation before expensive pilot studies 
Checking the researcher’s intuitions about what the 
tool/technique can do

Limitations
potential bias (you knew the findings before you started)
easy to ignore “signal-to-noise ratio”

Examples
LAS; BART; … etc.

See:
Examples in Cohen Empirical Methods for Artificial Intelligence



17

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Exemplars
Self-contained, informal descriptions of a problem in some 

application domain; exemplars are to be considered immutable; 
the specifier must do the best she can to produce a 
specification from the problem statement.
Good for:

Setting research goals,
Understanding differences between research programs

Limitations:
No clear criteria for comparing approaches
Not clear that “immutability” is respected in practice

Examples:
Meeting Scheduler; Library System; Elevator Control System; 
Telephones;…

see: 
M. S. Feather, S. Fickas, A. Finkelstein, and A. van Lamsweerde, 

“Requirements and Specification Exemplars,” Automated Software 
Engineering, vol. 4, pp. 419-438, 1997.



18

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Surveys
A comprehensive system for collecting information to 

describe, compare or explain knowledge, attitudes and 
behaviour over large populations
Good for

Investigating the nature of a large population
Testing theories where there is little control over the 
variables

Limitations
Relies on self-reported observations
Difficulties of sampling and self-selection
Information collected tends to subjective opinion

See:
Shari Lawrence Pfleeger and Barbara A. Kitchenham, "Principles 

of Survey Research,” Software Engineering Notes, (6 parts) 
Nov 2001 -Mar 2003



19

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Artifact / Archive Analysis
Investigation of the artifacts (documentation, communication 

logs, etc) of a software development project after the 
fact, to identify patterns in the behaviour of the 
development team.
Good for

Understanding what really happens in software projects
Identifying problems for further research

Limitations
Hard to build generalizations (results may be project 
specific)
Incomplete data

See:
Audris Mockus, Roy T. Fielding, and James Herbsleb. Two case 

studies of open source software development: Apache and 
mozilla. ACM Transactions on Software Engineering and 
Methodology, 11(3):1-38, July 2002.



20

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Ethnographies
Interpretive, in-depth studies in which the researcher 

immerses herself in a social group under study to 
understand phenomena though the meanings that people 
assign to them
Good for:

Understanding the intertwining of context and meaning
Explaining cultures and practices around tool use

Limitations:
No generalization, as context is critical
Little support for theory building

See:
Klein, H. K.; Myers, M. D.; A Set of Principles for Conducting 

and Evaluating Interpretive Field Studies in Information 
Systems. MIS Quarterly 23(1) 67-93. March 1999.



21

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Action Research
Research and practice intertwine and shape one another. The 

researcher mixes research and intervention and involves 
organizational members as participants in and shapers of the 
research objectives
Good for

Any domain where you cannot isolate variables, cause from effect, …
Ensuring research goals are relevant 
When effecting a change is as important as discovering new 
knowledge

Limitations
Hard to build generalizations (abstractionism vs. contextualism)
Won’t satisfy the positivists!

See:
Lau, F; Towards a framework for action research in information systems 

studies. Info.Technology and People 12 (2) 148-75. 1999.
Kock, N.F., (1997), Myths in Organisational Action Research: 

Reflections on a Study of Computer-Supported Process Redesign 
Groups, Organizations & Society, V.4, No.9, pp. 65-91.



22

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Simulations
An executable model of the software development process, 

developed from detailed data collected from past 
projects, used to test the effect of process innovations
Good for:

Preliminary test of new approaches without risk of project 
failure
[Once the model is built] each test is relatively cheap

Limitations:
Expensive to build and validate the simulation model
Model is only as good as the data used to build it
Hard to assess scope of applicability of the simulation

See:
Kellner, M. I.; Madachy, R. J.; Raffo, D. M.; Software 
Process Simulation Modeling: Why? What? How?Journal of 
Systems and Software 46 (2-3) 91-105, April 1999.



23

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Benchmarks
A test or set of tests used to compare alternative tools or 

techniques. A benchmark comprises a motivating comparison, a 
task sample, and a set of performance measures
Good for

Making detailed comparisons between methods/tools
Increasing the (scientific) maturity of a research community
Building consensus over the valid problems and approaches to them

Limitations
Can only be applied if the community is ready
Become less useful / redundant as the research paradigm evolves

See:
S. Sim, S. M. Easterbrook and R. C. Holt “Using Benchmarking to 

Advance Research: A Challenge to Software Engineering”. 
Proceedings, ICSE-2003



24

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Questions
Do any of these idioms capture your research?

Do the distinctions make sense?
Are there other idioms we’ve missed?

Are we (as a community) using the right idioms?
Should we be using some of them more than we do?
Should we be using some of them less than we do?

What standards of reporting should we demand?
Eg, when reviewing papers for SE conferences
Should we be more explicit about our research methods?

What practical steps can we take…
Workshops on research validation?
Benchmarking initiatives?



25

382C Empirical Studies in Software Engineering

© 2000-present, Dewayne E Perry

Lecture 2

Validating SE models
Logical Positivist view:

“There is an objective world that can be modeled by building a 
consistent body of knowledge grounded in empirical observation”

In SE: “there is an objective problem that exists in the world”
Build a consistent model; make sufficient empirical observations to check 
validity
Use tools that test consistency and completeness of the model
Use reviews, prototyping, etc to demonstrate the model is “valid”

Popper’s modification to logical positivism:
“Theories can’t be proven correct, they can only be refuted by finding 
exceptions”

In SE: “models must be refutable”
Look for evidence that the model is wrong
Eg, collect scenarios and check the model supports them

Post-Modern view:
“There is no privileged viewpoint; all observation is value-laden; 
scientific investigation is culturally embedded”
Eg, Kuhnian paradigms; Toulmin’s weltanschauungen

In SE: “validation is always subjective and contextualised”
Use stakeholder involvement so that they ‘own’ the requirements models
Use ethnographic techniques to understand the weltanschauungen


	Empirical Approaches, �Questions & Methods
	Empirical Approaches
	Empirical Approaches
	Discovery
	Asking Questions
	Types of Research Questions
	Types of Research Questions
	Types of Research Questions
	Types of Research Questions
	Types of Research Questions
	Many Methods Available:
	Laboratory Experiments
	Field Studies
	Case Studies
	Pilot Studies
	Rational Reconstructions
	Exemplars
	Surveys
	Artifact / Archive Analysis
	Ethnographies
	Action Research
	Simulations
	Benchmarks
	Questions
	Validating SE models

