
382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 1© 2000-present, Dewayne E Perry

Evaluating Empirical Studies

Dewayne E Perry
ENS 623

Office Hours: T/Th 11-12
322C – Spring 2005

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 2

Evaluation Outline
Review two studies

Look at the design and results of each paper
evaluate according to our guidelines for good and credible
studies

Use our own work

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 3

Review Papers
Software Fault Study

Perry and Steig, “Software Faults in Evolving a Large Real-
Time System: A Case Study”, ESEC93, Sept. 1993.

Time Study
Bradac, et al., “Prototyping a Process Monitoring
Experiment”, IEEE TSE, Sept. 1994.
Perry, et al., “People, Organizations, and Process
Improvement”, IEEE Software, July 1994.

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 4

Experimental Site
Large-scale, real-time software system
C Programming language, with some domain specific
languages
UNIX development environment
Feature is the unit of development
All changes via Change Management System (CMS)

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 5

Software Faults - Research Context
Error studies have usually been done in context of initial
and not evolutionary development
Interface errors studies of Perry/Evangelist showed the
importance of interface problems in evolutionary
development.

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 6

Software Faults - Research Question
Were application specific faults the critical problems in a
particularly faulty release?
What classes of faults were there and when were they
found?
How hard were they to find and fix?
What were their underlying causes?
What means could be applied to either prevent or
alleviate them?

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 7

Software Faults - Experimental Design
Two phase study

Investigate the entire set of faults
Investigate the largest subset (design and implementation)

Data capture from owners of faults when closed
Members of development part of team to design the survey
Development volunteers to review/pre-test the instruments

Management imposed limitations:
Strictly voluntary participation
Complete anonymity of responses
Completely non-intrusive

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 8

Software Faults - Phase 1
Problem categories:

previous, requirements, design, coding, testing environment,
testing, duplicates, no problems, other

Test phase when found:
capability test, system test, system stability test, alpha
test, released

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 9

Software Faults - Phase 1 Results
Response rate of 68%
34% development

requirements (5%), design (11%) and coding (18%)
25% testing

testing(6%) and environment (19%) problems
30% overhead

duplicates (14%) and no problems (16%)
11% other

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 10

Software Faults - Phase 1 Summary
Requirements, design and coding faults were found
throughout all testing phases
Majority of faults were found in system test and late in
the testing process
The evolution of large, complex software systems involves
a large overhead

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 11

Software Faults - Phase 2
Fault types (design and coding):

language pitfalls, protocol, low level logic, change
management system complexity, internal functionality,
external functionality, primitives misused, primitives
unsupported, change coordination, interface complexity,
design/code complexity, error handling, race conditions,
performance, resource allocation, dynamic data design,
dynamic data use, static data design, unknown interactions,
unexpected dependencies, concurrent work, other

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 12

Software Faults - Phase 2
Cost information

Ease of finding or reproducing the fault
Easy - could reproduce at will
moderate - happened some of the time
Difficult - needed theories to figure out how to reproduce
Very difficult - exceedingly hard to reproduce

Ease of Fixing the fault
Easy - less than a day
Moderate - 1-5 days
Difficult - 6-30 days
Very difficult - greater than 30 days

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 13

Software Faults - Phase 2
Root cause and solution

Underlying causes:
none give, incomplete/omitted requirements, ambiguous
requirements, incomplete/omitted design, ambiguous design,
earlier incorrect fix, lack of knowledge, incorrect modification,
submitted under duress, other

Means of prevention:
formal requirements, requirements/design templates, formal
interface specifications, training, application walk-throughs,
expert person/documentation, design/code currency, guideline
enforcement, better test planning, other

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 14

Software Faults - Analyses
Test for pair-wise independence

Chi-Square test:
if observed is the pairwise product, then the variables are
independent
if observed is not the pairwise product, then they are not
behaviorally independent

Example - using find and fix data (assume 1000 responses)
fix (e+m, d+vd) 784 216
find (e+m, d+vd) 909 713 (725) 196 (184)

91 71 (59) 20 (32)
None of the relationships were independent

means of prevention and ease of finding had least significant
dependence
root causes and means of prevention had most significant
dependence

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 15

Software Faults - Analyses
On the basis of the Chi-Square test, we concluded the
following were correlated:

costs and faults
costs and underlying causes
costs and means of prevention
underlying causes and means of prevention
interface and implementation faults

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 16

Software Faults - Results
Response rate of 68%
The variables were not independent of each other
Lack of information tended to dominate the underlying
causes
Knowledge intensive activities tended to dominate the
means of prevention
Informal means of prevention were preferred over formal
means
Interface faults were harder to fix than implementation
faults

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 17

Software Faults - Evaluation
Better empirical studies

Answers an important question
Yes: What are the significant development problems

Establishes principles
Yes: Knowledge issues are fundamental problems

Enables generating and refining hypotheses
Exposes a number of interesting problems

Cost effective
Inexpensive design/implementation
Expensive analysis (people intensive)

Repeatable
useful design; expect similar correlations, not same results

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 18

Software Faults - Evaluation
Credible interpretations –

Strengths in construct, internal and external validity
CV: Important variables
IV: Instrument created by developers themselves
IV: Random trial with developers
IV: Data from people who owned the fault solutions
EV: Release similar to other releases
EV: Commonly used language and environment
EV: Response rate of 68%

Limits/Weaknesses in construct, internal and external validity
CV: Find, Fix interpretation not identical
CV: Fault categories poorly structured (too many faults, etc)
IV: No post survey validation - only pre-survey
IV: Up to a year lapse between problem resolution and survey
IV: Analysis weakened by find/fix problem
IV: Interface/Implementation division not clean
IV: Effect of 32% not returned
EV: Single case study, single system
EV: Single domain

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 19

Software Faults - Evaluation
Credible interpretations - continued

Test hypotheses
Yes - refuted the hypothesis that application specific faults
were the critical faults

Adequate precision
Over two thirds results - significant set of responses
Three place precision is justified by the response volume
dependence/independence analysis
correlations of fault factors
comparison of interface and implementation faults

Available to public
Lack of absolute numbers
Basic data is not provided in paper, only summaries of analysis

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 20

Software Faults - Summary
Useful case study - answers important questions
Done within limitations of management constraints
Significant effect on internal development process
Important for research implications
Weaknesses in the survey instrument
Questions about generalizability

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 21

Time Studies
Three Studies (Iterations)

Longitudinal study of a single developer, single development
(Prototype ...)
Self-reporting study of multiple developers/developments
(People ...)
Direct observation of a subset of those developers (People
...)

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 22

Time Studies
Research Context

Single programmer studies usually in context of simple
problems
Few studies of programmers in the context of team
Few studies of programmers in the context of teams in
large-scale software development

Research Question (Hypothesis)
How does a developer spend his or her time in the context of
a team development as part of a large system development?
What effects do inter-team/personal dependencies have?
How much time is spent in communication?
How much time is spent in the relevant processes? Where?
How much time is lost for various reasons?

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 23

Time Studies - Phase 1
Specific null hypothesis:

A person is 100% effective (ie, race time = lapse time) in
the context of teams in large scale software development

Experimental Design
Longitudinal study
Retrospective reconstruction of 32 month development from
project notebooks and personal diaries.
Categorized time spent in the specific process activity:

working, documentation, rework, reworking documentation
Categorized how time was spent when not in process:

waiting on lab, expert, review, hardware, software,
documentation, other

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 24

Time Studies - Phase 1 DataTime Spent Early

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 25

Time Studies - Phase 1 DataTime Spent Later

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 26

Time Studies - Phase 1 Results
Race time / lapse time = .4
Blocking significant

long significant periods early in the process
short periods in the middle - least blocking here
short periods, large amounts of blocking late in the process

Process phenomenology
waterfallish early
iterative later

Provides an important basis for iteration to delve deeper
into the question of how developers spend their time.

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 27

Time Studies - Phase 2
Research Context

Refines phase 1
Vertical slice of multiple developers and developments

Research Questions (in addition to initial questions)
How significant was the Phase 1 study and where does its
significance lie?
How representative was the subject used in longitudinal
study?
Is blocking as significant a factor as in the initial study?

Experimental Design
Self-reporting instrument - finer resolution
Activity and state of work for each process step in
half/hours

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 28

Time Studies - Phase 2 Results
Confirmed race time / lapse time = .4
Longitudinal study congruent with self-reporting study
Blocked = context switching
Clarifies our understanding of how developers spend their
time
Raises questions about variance of self-reporting

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 29

Time Studies - Phase 3
Research Context

Self-reporting follow-on
A more detailed look at what developers do with their time

Research Questions (Hypothesis)
How valid was self-reporting

What are the variances in self-reporting?
How close is the correspondence between perception and reality

What is there that happens at a finer time resolution than
1/2 hour?

Experimental Design
Series of arranged full-day observations
Comparison of the observations with the self-reports

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 30

Time Studies: Phase 3 - Self-Report Fidelity

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 31

Time Studies: Phase 3-Unique Contacts PerDay

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 32

Time Studies: Phase 3-Nr of Msgs Per Day

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 33

Time Studies - Phase 3 Results
Delineates reliability of self-reporting

Self consistent but not uniform
20% variance between observed and report

Clarifies further our understanding of the how developers
spend their time

Significant amount of unplanned interruptions
75 minutes average per day in informal communication
importance of oral communication, avoidance of written

Importance of informal communications in development
processes

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 34

Time Studies - Evaluation
Better empirical studies

Answers an important question
Yes: how developers spend their time

Establishes principles
Yes: race/lapse time, informal interactions

Enables generating and refining hypotheses
Exposes a number of interesting problems

Cost effective
Varying costs - dependent on resolution desired
Effective for the results desired

Repeatable
useful design; expect similar correlations, not same results

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 35

Time Studies - Evaluation
Credible Interpretations

Strengths in construct, internal and external validity
CV: Complete data source over complete development
CV: Well-defined retrospective, self-reporting and observational
structures
CV: Established process vs state in process
IV: Congruency of results
IV: Established self-report consistency and range of variance
IV: Varying degrees of resolution
EV: People in team context in large-scale software development
EV: Entire life-cycle
EV: Common language and development environment

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 36

Time Studies - Evaluation
Credible Interpretations – continued

Limits/Weaknesses
CV: Blocked, context switching ambiguity
IV: Loss of details due to time passed
IV: Inaccuracy of self-reporting
IV: Observations effects
EV: Representativeness of application domain
EV: Cultural representativeness

Test hypotheses
Yes - refuted the hypothesis

Removal of alternative explanations
Exposed where critical problems were

Adequate precision
Differing degrees of resolution as needed

Available to public
Data in various useful forms or presentation

382C Empirical Studies in Software Engineering Lecture 7

© 2000-present, Dewayne E Perry 37

Time Studies - Summary
Race time / elapse time = .4
Blocking / context switching significant
Developers consistent, but not uniform, in self-reporting
Significant number of, and time spent in, informal
interactions

	Evaluating Empirical Studies
	Evaluation Outline
	Review Papers
	Experimental Site
	Software Faults - Research Context
	Software Faults - Research Question
	Software Faults - Experimental Design
	Software Faults - Phase 1
	Software Faults - Phase 1 Results
	Software Faults - Phase 1 Summary
	Software Faults - Phase 2
	Software Faults - Phase 2
	Software Faults - Phase 2
	Software Faults - Analyses
	Software Faults - Analyses
	Software Faults - Results
	Software Faults - Evaluation
	Software Faults - Evaluation
	Software Faults - Evaluation
	Software Faults - Summary
	Time Studies
	Time Studies
	Time Studies - Phase 1
	Time Studies - Phase 1 DataTime Spent Early
	Time Studies - Phase 1 DataTime Spent Later
	Time Studies - Phase 1 Results
	Time Studies - Phase 2
	Time Studies - Phase 2 Results
	Time Studies - Phase 3
	Time Studies: Phase 3 - Self-Report Fidelity
	Time Studies: Phase 3-Unique Contacts PerDay
	Time Studies: Phase 3-Nr of Msgs Per Day
	Time Studies - Phase 3 Results
	Time Studies - Evaluation
	Time Studies - Evaluation
	Time Studies - Evaluation
	Time Studies - Summary

