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Separation of Concerns 
 An important separation of concerns – distinguish between 
 Theories about software engineers (SEs) 

 As people (individual or in teams), as designers, as creators, as 
programmers, as architects, as engineers, etc 

 How people and teams interact, cooperate to create  and evolve 
software systems 

 Cognition is located here 
 Theories about software engineering (SEing) 

 The actual crafting and engineering of software systems 
 The structure of the artifacts 
 How to create and evolve them 
 Techniques and structures to manage complexity is here 

 Theories about software project management (SPM) 
 Managing software engineers and software engineering 
 How to best organize and assign people given resources 
 Managing project resources, roles, etc 
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Separation of Concerns 
 Theories about the relationship between the theories of 

software engineers and software engineering 
 Eg, various cognitive issues for SEs are related to various 

principles and structures used in SEing 
 Theories about the relationships between theories of project 

management, software engineers, and software engineering 
 Eg, SPM is concerned about the utility and effectiveness of SEs 

and the progress, quality and cost of SEing 
 Eg, PM metrics and productivity of SEs 
 Eg, SE roles and responsibilities wrt SEing artifacts 

 
 I am primarily interested in Theories about Software 

Engineering 
 But ultimately will want to compose?/integrate? theories 

of SE, SPM, SEing, SE-SEing, and SPM-SE-SEing 
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Background 
 Software Engineering 
 A broad complex field 
 Fundamental software engineering principles: 

 Modularity 
 Encapsulation 
 Abstraction   
 Separation of concerns 

 These principles should apply to General Theories of 
Software Engineering (GTSEs) as well 
 GTSE will also be complex 

 SEMAT 2013 – one result of the discussion 
 Just as our software systems are component-based, multi-

level, we need to think about a multi-level GTSE 
 SEMAT 2014 – Wieringa’s paper 
 Argues for a variety of “middle-range” theories rather than 

one grand theory 
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Our Theory 
 Using the Perry/Wolf architecture metaphor 
 http://users.ece.utexas.edu/~perry/work/papers/swa-sen.pdf 

 Proposed architectural structure of a GTSE 
 Component theories 

 Major components – for example 
 Business Strategy and Economics  
 Software Project Management 
 Software Engineers 
 Software Engineering 

 Connector theories 
 Relationships and interdependencies among component theories – 

for example 
 Cognition – a critical element of a theory about software engineers 
 Structural complexity – a critical element in theory of components 
 A connector theory would delineate the relationship between the two 

• Eg, see Bill Curtis et al, “Measuring the psychological complexity of software 
maintenance tasks with the Halstead and McCabe metrics.” IEEE Transactions 
on Software Engineering, 5 (2), 96-104. (1979) 
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An Example Overview of Components 
 Business Strategy and Tactics – Economics 
 The business folks can address these issues – for example 
 Core competencies 
 Market windows 
 Perceived demand 
 Costs and profit 

 
 Project Management – possible components 
 Planning 

 Effort Estimation 
 Resource Costs 
 Project Planning 
 Project Constraints 

 Resource Allocation 
 Monitoring and Metrics 
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An Example Overview of Components 
 Software Engineers – some component theories 

 
 As Individuals 

 Basic skills 
 Programmers as knowledge-based understanders 
 Distributed cognition in software teams 

 Training, education, and experience 
 Judgment 
 

 As Members of Teams 
 Team formation 
 Team structure 
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An Example Overview of Components 
 Software Engineering – some component theories 
 Software Architecture 

 Components – capturing computation 
 Connectors – capturing interactions and relationships 

 UML Diagrams – captures design level 
 Classes 
 Relationships 

 Model Driven Engineering (MDE) 
 Metamodels 
 Compositions  

 Software Product Lines 
 Features  
 Feature Interactions 

 Software Design in general 
 Satisfiability problems 
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Examples of Connector Theories 
 A Relationship between software engineers and software 

engineering: cognition,  complexity,  and software structure 
 Software structure – extremely complex 
 Complexity: partly structural, partly cognitive (cf Curtis) 

 Primary issue: relationship and interdependency between  
 Cognitive load 
 Program structure 

 Curtis et al provide a connector theory 
 SE techniques to reduce or manage complexity 

 Structured programming 
 Modularity 
 Encapsulation 
 Abstraction 

 Parameterization 
 Information hiding 

 [OO captures these three in Classes] 
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Examples of Connector Theories 
 Techniques reduce cognitive load 

 Simplify similar pieces of code 
 Reduces amount of code where there is pervasive use of 

abstraction 
 Simplifies interfaces 
 Provides intuitive organization 

 
 Project  Planning and Software Engineer Estimates 
 Software Engineers where multiple hats 

 A designer hat and an estimator hat among them 
 Project Planning requires estimates as to how much time is 

needed for a particular activity 
 There are two forms of time: race time & lapse time 

 SEs tend to think in race time 
 Project Planners tend to think in lapse time 
 Our studies in 5ESS showed a factor of 2.5 difference there 
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Summary 
 A full GTSE is analogous to a very large complex system 
 Needs to be decomposed into pieces  
 Modularity, encapsulation, and abstraction are needed 
 Multi-level architecture is an appropriate model 

 Our theory about the architectural structure of a GTSE 
 Component theories to capture domain specific theories 
 Connector theories to capture inter-relationship theories 
 Hierarchical decompositions to refine complex component and 

connector theories – ie, recursively refine and explicate 
 We have illustrated our theory with examples 

 
 Our the simple elegance of this approach provides two 

basic elements to be used recursively to expand the full 
space of general theories of software engineering.  
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