
382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 1© 2000-present, Dewayne E Perry

A Unifying Theoretical Foundation
(or Platform) for

Software Engineering

Dewayne E Perry
ACE 5.124

perry@mail.utexas.edu

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 2© 2000-present, Dewayne E Perry

Introduction
 I have a general theory about software engineering – it is

made up of two basic endeavors:
 Design

 Of the problem
 Of the solution
 And includes a mundane manufacture

 Evaluation
 Of our problem, its solution, and the solution’s utility
 Of our evaluations themselves

 So lets consider two simple theories
 Overly simple at this point, but for illustrative purposes

 See also:
 “A Unifying Theoretical Foundation for Software Engineering”

users.ece.utexas.edu/~perry/work/papers/DP-sede11.pdf
 “A Theoretical Foundation for Software Engineering: A Model

Calculus” – GTSE 2013 Proceedings

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 33

Theory D

W
T

M

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 44

Theory D
 Part of software engineering is an interpretation (or a

model) of D (granted this is a very simple view of SE)
 The problem space that software engineering deals with is

found in the world W
 The requirements we define to delineate that problem in the

world is an interpretation of the theory T
 The system we build to satisfy the set of requirements (ie,

the theory T) is an interpretation of the model M
 Eliciting the requirements from the world is our first process

step in creating and building (ie, engineering) a software
system

 Transforming those requirements into a system is the second
process step in creating and building a software system

 Finally, the process of injecting the system into the world is
the last step

 That injection into the world changes it, and we iterate.

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 55

Theory E

W

T

R

H

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 66

Theory E
 Part of software engineering is basically a continuing set

of evaluations supporting and justifying design and process
choices in D
 The world W is the context for our evaluations – it is the

source of our theories for various things related to our
system

 We build theories about these aspects of the world to be
tested for confirmation or reformation

 We do this by designing an hypothesis and a regimen (an
experimental design – yes, back to D here) to test some
part of the theory

 We follow processes for creating and adjusting theories,
creating hypotheses (or evaluation questions), creating
empirical designs/regimens, and executing and evaluating
their results

 Evaluations can range from informal to formal

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 77

Theories D & E
 My theory of software engineering:
 SE = D + E
 But done in a specific way
 E applied to D
 Informally, we integrate E into D

 Lets consider simple models of D and E
 First, define the models for D and E
 Second, Apply E to D
 Then, explore what that application means in terms of

software engineering

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 88

Model of D
 W The world - more specifically, the relevant

part of the world
 T The theory initiated by observation and

abstraction
 M A model that satisfies the theory
 WT Generate a theory: observe and abstract from

the world (W) to create a theory (T)
 TM From theory (T) create a model (M)
 M*WW Inject the model (M) into the world (W) -

Thereby changing the world

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 99

Model of E
 W The world - more specifically, the relevant

part of the world
 T The theory initiated by observation and

abstraction from the world
 H An hypothesis to test the theory
 R An regimen to test the hypothesis
 W T Generate a theory: observe and abstract

from the world (W) to create a theory (T)
 T H From theory (T) generate an hypothesis (H)
 H R From hypothesis (H) generate an empirical

evaluation to test it
 R * W T Apply R to W and reconcile T with reality

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 1010

Theories D & E
 What do we get from my approach:
 Scientific elegance in creating larger more complex theories out

of simpler theories
 Explain the complexity of software engineering and software

engineering research in an elegant way.
 A theory modeling language and a calculus for composing models

 Why my approach?
 Description and understanding of what we do
 Provide a basis for exploring various approaches and what they

entail
 To delineate the landscape of SE and RSE – lay out a taxonomic

space
 To emphasize the importance of explicating theories in both

software engineering design and empirical evaluation
 To emphasize the importance and extent of the empirical part

of Software Engineering

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 1111

Models and Applications
 What is a model – a tuple of a set of objects and a set

of mappings
 < {objects}, {mappings} >
 Objects – eg, W, T, M, etc

 Elements, components, entities, etc
 Mappings - W T, R*W T, etc

 Transformations, generations, derivations, processes, etc

 Can treat models as
 Atomic (A) – ie, abstract away the internal structure
 Open structured (O) – ie, expose the internal structure

 Application: X:Y
 Basically restricts X to Y – ie, focuses X on Y
 A:O - yields n models where n is the number of objects +

the number of mappings
 O:A – yields 1 model where the objects and mappings are

restricted to A

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 1212

Model Calculus - Operators

 Special symbols (in their order of precedence)
 “+” a unary operator on objects that indicates 1 or more

of the designated objects.
 “:” a binary operator on models and model components

that indicates a restriction of the left model or element to
the right element or model

 “*” a binary operator on objects that delineates an
object in the Cartesian space of two objects. This can be
thought of as functional application of the one object to the
other yielding a specific object as its value.

 “” a binary operator that maps one object onto
another.

 Parentheses may be used to clarify the use of these
operators.

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 1313

Model Calculus - Mappings
 All possible mappings are possible
 One to one mappings are indicated by A B.
 Many to one mappings are indicated in several different

ways. For example, A * B C, and A+ B.
 One to many mappings are indicated by A B+ and

A B * C.
 Many to many mappings are indicated by any combinations

using “+” and “*” together with “”

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 1414

Model Calculus - Rules
 The following are the distribution rules among expressions

about various operators.
 “:” is both left and right distributive over models.
 “:” is left distributive over “+”, “*”, and “”.

 Examples of the first distribution rule are above.
Examples of the second are as follows (where EM denotes
a model or a model element):
 (O1 O2):EM = O1:EM O2:EM
 (O1 * O2 O3):EM = O1:EM * O2:EM O3:EM
 (O1+ O2):EM = (O1:EM)+ O2:EM

 There is one rule about the operator “+” (which implies
that “+” is left distributive) over “*” and “”. For
example,
 (A B)+ = A+ B+
 (A * B)+ = A+ * B+

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 1515

Applying E to D
 Consider evaluating D as atomic and E as open structured
 E:D creates a new model of empirical evaluation focused

specifically on D – ie, evaluating D as a whole
<

{W:D, T:D, H:D, R:D},
{

(W T):D => W:D T:D
(T H):D => T:D H:D
(H R):D => H:D R:D
(R * W T):D => R:D * W:D T:D

}
>
 That is, there are theories about D (derived from the world

W:D) from which we create hypotheses and from those
hypotheses we create regimens (ie, evaluations) – and we
have the processes for doing just that with respect to D

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 1616

Applying E to D
 Consider E to be abstract and D open structured
 Evaluating each object and mapping of D
 E:W - evaluation of W (the world)
 E:T - evaluation of T (the theory)
 E:M - evaluation of M (the model)
 E:(W T) - evaluation of generating T from W
 E:(T M) - evaluation of transforming T into M
 E:(M W) - evaluation of injecting M into W

 We get 6 models of how to evaluate D, one for each
object and one for each mapping

 To understand these models resulting from application
 Consider E:m – since m is atomic, let E be open structured

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 1717

Applying E to D
 E:W - evaluation of W (the world)
 <{W:W,T:W, H:W, R:W},

{W:WT:W, T:WH:W, H:WR:W, R:W*W:WT:W}>
 Evaluation of (for example)

The users needs and desires
The world of “using”
The problem domain

 E:T - evaluation of T (the theory)
 <{W:T,T:T, H:T, R:T},

{W:TT:T, T:TH:T, H:TR:T, R:T*W:TT:T}>
 Evaluation of (for example)

Theory completeness
Theory representativeness – of the user’s needs/problems
Theory adequacy – how good is the theory for the model?

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 1818

Applying E to D
 E:M - evaluation of M (the model)
 <{W:M,T:M, H:M, R:M},

{W:MT:M, T:MH:M, H:MR:M, R:M*W:MT:M}>
 Evaluation of (for example)

 Model adequacy
 How well does the model represent the theory (white box)
 How good is the model relative to the intent of the modeller (black box)

 Model Utility – how useful is the model in the world
 E:(WT) - evaluation of transforming W into T
 <{W:(WT), T:(WT), H:(WT), R:(WT)},

{W:(WT)T:(WT), T:(WT)H:(WT),
H:(WT)R:(WT),
R:(WT)*W:(WT)T: (WT)}>

 Evaluation of (for example)
 The quality of the theory formation process

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 1919

Applying E to D
E:(TM) - evaluation of transforming T into M
 <{W:(TM), T:(TM), H:(TM), R:(TM)},

{W:(TM)T:(TM), T:(TM)H:(TM),
H:(TM)R:(TM),
R:(TM)*W:(TM)T:(TM)}>

 Evaluation of (for example)
The quality of the model development process

 E: (MW) - evaluation of injecting M into W
 <{W:(MW), T:(MW), H:(MW), R:(MW)},

{W:(MW)T: (MW), T:(MW)H:(MW),
H:(MW)R:(MW),
R:(MW)*W:(MW)T:(MW)}>

 Evaluation of (for example)
The quality of the model deployment process

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 2020

E:D – The Full View

E:(W T) E:(T M) E:(M W)

W:(WT) W:(TM) W:(MW)

T:(WT) T:(TM) T:(MW)

H:(WT) H:(TM) H:(MW)

R:(WT) R:(TM)} R:(MW)

W:(WT)T:(WT) W:(TM)T:(TM) W:(MW)T: (MW)

T:(WT)H:(WT) T:(TM)H:(TM) T:(MW)H:(MW)

H:(WT)R:(WT) H:(TM)R:(TM) H:(MW)R:(MW)

R:(WT)*W:(WT)T: (WT) R:(TM)*W:(TM)T:(TM) R:(MW)*W:(MW)T:(MW)

E:D E:W E:T E:M
W:D W:W W:T W:M
T:D T:W T:T T:M
H:D H:W H:T H:M
R:D R:W R:T R:M
(W T):D W:WT:W W:TT:T W:MT:M
(T H):D T:WH:W T:TH:T T:MH:M
(H R):D H:WR:W H:TR:T H:MR:M
(R * W T):D R:W*W:WT:W R:T*W:TT:T R:M*W:MT:M

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 2121

So Far
 2 simple theories and their models which together

comprise SE
 Applied E to D to get E:D – a more complex theory and

model that delineates the empirical side of SE
 Claim: SE is D & E:D & E:(E:D) [see below]
 E:D lays out a taxonomic space
 For any application, the space is a matrix m x n
 In the case of E:D – 8 x 6, of E:(E:D) – 8 x 8 x 6
 So the more complex the theory and model (which we will

propose below), the larger the taxonomic space

 Lets backtrack a bit and look deeper at the issues about
theories and models

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 22© 2000-present, Dewayne E Perry

Theories and Models
 Terms often used in a variety of ways
 Informally, interchangeably

 Want to use in a very specific way
 A theory is a description (an abstract entity)
 Reified, represented, satisfied, etc by a model (a concrete

entity)
 Derived from Turski and Maibaum [TM87]
 “A specification is rather like a natural science theory of

the application domain, but seen as a theory of the
corresponding program it enjoys an unmatched status: it is
truly a postulative theory, the program is nothing more than
an exact embodiment of the specification”

 I want a theory to be broader than a specification and
less formal
 A specification is in fact part of the model, not the theory

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 2323

Interesting Differences
 Between natural, behavioral & design sciences

 Natural sciences
 Understand natural phenomena
 Theoretical basis for prediction
 Theories have to be testable
 Testing is done in the physical world
 Physical world provides hard constraints on theories
 Basis for invention/engineering
 Educational basis

 Stream of experimental work in laboratory components of basic
science courses

 Explicitly recognize the need for both theoretical and
experimental enterprises

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 2424

Interesting Differences
 Behavioral sciences
 Understand human and societal phenomena
 Theoretical basis for predictions and interventions

 Basis for prediction
 Basis for intervening and changing the world

 SE also has this property
 Theories have to be testable
 Testing is done in the behavioral world
 Behavioral world provides probabilistic constraints
 Basis for therapy, education, policy, motivation, etc
 Educational basis:

 Experimental design and statistics courses as both undergraduate
and graduate

 Explicitly recognize the need for both theoretical and
experimental enterprises

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 2525

Interesting Differences
 Design Sciences (sciences of the artificial)
 Understand artificial phenomena
 Theoretical basis for artificial interventions/improvements
 Theories have to be testable
 Testing is done in at least part in an artificial world
 Artificial world provides selectable and malleable constraints
 Basis for design invention and purpose-based transformations

 Artifacts with desired properties
 Transformations to achieve desired goals

 Educational basis
 Unfortunately, haphazard and ad hoc
 Lack of appreciation for experimental aspects

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 2626

Source of Theories
 Scientific Theory
 Based on observations about the world

 Some observations sets very old but still used/useful
 Changed on the basis of

 New interpretations of observations
 New observations

 Legal Theory
 Based on decisions about the world
 Changed on the basis of

 New interpretations of decisions
 New decisions

 Normative Theory
 Based on a system of philosophical tenets about what is good

and bad
 Changed on the basis of

 New inferences from those tenets
 New interpretations of them
 New tenets

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 2727

Source of Theories
 Theories in design disciplines – a combination of the three
 Based on

 Observations about the world
 Decisions about the world
 Judgments about the world

 Changed on the basis of
 New interpretations of the observations or decision
 New observations or decisions
 New inferences, interpretations, or tenets

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 2828

Structure of Theories
 Two different theory structures [Markus & Robey]
 Variance

 Theoretical structure is a set of laws about
 Interactions
 Relationships

 Given a variation in A, what other things can account for that
variation

 Process
 Theoretical structure is a temporal ordering of activities, steps

or events
 We have both theoretical structures in the sciences of

the artificial

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 2929

Uses of Theories
 5 distinct uses [derived from Gregor] – all occur in SE
 Description

 In terms of constructs, properties, relationships and boundaries
 Intended to be complete

 Prescription
 Constraints on it constructs, properties, relationships, boundaries
 Intent is to emphasize critical/crucial aspects of the theory

 Explanation
 How why when things occur based on causality and demonstration
 Intent: deeper understanding and insight

 Prediction
 Based on necessary and sufficient conditions
 Determines when it will or will not happen

 Action
 Principles, techniques and methods for enabling phenomena for

achieving a desired goal, or designing/constructing an artifact
 We have all these uses in SE practice and SE research

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 3030

Context for Design Sciences
 Physical world provides hard constraints on theories
 Behavioral world provides probabilistic constraints
 Technological world provides selectable constraints
 Intellectual context provides malleable constraints

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 3131

D:D Theory
 Composing/Applying D with/to itself gives us D:D- a theory

and model for creating and evolving a D (a theory and
model)

 We observe and abstract some specific part (that of D) of
the world and create a theory of
 what the world is like and what is important
 what form theory should take
 what form the model should take
 the processes of creating the theory and a model and

injecting it into the world
 From that theory we create a usable model of
 what the world is like and what is important
 what form theory should take
 what form the model should take
 the processes of creating the theory and a model and

injecting it into the world

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 3232

D:D Theory
 From the world of D we derive a theory about D
 From this theory of D we then derive a model of D
 We then inject this model of D into the world of D,

thereby changing that world W:D
 These changes in the world may then lead to adjustments

and extensions to the original theory about D
 This then leads to further changes in the model of D and

subsequently, again, the world of D

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 3333

D:D Model
 Considering D as an open structured model applied to an

abstract model we get the following model (in which the
elements of D are restricted to the abstract model D)

 W:D
 T:D
 M:D
 (W T):D => W:D T:D
 (T M):D => T:D M:D
 (M W):D => M:D W:D

 There are theories about D (T:D) derived from the world
(W:D) from which we create models of D (M:D) – and we
have the processes for doing just that with respect to D

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 3434

Digging Deeper into D:D
 Viewing D now as an open structure model we can apply

each object and mapping of D to the elements and
mappings of D and gain a deeper understanding of what
the restricted focus actually means

 W:D – the world related to D
 W:W, W:T, W:M,
 W:(WT), W:(TM), W:(MT)

 T:D – the theory of D
 T:W, T:T, T:M,
 T:(WT), T:(TM), T:(MW)

 M:D – the model of D
 M:W, M:T, M:M,
 M:(WT), M:(TM), M:(MW)

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 3535

Digging Deeper into D:D
 (WT):D => W:D T:D
 W:W T:W
 W:T T:T
 W:M T:M
 W:(WT) T:(WT)
 W:(TM) T:(TM)
 W:(MW) T:(MW)

 (TM):D => T:D M:D
 T:W M:W
 T:T M:T
 T:M T:M
 T:(WT) M:(WT)
 T:(TM) M:(TM)
 T:(MW) M:(MW)

 (MW):D = M:D W:D
 M:W W:W
 M:T W:T
 M:M W:M
 M:(WT) W:(WT)
 M:(TM) W:(TM)
 M:(MW) W:(MM)

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 3636

Applying D to D
 D:D yields 6 models (one for each object and mapping)
 D:W - designing the problem space
 D:T - designing what theories look like
 D:M - designing what models look like
 D:(W T) - designing the process of deriving theories
 D:(T M) - designing the process of deriving models
 D:(M W) - designing the process of deployment

 We get 6 models of how to design and derive D, one for
each object and one for each mapping

 To understand these models resulting from application
 Let D be open structured

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 3737

Applying D to D
 D:W - design of W (the world)
 <{W:W,T:W, M:W},

{W:WT:W, T:WM:W, M:WW:W}>
 Design of (for example)

The users needs and desires
The world of “using”
The problem domain

 D:T - design of T (the theory)
 <{W:T,T:T, M:T},

{W:TT:T, T:TM:T, M:TW:T}>
 Design of (for example)

What a theory should be
What constitutes theory completeness, representativeness,

and adequacy

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 3838

Applying D to D
 D:M - design of M (the model)
 <{W:M,T:M, M:M},

{W:MT:M, T:MM:M, M:MW:M}>
 Design of (for example)

 What a model should look like
 What constitutes model completeness, adequacy and utility

 D:(WT) – design of the process of deriving T from W
 <{W:(WT), T:(WT), M:(WT)},

{W:(WT)T:(WT), T:(WT)M:(WT),
M:(WT)W:(WT)}>

 Design of (for example)
 What the theory formation process should be

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 3939

Applying D to D
D:(TM) – design of the process of deriving M from T
 <{W:(TM), T:(TM), M:(TM)},

{W:(TM)T:(TM), T:(TM)M:(TM),
M:(TM)W:(TM)}>

 Design of (for example)
What the model development process should be

 D: (MW) – design of the process of injecting M into W
 <{W:(MW), T:(MW), M:(MW)},

{W:(MW)T: (MW), T:(MW)M:(MW),
M:(MW)W:(MW)}>

 Evaluation of (for example)
What the model deployment process should be

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 4040

The D:D Matrix
D:D D:W D:T D:M
W:D W:W W:T W:M
T:D T:W T:T T:M
M:D M:W M:T M:M
(W T):D W:WT:W W:TT:T W:MT:M
(T M:D T:WM:W T:TM:T T:MM:M
(M W):D M:WW:W M:TW:T M:MW:M

D:(W T) D:(T M) D:(M W)
W:(WT) W:(TM) W:(MW)
T:(WT) T:(TM) T:(MW)
M:(WT) M:(TM) M:(MW)
W:(WT)T:(WT) W:(TM)T:(TM) W:(MW)T: (MW)
T:(WT)M:(WT) T:(TM)M:(TM) T:(MW)M:(MW)
M:(WT)W:(WT) M:(TM)W:(TM) M:(MW)W:(MW)

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 4141

SE Research – A Model for D:D
 Research in software development (software engineering –

SE) is a model for D:D
 The problem spaces concerning SE research, SE theories, SE

models, and SE processes constitute a model for W
 SE research theories about what form W, T, M, and the

various D transformations should take are models of T
 SE research models about what form W, T, M, and the

various D transformations should take are models of M
 The processes we as SE researchers use are models of D:D

transformations
 Similarly, research in creating project management plans,

empirical instruments, and empirical evaluations are
models of D:D

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 4242

Examples for D:D
 The world of software systems development
 Some problems are just too hard – unsolvable
 Vincenti – some problems require only normal design, others

require radical design (ie, we don’t know whether it will work
or not)

 Brooks: Plan to throw one away – we don’t know how to build
a system until we have actually built it at least once

 Theories of software systems development
 Multiple viewpoints (a theory about theory – ie, a T:T):

 Different stakeholders have different views of what needs to be
done and needs to be part of the requirements (T:T, T:(WT))

 Conflict resolution and how it is accomplished is a critical part of
the requirements (T:T, T:(TT))

 Perry/Wolf model of software architecture
 A theory about what part of a model of software systems should

be like

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 4343

Examples for D:D
 Other theories of what models should look like

 Structured programming
 Object oriented programming
 Aspect-oriented programming
 Top-down, bottom-up design
 System should reflect the shape of the problem
 Etc

 Theories of how to develop software systems
 Royce’s waterfall model
 Boehm’s spiral model
 Extreme/agile development
 Wirth and others development by refinement
 Batory’s feature-oriented development

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 4444

Examples for D:D
 Models of software development
 Design methods

 Functional decomposition
 Dataflow decomposition
 Object oriented design
 Etc

 Architecture derivation
 van Lamsweerde – KAOS via agents to architecture
 Brandozzi/Perry – KAOS via goals to architecture

 Technology transfer (MW) [both examples from hyperCode]
 Seamless integration into existing processes
 Integrate development with research

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 4545

So Far
 D:D is the design part of software engineering research
 Have laid out the taxonomic space for D:D
 Have claimed that SE Research, at least the design part of

it, is a model of D:D

 That leaves us then to address the empirical evaluation
side of software engineering research
 E:(D:D) is E applied to D:D analogous to what we did for SE

itself, E:D
 Note that the taxonomic space for D:D is 6 x 6 = 36
 The taxonomic space for our currently simple E:(D:D) is

 8 x 6 x 6 = 288
 A very large space, even for our overly simple models

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 4646

Applying E to D:D
 Consider evaluating D:D as atomic and E as open

structured
 E:(D:D) creates a new model of empirical evaluation focused

specifically on D:D – ie, evaluating D:D as a whole
<

{W:(D:D), T:(D:D), H:(D:D), R:(D:D)},
{
(W T):(D:D) => W:(D:D) T:(D:D)
(T H):(D:D) => T:(D:D) H:(D:D)
(H R):(D:D) => H:(D:D) R:(D:D)
(R * W T):(D:D) => R:(D:D) * W:(D:D) T :(D:D)

}
>

 That is, there are theories about D:D (derived from the
world W:(D:D)) from which we create hypotheses and from
those hypotheses we create regimens (ie, evaluations) – and
we have the processes for doing just that with respect to
D:D

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 4747

Applying E to D:D
 Consider E to be abstract, D1 open structured, and D2

abstract
 Evaluating each object and mapping of D1:D2

 E:(W:D) - evaluation of W:D (the world of D)
 E:(T:D) - evaluation of T:D (the theory of D)
 E:(M:D) - evaluation of M:D (the model of D)
 E:(W:D T:D) - evaluation of transforming W:D into T:D
 E:(T:D M:D) - evaluation of transforming T:D into M:D
 E:(M:D W:D) - evaluation of injecting M:D into W:D

 We get 6 models of how to evaluate D1:D2, one for each
object and one for each mapping of D1:D2

 To understand these models resulting from application
 Let E be open structured

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 4848

Applying E to D:D
 E:(W:D) - evaluation of W:D (the world of D)

 < {W:(W:D), T:(W:D), H:(W:D), R:(W:D)},
{W:(W:D)T:(W:D), T:(W:D)H:(W:D),

H:(W:D)R:(W:D), R:(W:D)*W:(W:D)T:(W:D)} >
 Evaluation of (for example)

The users needs and desires about D
The world of “using” D
The problem domain of D

 E:(T:D) - evaluation of T:D (the theory of D)
 < {W:(T:D) ,T:(T:D), H:(T:D), R:(T:D)},

{W:(T:D)T:(T:D), T:(T:D)H:(T:D), H:(T:D)R:(T:D),
R:(T:D)*W:(T:D)T:(T:D)} >

 Evaluation of (for example)
Theory completeness
Theory representativeness – of the user’s needs/problems
Theory adequacy – how good is the theory for the model?

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 4949

Applying E to D:D
 E:(M:D) - evaluation of M (the model of D)

< {W:(M:D),T:(M:D), H:(M:D), R:(M:D)},
{W:(M:D)T:(M:D), T:(M:D)H:(M:D), H:(M:D)R:(M:D),

R:(M:D) *W:(M:D) T:(M:D)} >
 Evaluation of (for example)

 Model of D adequacy
 How well does the M:D represent T:D (white box)
 How good is the M:D relative to the intent of the modeller (black box)

 Model of D utility – how useful is the M:D in W:D
 E:(W:DT:D) - evaluation of transforming W:D into T:D

 <{W:(W:DT:D), T:(W:DT:D), H:(W:DT:D), R:(W:DT:D)},
{W:(W:DT:D)T:(W:DT:D), T:(W:DT:D)H:(W:DT:D),

H:(W:D T:D)R:(W:D T:D),
R:(W:DT:D)*W:(W:DT:D)T:(W:DT):D}>

 Evaluation of (for example)
 The quality of the theory of D formation process

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 5050

Applying E to D:D
E:(T:DM:D) - evaluation of transforming T:D into M:D

<{W:(T:DM:D), T:(T:DM:D), H:(T:DM:D),
R:(T:DM:D)},

{W:(T:DM):DT:(T:DM:D), W:(T:DM:D)H:(T:DM:D),
H:(T:DM:D)R:(T:DM:D),
R:(T:DM:D)*W:(T:DM:D)T:(T:DM:D)}>

 Evaluation of (for example)
The quality of the model formation process

 E: (MW) - evaluation of injecting M:D into W:D
<{W:(M:DW:D), T:(M:DW:D), H:(M:DW:D),

R:(M:DW:D)},
{W:(M:DW:D)T: (M:DW:D), T:(M:DW:D)H:(M:DW),

H:(M:DW:D)R:(M:DW:D),
R:(M:DW:D)*W:(M:DW:D)T:(M:DW:D)}>

 Evaluation of (for example)
The quality of the model deployment process

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 5151

The E:(D:D)Matrix – Example T:(D:D)
T:(D:D) D:W D:T D:M
W:D T:(W:W) T:(W:T) T:(W:M)
T:D T:(T:W) T:(T:T) T:(T:M)
M:D T:(M:W) T:(M:T) T:(M:M)
(W T):D T:(W:WT:W) T:(W:TT:T) T:(W:MT:M)
(T M:D T:(T:WM:W) T:(T:TM:T) T:(T:MM:M)
(M W):D T:(M:WW:W) T:(M:TW:T) T:(M:MW:M)

D:(W T) D:(T M) D:(M W)
T:(W:(WT)) T:(W:(TM)) T:(W:(MW))
T:(T:(WT)) T:(T:(TM)) T:(T:(MW))
T:(M:(WT)) T:(M:(TM)) T:(M:(MW))
T:(W:(WT)T:(WT)) T:(W:(TM)T:(TM)) T:(W:(MW)T: (MW))
T:(T:(WT)M:(WT)) T:(T:(TM)M:(TM)) T:(T:(MW)M:(MW))
T:(M:(WT)W:(WT)) T:(M:(TM)W:(TM)) T:(M:(MW)W:(MW))

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 52© 2000-present, Dewayne E Perry

Models of E:(D:D)
 Comparison of the van Lamsweerde’s and the

Brandozzi/Perry methods of transforming KAOS
requirements into architecture descriptions or
prescriptions
 Vanderveken, Jani, and Perry – ECSA 2005

 van Lamsweerde generated a detailed architecture description
 Brandozzi/Perry generated a high-level architecture prescription
 van Lamsweerde easier to get started, harder to finish
 Brandozzi/Perry harder to get started, easier to finish

 Evaluation of semantic conflict analysis as a
mechanism for predicting faults
 Shao, Khurshid, & Perry – ICSM 2007

 better at predicting semantic conflicts in highly parallel changes
in adaptive changes than less parallel forms of changes in fixing
faults or improvements

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 5353

Evaluating Evaluations – E:E
 Consider evaluating E1 as atomic and E2 as open

structured
 E2 : E1 creates a new model of empirical evaluation focused

specifically on E1 – ie, evaluating E1 as a whole
<

{W:E, T:E, H:E, R:E},
{

(W T):E => W:E T:E
(T H):E => T:E H:E
(H R):E => H:E R:E
(R * W T):E => R:E * W:E T:E

}
>
 That is, there are theories about E (derived from the world

W:E) from which we create hypotheses and from those
hypotheses we create regimens (ie, evaluations) – and we
have the processes for doing just that with respect to E

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 5454

Applying E to E
 Consider E2 to be abstract and E1 open structured
 Evaluating each object and mapping of E1

 E:W - evaluation of W (the world)
 E:T - evaluation of T (the theory)
 E:H - evaluation of H (the hypothesis)
 E:R - evaluation of R (the regimen/evaluation)
 E:(W T) - evaluation of deriving T from W
 E:(T H) - evaluation of deriving H from T
 E:(H R) - evaluation of deriving R from H
 E:(R * W T) - evaluation of applying R to W and

reconciling T with reality
 We get 8 models of how to evaluate E, one for each

object and one for each mapping
 To understand these models resulting from application
 Let E be open structured in the following

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 5555

Applying E to E
 E:W - evaluation of W (the world of E)
 <{W:W,T:W, H:W, R:W},

{W:WT:W, T:WH:W, H:WR:W, R:W*W:WT:W}>
 Evaluation of (for example)

Appropriateness of E relative to the world W of possible Es
 E:T - evaluation of T (the theory of E)
 <{W:T,T:T, H:T, R:T},

{W:TT:T, T:TH:T, H:TR:T, R:T*W:TT:T}>
 Evaluation of (for example)

Theory completeness and consistency
Theory appropriateness and adequacy

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 5656

Applying E to E
 E:H - evaluation of M (the hypothesis)
 <{W:H,T:H, H:H, R:H},

{W:HT:H, T:HH:H, H:HR:H, R:H*W:HT:H}>
 Evaluation of (for example)

 The appropriateness of the hypothesis H relative to theory T
 Construct validity of the hypothesis H

 E:R - evaluation of R (the regimen)
 <{W:R,T:R, H:R, R:R},

{W:RT:R, T:RH:R, H:RR:R, R:R*W:RT:R}>
 Evaluation of (for example)

 The appropriateness of regimen R relative to hypthesis H and
theory T

 Construct validity of regimen R
 Internal validity of regimen R

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 5757

Applying E to E
 E:(WT) - evaluation of transforming W into T
 <{W:(WT), T:(WT), H:(WT), R:(WT)},

{W:(WT)T:(WT), T:(WT)H:(WT),
H:(WT)R:(WT),
R:(WT)*W:(WT)T: (WT)}>

 Evaluation of (for example)
 The quality of the theory derivation process for E

E:(TH) - evaluation of deriving H from T
 <{W:(TH), T:(TH), H:(TH), R:(TH)},

{W:(TH)T:(TH), T:(TH)H:(TH),
H:(TH)R:(TH),
R:(TH)*W:(TH)T:(TH)}>

 Evaluation of (for example)
The quality of the hypothesis derivation process for E

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 5858

Applying E to E
 E: (HR) - evaluation of deriving R from H
 <{W:(HR), T:(HR), H:(HR), R:(HR)},

{W:(HR)T:(HR), T:(HR)H:(HR),
H:(HR)R:(HR),
R:(HR)*W:(HR)T:(HR)}>

 Evaluation of (for example)
 The quality of the regimen derivation process for E
 Construct and internal validity

 E: (R*WT) - evaluation of applying R and reconciling T
with reality
 <{W:(R*WT), T:(R*WT), H:(R*WT), R:(R*WT)},

{W:(R*WT)T:(R*WT), T:(R*WT)H:(R*WT),
H:(R*WT)R:(R*WT),
R:(R*WT)*W:(R*WT)T:(R*WT)}>

 Evaluation of (for example)
 The quality of the process for applying R and reconciling T with reality
 External validity

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 5959

E:E – The Full View
E:E W T H R W T

W W:W W:T W:H W:R W:(WT)

T T:W T:T T:H T:R T:(WT)

H H:W H:T H:H H:R H:(WT)

R R:W R:T R:H R:R R:(WT)

W T W:WT:W W:TT:T W:HT:H W:RT:R W:(WT)T:(WT)

T H T:WH:W T:TH:T T:HH:H T:RH:R T:(WT)H:(WT)

H R H:WR:W H:TR:T H:HR:H H:RR:R H:(WT)R:(WT)

R * W T R:W*W:WT:W R:T*W:TT:T R:H*W:HT:H R:R*R:MT:R R:(WT)*W:(WT)T:(WT)

T H H R R * W T

W:(TH) W:(HR) W:(R*WT)

T:(TH) T:(HR) T:(R*WT)

H:(TH) H:(HR) H:(R*WT)

R:(TH)} R:(HR) R:(R*WT)

W:(TH)T:(TH) W:(HR)T:(HR) W:(R*WT)T:(R*WT)

T:(TH)H:(TH) T:(HR)H:(HR) T:(R*WT)H:(R*WT

H:(TH)R:(TH) H:(HR)R:(HR) H:(R*WT)R:(R*WT)

R:(TH)*W:(TH)T:(TH) R:(HR)*W:(HR)T:(HR) R:(R*WT)*W:(R*WT)T:(R*WT)

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 6060

Where are We?
 Two simple theories (D and E) and their models have been

sufficient to lay out the space of SE and SE Research
 SE -- D, E:D and E:(E:D)
 SE Research – D:D, E:(D:D), E:(E:(D:D))

 I leave E:(E:(D:D)) as an exercise for the reader
 Where do E and E:E fit in?

 Even with the simplest of theories and models the
compositions of these theories and models becomes very
complex
 E:(E:D) has 384 objects and mappings
 E:(D:D) has 288 objects and mappings
 E:(E:(D:D) has 2304 objects and mappings

 Not Surprising – Brooks’ primary essential characteristic
of software systems is complexity

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 6161

More Complex Models
 Iterative D (ID) – extend D by adding 3 new mappings
 T T -- refine T
 M M -- refine M
 M T -- adjust T to better reflect M

 Refine ID’s M = A (architecture), D (design), and C (code)
 M is replaced by objects A, D, and C
 Add a new object S (system) and a mapping C S, and replace

M W with S W
 T M is replaced with T A, T D, T C
 M T is replaced with A T, D T, C T
 M M is replaced with

 A D, D C
 A A, D D, C C
 C A, D A, C D

 RID now has 6 objects and 21 mappings –
 much more complex
 Compositions even more so

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 6262

More Complex Models
 Empirical evaluations can be much more complex in

practice involving beyond our simple theory and model
 Elaborate instruments
 Independent and dependent variables
 Analyses of the application of the regimens, and the

instrumentation used to manipulate independent variables and
capture the values of the dependent variables

 Iteration refining hypotheses, regimens, variables,
instruments

 May need theories and models of various complexities,
depending on where and how we want to use them
 For example, the theory of E1 in E1:E2 might be a different

theory of evaluation (perhaps even simpler) than our initial E.

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 6363

Motivations
 Create a unifying theoretical basis for SE and SE

research
 Goes beyond this – a unifying theoretical basis for design

sciences
 Emphasize the centrality and criticality of empirical

evaluations in SE and SE research
 Understanding of empirical considerations is particularly weak

in SE research – needs serious improvement
 A more explicit, systematic and deeper approach to empirical

evaluations in SE would improve systems significantly
 Interestingly, some of the latest salvations du jour implicitly

emphasize some empirical evaluations – should be explicit
 Emphasize the centrality and criticality of theory in both

SE and SE research
 If there at all, implicit – needs to be explicit and central

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 64© 2000-present, Dewayne E Perry

Summary
 Small, simple theories D and E form the basis for laying

out a very rich space and an underlying theoretical
foundation for SE, SE research, and other design
disciplines
 Compose D and E into more complex theories to extend and

illuminate the space for design disciplines
 Useful properties
 Regularity among the various theories
 Levels of abstraction (stratification) within the composed

theories providing
 Intuitive high level abstractions
 Explicit low level detailed abstractions

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 6565

Future Work
 Explore D:E and D:(E:E) and hence D:(E:D), D:(E:(D:D))
 Designs for evaluating technology and design decisions

 Especially, constructs and construct validity issues for
technology and design decisions

 We intuitively know X is better than Y, but are seriously
deficient in appropriate observable and measureable constructs

 Adapting physical and behavioral designs for use in evaluating
SE issues.

 Explore the problems and issues in using computers in
empirical evaluations as both subjects and instruments

 Explore the utility of various levels of theory complexity
 Do an extensive literature categorization
 To validate my theory and model composition approach
 Illuminate areas that need to be addressed in SE and SE

research

382C Empirical Studies in Software Engineering Lecture 3

© 2000-present, Dewayne E Perry 6666

Ultimate Goals
 For this course:
 Relate papers evaluated to my taxonomic space
 Place project within that taxonomic space as well

 For my continued research in a unifying foundation for SE
 Further explore and explicate the spaces delineated
 Populate these spaces with examples for SE and empirical

literature
 To delineate examples of these spaces
 To provide a validation of the utility of this approach

 Monographs and papers to illustrate the results of this
research

 Perhaps a grad course to go deeper into this research
 Hope: the field recognizes the critical importance of the

need for explicit delineation of the theory underlying our
work and the need for systematic and rigorous empirical
evaluation

