
382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 1 © 2000-present, Dewayne E Perry

A Theory about the Structure of GTSEs

Dewayne E Perry
ENS 623

Perry@ece.utexas.edu

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 2 2

Separation of Concerns
 An important separation of concerns – distinguish between
 Theories about software engineers (SEs)

 As people (individual or in teams), as designers, as creators, as
programmers, as architects, as engineers, etc

 How people and teams interact, cooperate to create and evolve
software systems

 Cognition is located here
 Theories about software engineering (SEing)

 The actual crafting and engineering of software systems
 The structure of the artifacts
 How to create and evolve them
 Techniques and structures to manage complexity is here

 Theories about software project management (SPM)
 Managing software engineers and software engineering
 How to best organize and assign people given resources
 Managing project resources, roles, etc

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 3 3

Separation of Concerns
 Theories about the relationship between the theories of

software engineers and software engineering
 Eg, various cognitive issues for SEs are related to various

principles and structures used in SEing
 Theories about the relationships between theories of project

management, software engineers, and software engineering
 Eg, SPM is concerned about the utility and effectiveness of SEs

and the progress, quality and cost of SEing
 Eg, PM metrics and productivity of SEs
 Eg, SE roles and responsibilities wrt SEing artifacts

 I am primarily interested in Theories about Software

Engineering
 But ultimately will want to compose?/integrate? theories

of SE, SPM, SEing, SE-SEing, and SPM-SE-SEing

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 4 © 2000-present, Dewayne E Perry

Background
 Software Engineering
 A broad complex field
 Fundamental software engineering principles:

 Modularity
 Encapsulation
 Abstraction
 Separation of concerns

 These principles should apply to General Theories of
Software Engineering (GTSEs) as well
 GTSE will also be complex

 SEMAT 2013 – one result of the discussion
 Just as our software systems are component-based, multi-

level, we need to think about a multi-level GTSE
 SEMAT 2014 – Wieringa’s paper
 Argues for a variety of “middle-range” theories rather than

one grand theory

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 5 5

Our Theory
 Using the Perry/Wolf architecture metaphor
 http://users.ece.utexas.edu/~perry/work/papers/swa-sen.pdf

 Proposed architectural structure of a GTSE
 Component theories

 Major components – for example
 Business Strategy and Economics
 Software Project Management
 Software Engineers
 Software Engineering

 Connector theories
 Relationships and interdependencies among component theories –

for example
 Cognition – a critical element of a theory about software engineers
 Structural complexity – a critical element in theory of components
 A connector theory would delineate the relationship between the two

• Eg, see Bill Curtis et al, “Measuring the psychological complexity of software
maintenance tasks with the Halstead and McCabe metrics.” IEEE Transactions
on Software Engineering, 5 (2), 96-104. (1979)

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 6 6

An Example Overview of Components
 Business Strategy and Tactics – Economics
 The business folks can address these issues – for example
 Core competencies
 Market windows
 Perceived demand
 Costs and profit

 Project Management – possible components
 Planning

 Effort Estimation
 Resource Costs
 Project Planning
 Project Constraints

 Resource Allocation
 Monitoring and Metrics

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 7 7

An Example Overview of Components
 Software Engineers – some component theories

 As Individuals

 Basic skills
 Programmers as knowledge-based understanders
 Distributed cognition in software teams

 Training, education, and experience
 Judgment

 As Members of Teams
 Team formation
 Team structure

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 8 8

An Example Overview of Components
 Software Engineering – some component theories
 Software Architecture

 Components – capturing computation
 Connectors – capturing interactions and relationships

 UML Diagrams – captures design level
 Classes
 Relationships

 Model Driven Engineering (MDE)
 Metamodels
 Compositions

 Software Product Lines
 Features
 Feature Interactions

 Software Design in general
 Satisfiability problems

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 9 9

Examples of Connector Theories
 A Relationship between software engineers and software

engineering: cognition, complexity, and software structure
 Software structure – extremely complex
 Complexity: partly structural, partly cognitive (cf Curtis)

 Primary issue: relationship and interdependency between
 Cognitive load
 Program structure

 Curtis et al provide a connector theory
 SE techniques to reduce or manage complexity

 Structured programming
 Modularity
 Encapsulation
 Abstraction

 Parameterization
 Information hiding

 [OO captures these three in Classes]

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 10 10

Examples of Connector Theories
 Techniques reduce cognitive load

 Simplify similar pieces of code
 Reduces amount of code where there is pervasive use of

abstraction
 Simplifies interfaces
 Provides intuitive organization

 Project Planning and Software Engineer Estimates
 Software Engineers where multiple hats

 A designer hat and an estimator hat among them
 Project Planning requires estimates as to how much time is

needed for a particular activity
 There are two forms of time: race time & lapse time

 SEs tend to think in race time
 Project Planners tend to think in lapse time
 Our studies in 5ESS showed a factor of 2.5 difference there

382C Empirical Studies in Software Engineering Lecture 4

© 2000-present, Dewayne E Perry 11 11

Summary
 A full GTSE is analogous to a very large complex system
 Needs to be decomposed into pieces
 Modularity, encapsulation, and abstraction are needed
 Multi-level architecture is an appropriate model

 Our theory about the architectural structure of a GTSE
 Component theories to capture domain specific theories
 Connector theories to capture inter-relationship theories
 Hierarchical decompositions to refine complex component and

connector theories – ie, recursively refine and explicate
 We have illustrated our theory with examples

 Our the simple elegance of this approach provides two

basic elements to be used recursively to expand the full
space of general theories of software engineering.

	A Theory about the Structure of GTSEs
	Separation of Concerns
	Separation of Concerns
	Background
	Our Theory
	An Example Overview of Components
	An Example Overview of Components
	An Example Overview of Components
	Examples of Connector Theories
	Examples of Connector Theories
	Summary

