
382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 1 © 2000-present, Dewayne E Perry

A Theory about the Structure of GTSEs

Dewayne E Perry
ENS 623

Perry@ece.utexas.edu

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 2 2

Separation of Concerns
 An important separation of concerns – distinguish between
 Theories about software engineers (SEs)

 As people (individual or in teams), as designers, as creators, as
programmers, as architects, as engineers, etc

 How people and teams interact, cooperate to create and evolve
software systems

 Cognition is located here
 Theories about software engineering (SEing)

 The actual crafting and engineering of software systems
 The structure of the artifacts
 How to create and evolve them
 Techniques and structures to manage complexity is here

 Theories about software project management (SPM)
 Managing software engineers and software engineering
 How to best organize and assign people given resources
 Managing project resources, roles, etc

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 3 3

Separation of Concerns
 Theories about the relationship between the theories of

software engineers and software engineering
 Eg, various cognitive issues for SEs are related to various

principles and structures used in SEing
 Theories about the relationships between theories of project

management, software engineers, and software engineering
 Eg, SPM is concerned about the utility and effectiveness of SEs

and the progress, quality and cost of SEing
 Eg, PM metrics and productivity of SEs
 Eg, SE roles and responsibilities wrt SEing artifacts

 I am primarily interested in Theories about Software

Engineering
 But ultimately will want to compose?/integrate? theories

of SE, SPM, SEing, SE-SEing, and SPM-SE-SEing

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 4 © 2000-present, Dewayne E Perry

Background
 Software Engineering
 A broad complex field
 Fundamental software engineering principles:

 Modularity
 Encapsulation
 Abstraction
 Separation of concerns

 These principles should apply to General Theories of
Software Engineering (GTSEs) as well
 GTSE will also be complex

 SEMAT 2013 – one result of the discussion
 Just as our software systems are component-based, multi-

level, we need to think about a multi-level GTSE
 SEMAT 2014 – Wieringa’s paper
 Argues for a variety of “middle-range” theories rather than

one grand theory

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 5 5

Our Theory
 Using the Perry/Wolf architecture metaphor
 http://users.ece.utexas.edu/~perry/work/papers/swa-sen.pdf

 Proposed architectural structure of a GTSE
 Component theories

 Major components – for example
 Business Strategy and Economics
 Software Project Management
 Software Engineers
 Software Engineering

 Connector theories
 Relationships and interdependencies among component theories –

for example
 Cognition – a critical element of a theory about software engineers
 Structural complexity – a critical element in theory of components
 A connector theory would delineate the relationship between the two

• Eg, see Bill Curtis et al, “Measuring the psychological complexity of software
maintenance tasks with the Halstead and McCabe metrics.” IEEE Transactions
on Software Engineering, 5 (2), 96-104. (1979)

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 6 6

An Example Overview of Components
 Business Strategy and Tactics – Economics
 The business folks can address these issues – for example
 Core competencies
 Market windows
 Perceived demand
 Costs and profit

 Project Management – possible components
 Planning

 Effort Estimation
 Resource Costs
 Project Planning
 Project Constraints

 Resource Allocation
 Monitoring and Metrics

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 7 7

An Example Overview of Components
 Software Engineers – some component theories

 As Individuals

 Basic skills
 Programmers as knowledge-based understanders
 Distributed cognition in software teams

 Training, education, and experience
 Judgment

 As Members of Teams
 Team formation
 Team structure

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 8 8

An Example Overview of Components
 Software Engineering – some component theories
 Software Architecture

 Components – capturing computation
 Connectors – capturing interactions and relationships

 UML Diagrams – captures design level
 Classes
 Relationships

 Model Driven Engineering (MDE)
 Metamodels
 Compositions

 Software Product Lines
 Features
 Feature Interactions

 Software Design in general
 Satisfiability problems

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 9 9

Examples of Connector Theories
 A Relationship between software engineers and software

engineering: cognition, complexity, and software structure
 Software structure – extremely complex
 Complexity: partly structural, partly cognitive (cf Curtis)

 Primary issue: relationship and interdependency between
 Cognitive load
 Program structure

 Curtis et al provide a connector theory
 SE techniques to reduce or manage complexity

 Structured programming
 Modularity
 Encapsulation
 Abstraction

 Parameterization
 Information hiding

 [OO captures these three in Classes]

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 10 10

Examples of Connector Theories
 Techniques reduce cognitive load

 Simplify similar pieces of code
 Reduces amount of code where there is pervasive use of

abstraction
 Simplifies interfaces
 Provides intuitive organization

 Project Planning and Software Engineer Estimates
 Software Engineers where multiple hats

 A designer hat and an estimator hat among them
 Project Planning requires estimates as to how much time is

needed for a particular activity
 There are two forms of time: race time & lapse time

 SEs tend to think in race time
 Project Planners tend to think in lapse time
 Our studies in 5ESS showed a factor of 2.5 difference there

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 11 11

Summary
 A full GTSE is analogous to a very large complex system
 Needs to be decomposed into pieces
 Modularity, encapsulation, and abstraction are needed
 Multi-level architecture is an appropriate model

 Our theory about the architectural structure of a GTSE
 Component theories to capture domain specific theories
 Connector theories to capture inter-relationship theories
 Hierarchical decompositions to refine complex component and

connector theories – ie, recursively refine and explicate
 We have illustrated our theory with examples

 Our the simple elegance of this approach provides two

basic elements to be used recursively to expand the full
space of general theories of software engineering.

	A Theory about the Structure of GTSEs
	Separation of Concerns
	Separation of Concerns
	Background
	Our Theory
	An Example Overview of Components
	An Example Overview of Components
	An Example Overview of Components
	Examples of Connector Theories
	Examples of Connector Theories
	Summary

