Science & Software Engineering

Dewayne E Perry ENS 623 Perry@ece.utexas.edu

The Scientific Method

"History of science is a story of a continuous attempt to use the scientific method to arrive at a rational comprehension of the world we live in and to construct a logically consistent picture of that world."

The Scientific Method

- * More a philosophical outlook that a single fixed procedure
- * Not one thing but many things
- * Explanatory, predictive, descriptive
- Arsenal of methods:
 - * Logical
 - * Mathematical
 - ***** Instrumentive

Some Characteristics of Science

- * Relies on methods of empirical enquiry
 - ***** Not armchair theorizing
 - * Not political/religious persuasion
 - * Not personal positioning
- * Characterized by
 - * Domain specific rhetoric, technical terms
 - * Various kinds of analyses
 - ***** Hypotheses and theories
 - * Methodological standards based on logic and experience
- * Goal for the course is to determine what is appropriate for empirical SWE

Some Characteristics of Science

- * A number of hidden assumptions or regulative principles
 - ***** Strict determinism
 - > Carry over from classical physics
 - > A causal law for every behavior/action
 - * Heisenberg: uncertainty, probabilistic
 - * Behavioral sciences:
 - > Not strictly deterministic, but variable
 - \checkmark Conscious events
 - \checkmark Voluntary decisions vary from person to person

* Explanations are based on observations

- \star A way of thinking
- * Relationships are perceptible in a way that has to make sense given accepted truths
- * Creativity is as important as in art
 - * Hypotheses, experimental designs
 - ***** Search for elegance, simplicity

Some Characteristics of Science

- * There are limits, boundaries eg,
 - * Cognitive capacity to visualize/express our experiences fully
 - ***** Natural limits bending elbow backwards
 - ***** Logical and temporal boundaries of certain empirical methods
 - ★ Some aspects of reality are always beyond the bounds of particular methods
- * All scientific enquiry is subject to error
 - ★ Be aware of it
 - * Study its sources in order to reduce it
 - **★** Eliminate/reduce the magnitude of such errors in our findings
- Sometimes success occurs only all the rules are broken and new rules created

Philosophy of Science

- & Logical Positivism:
 - *Separates discovery from validation
 - *Logical deduction, to link theoretical concepts to observable phenomena
 - *Scientific truth is absolute, cumulative, and unifiable
- * Popper:
 - Theories can be refuted, not proved;
 Only falsifiable theories are scientific
- * Campbell:
 - Theories are underdetermined;
 All observation is theory-laden & biased
- * Quine:

Terms used in scientific theories have contingent meanings
 Cannot separate theoretical terms from empirical findings

* Kuhn:

*Science characterized by dominant paradigms, punctuated by revolution

Philosophy of Science

- * Lakatos:
 - ***** Not one paradigm, but many competing research programs
 - \star Each has a hard core of assumptions immune to refutation
- * Feyerabend:
 - * Cannot separate scientific discovery from its historical context
 - ***** All scientific methods are limited;
 - * Any method offering new insight is okay
- * Toulmin:
 - **★** Evolving Weltanschauung determines what is counted as fact;
 - ***** Scientific theories describe ideals, and explain deviations
- * Laudan:
 - ***** Negative evidence is not so significant in evaluating theories.
 - * All theories have empirical difficulties
 - * New theories seldom explain everything the previous theory did

Postmodernism and Science

* Modernism

- * Rationality is the highest form of mental functioning
- ***** Modern science produces universal truths
 - > ...independent from the context and status of the scientist who produced them
- * Rationality will always lead to progress and perfection
 - > All human institutions can be scientifically analyzed and improved
- * Reason is the ultimate judge of what is right (true, legal, ethical,...)
- * Language must be rational
 - > It only exists to represent the real world;
 - > There must be a firm, objective connection between the "signifier" and the "signified"
 - > The meaning cannot depend on the audience

Postmodernism and Science

* Postmodernism

***** Questioning the grand narrative

- > A grand narrative is a story that a culture/society tells itself about it's practices and beliefs
- E.g. in the US: "democracy is the most enlightened/rational form of government"
- > E.g. in science: "scientific truths are universal and eternal"
- > Postmodernism identifies and critiques such narratives
- ***** Instead, look for mini-narratives
 - Stories that explain small practices, local events, situated, contingent behavior
 - > ...and don't make any claims about universality, truth, or stability
- * E.g. Literary Deconstruction
 - > Examine what a text does not say, what it represses
 - > Reveal internal arbitrary hierarchies and dichotomies
- \star E.g. Semiotics
 - > The study of the relationship between signs and the things they signify

Philosophy of Behavioral Science

- * 19th Century view of man as machine
 - * Study how it works, not why
 - ***** Detached curiosity akin to physics
 - * Value judgments, good/bad, personal feelings have no place
 - ***** Humans subject to mechanical laws
- * Period of uncertainty
 - ***** Loss of great hope: certainty
- * Change in outlook
 - * Experimental work of *artifact* researchers helped to change the face of much of behavioral science
 - * View of laws of human behavior as socio-culturally and temporally pluralistic
 - * Change is a given, a reflection of the inherent complexity and open-ended nature of ongoing active events and their contexts

Philosophy of Behavioral Science

- * Current new position and ideas
 - **★** Active, intentional nature of much of human behavior
 - * People are continuously engaged in the reconstruction of knowledge
 - ***** Researchers are active participants, not detached
 - * Multiple methods to uncover process-like, intentional nature of cognition and behavior
 - * Human phenomena acquire meaning as part of a wider sociohistorical context

Contextualism

- * SC Pepper, World Hypotheses: A Study of Evidence, Berkeley: UC Press, 1942
 - * Named Contextualism
 - * Human events are active, dynamic, developmental moments of a continuously changing reality
 - * Knowledge is embedded in an evolving context of time, space, culture and the local tacit rules of conduct
 - * The context of explanation is an integral part of both what is explained and how it is explained
 - * The scientific enterprise is a part of an evolving socio-historic context
 - * Analogy: a boat being reconstructed at sea, one board at a time
- * Contextualism: Attractive to behavioral scientists
 - ***** Interpreted as advocating methodological and theoretical pluralism
 - * Every method or theory is limited fallible in some way
 - * No single proper or complete or unlimited perspective on reality
 - * Obliged to search for multiple routes, each at a different level of analysis

Behavioral Sciences

- Umbrella concepts for fields traditionally grouped together
 Behavior of people in various contexts
 Differences in these various contexts
- * Traditional areas
 - * Cultural anthropology: most macro, societal systems
 - ***** Sociology: macro, relationships among groups
 - * Social psychology: micro, interpersonal behavior
 - * Personal psychology: most micro, traits, dispositions
- * Traditional differences in tactics
 - * Sociologists use questionnaires and survey sampling procedures
 - * Social psychologists prefer controlled experiments
 - ***** Borrowed from each other

Behavioral Sciences

- * Current trend more multiplistic
 - * Multiple methods of observation, explanation
 - * Interdisciplinary, more ecumenical
 - ***** New fields from combining methods/theories
- Not methodological behaviorism
 Not pure empiricism confined only to fully observable
 Allows cognitive functioning as legitimate
 Liberalizes what is analyzable
- * Methods differ but goals are the same
 - \star To describe and explain
 - \succ How and why people think the way the do
 - \succ How and why they feel and think about things

What is Engineering?

- Traditional View:
 Scientists...
 create knowledge
 study the world as it is
 are trained in scientific method
 design
 use explicit knowledge
 are thinkers
- * More realistic View Scientists... create knowledge are problem-driven seek to understand and explain design experiments to test theories prefer abstract knowledge but rely on tacit knowledge Both involve a mix of a

Engineers... apply that knowledge seek to change the world are trained in engineering

use tacit knowledge are doers

Engineers... create knowledge are problem-driven seek to understand and explain design devices to test theories prefer contingent knowledge but rely on tacit knowledge

Both involve a mix of design and discovery

Lecture 4

Lecture 4

Normal vs Radical design

* Normal design:

- * Old problems, whose solutions are well known
 - > Engineering codifies standard solutions
 - > Engineer selects appropriate methods and technologies
- * Design focuses on well understood devices
 - > Devices can be studies independent of context
 - > Differences between the mathematical model and the reality are minimal

* Radical design:

- * Never been done, or past solutions have failed
 - \succ Often the challenge is to deal with a very complex problem
- * Bring together complex assemblies of devices into new systems
 - > Such systems are not amenable to reductionist theories
 - Such systems are often soft: no objective criteria for describing the system
- * Examples:
 - * Most of Electrical Engineering involves normal design
 - * All of Systems Engineering involves radical design (by definition!)
 - ★ The part of S/W Eng concerned with human activities is radical design what else?

SE Weltanschauung

* Software-intensive systems

* software + hardware + human activity

>the human activity gives a system its purpose

- * RE is about discovering that purpose
- \star SE is about satisfying that purpose
- * Continuous Change
 - Introduction of new system changes the human activity
 - ★ People find new ways of using it

* Human Centered Development

★ Goal is to change human activities...

>...to make them more effective, efficient, safe, enjoyable, etc.

- ★ …rather than to design a new computer system
- * A Systems Perspective
 - ★ Treat relevant parts of the world as systems with emergent properties

- Multi-disciplinary approach
 - * Use whatever techniques seem useful

>Social, cognitive, mathematical,...

Design as Reflection

- * New designs arise in response to observed problems with existing ones
- * There is always an existing system!
- Form does not follow function
 - * Because we only understand the function properly in hindsight

* Multiple Viewpoints

- ★ Many stakeholders
- * Each model presupposes a viewpoint
- ★ All models are imperfect
- * Negotiation is central
 - Resolve conflicts between different stakeholders' goals
 - * Manage customer's expectations

Analogs in SWE

- * CS/SWE as empirical enquiry
 - ***** CS: study of phenomena surrounding computers
 - ***** SWE: study/practice of building software systems
- * Both experimental, but have unique forms of observation, experience
 - ***** CS/SWE: Building a new *machine* can be an experiment
 - > Poses a question to nature
 - > We observe and experience by
 - \checkmark Watching machine in operation
 - \checkmark Analyzing and measuring it
 - > Design artifacts that can be opened up and observed
 - > Relate structure to behavior and draw lessons
 - * SWE: Various forms of testing are experiments to test the theory (requirements) and its model (implementation)
 - > Independent and dependent variables
 - > Manipulations
 - > Data collection and analysis

Analogs in SWE

- * SWE doubly rich
 - * Machines/systems execute programs/processes
 - * People designing machines
 - * People using machines
 - * Processes are analogous to machines
 - > People use processes
 - > People execute processes

* Technology

- * Anthropology: families of systems, collections of systems
- * Sociology: systems in context
 - > Relationships among systems
 - > Centralized, distributed, networked
- * Social psychology: individual systems
 - \succ component interaction
- * Personal psychology: individual systems
 - > Characteristics

Analogs in SWE

- * People and processes
 - * Anthropology: projects and organizations
 - * Sociology: interactions among teams, projects, etc
 - ***** Social psychology: interactions
 - > People in teams
 - > People and technology
 - * Personal psychology: traits, dispositions
 - > Of developers and managers etc