Experimental Design

Dewayne E Perry ENS 623 Perry@ece.utexas.edu

1

Problems in Experimental Design

Copyright © 2005 Creators Syndicate, Inc.

True Experimental Design

- * Goal: uncover causal mechanisms
- Primary characteristic: random assignment to sampling units
- * If not random, then only Quasi Experimental
- Without randomization, cannot rule out some systematic biases
- * Types of designs
 - * *Between subject designs*: sampling units are subjected to one treatment each
 - Within subjects designs: sampling units receive two or more treatments

The "No Effect" Hypotheses

- Special place to the test of the hypothesis that the treatment is entirely without effect
- Reason: in a randomized experiment, this test may be performed virtually without assumptions of any kind – ie, relying only on random assignment
- Contribution of randomization is clearest when expressed in terms of the test of no effect
 - * Does not mean that such tests are of greater practical importance
 - ★ It sets randomized and non-randomized aspects in sharper contrast
- * Whereas inferences in non-randomized experiments require assumptions

The "No Effect" Hypotheses

- * To say a treatment has no effect is to say that that each unit would exhibit the same value of the response whether assigned to treatment or to control
- A change in response indicates the treatment has some effect
- Will discuss later various tests of the significance and the size of effects

Alternative Hypotheses

- As opposed to the null hypothesis, experimental (alternative) hypotheses take a stand
 - * Different treatments behave differently (two tailed prediction)
 - * Predict what direction the expected differences take (one tailed)

Hypotheses and Theory

- Theory is a large scale map, different areas represent general principles
- Hypotheses are like small sectional maps, focus on specific areas
- * Conceptual similarities
 - * range from very explicit to very vague
 - ***** fall back on hidden assumptions, regulative principles
 - **★** Give directions to our observations
- Some hypotheses spring from experimental observations
 Don't know where they will go
- * Others from theory
 - * Conceptual hypotheses
 - ***** Rely on previous studies, theories

Creating Hypotheses

* Defining terms

- * For observations to have value, abstractions have to be concretized
- ***** Two types of definitions
 - > Operational: x is defined in terms of test y under conditions z
 - > Theoretical: abstract constructs used
- * At some point must be operational for the experiment
- * Hypotheses are predictive statements about the expected outcome
- * They call for a test and embed a conclusion
- * Explicit statements are *de rigueur*
- * When comparisons are predicted they have to be explicated

Stating the Hypothesis

- * Concomitant variation: X is a direct function of Y
- * Comparative: other things being equal
- * HO and H1 (null and alternative) are mutually exclusive and exhaustive
 - ***** Usually a specific HO and a general H1
 - * Try to reject HO

Hypothesis Testing Errors

- * 2 types of errors: I and II
 - Type I rejecting the null hypothesis when it is true
 Greater psychologically important risk
 - \succ Think there is a relationship when there is not
 - > Waste time in blind alleys
 - Type II accepting the null hypothesis when it is false
 Deny a relationship when there is one
 In effect, reject useful results

Variables

- * Independent and dependent
 - * Dependent: effect in which the researcher is interested
 - ***** Independent: cause of the effect
 - * Any event or condition can be conceptualized as either an independent of dependent variable
- * Concerned about the effects of X on Y
 - \star Ie, the causal effects of one on the other
 - ***** Both in the labs and in the field

- * No single or standard way of classifying variables
- * Useful categorization (not mutually exclusive):
 - * Biological
 - \succ Eg, affects of gender in mentoring developers
 - * Environmental
 - \succ Eg, schedule pressure and fault insertion
 - ***** Hereditary
 - > Eg, IQ effects on complexity
 - * Previous training and experience
 - \succ Eg, effects of first programming languages
 - * Maturity
 - > Eg, age and elegance of program structures

- * Manipulated variables
 - ***** If an experiment, one expects manipulation
 - ***** Intentional and systematic variation
- * Naturally occurring variables
 - * Manipulated by real life experience
 - ***** Eg, desk versus meeting inspections
 - * Context: normal of exceptional conditions
- * Static group variables
 - * Pre-existing groups with identified characteristics:
 - > Organismic variables: sex, age, weight, etc
 - > Status variables: education, occupation, marital status
 - > Attribute variables: diagnoses, personality traits, behaviors
 - * Cannot be manipulated but are selected to gain proper contrast groups

- * Analogous to experimental treatment
- * When used as a dependent variable, may make inferences as to how the group acquired its characteristics
 - > Eg, overweight lowers self-esteem
 - > Lower self esteem causes overweightness
- * Risk of causal inferences -
 - > Tempting but risky
 - > Dependent variable not an accurate descriptor
 - > At best an association, connection, relationship, correlation
 - > Example of weight/esteem experiments
 - ✓ Case 1: high calorie diet -> check esteem
 - Ethical problems
 - ✓ Case 2: overweight + low calorie -> raise esteem
 - Doesn't prove overweight, low esteem
 - ✓ Case 3: overweight + success -> lower weight
 - High esteem, low weight doesn't prove le/ow
 - ✓ Must be careful about the logic

- ***** Unidirectional paths
 - > Eg, height and self-esteem cannot switch
 - > Fixed by logic of antecedents and consequences
 - > Multiple variables: income, age -> truancy, discipline
 - ✓ Need 2x2 analyses
 - Question: does income discriminate truancy and discipline problems
- * One-way, non-causal enabling relationships
 - Eg, income IQ -> income
 - > But not vice versa
- \star Two-way, sequential causation
 - > Eg, success-failure and self-confidence
 - > Eg, baseball players slumps, hitting streaks
- * -> Causation established by experimentation
 - > Manipulation
 - > Using static variables is descriptive/relational
 - > But not experimental

- * Establishing levels of independent variables
 - ***** First decision: categorical or continuous
 - > Eg, age is continuous, sex is categorical
 - > If continuous data, whole range, dichotomous, or graduated
 - > Risky as information is lost
 - > May be theoretical reasons for categories
 - * If hypothesis is state in categorical terms, then should be consistent
 - * If a relationship, not appropriate to break into dichotomies or nominal categories if variable is continuous
 - > For theoretical or rational, not statistical reasons
 - ***** Examine how the levels of categories established
 - > Should be consistent with hypothesis
 - Possible groupings: extremes, ranges of categories, median split (as in IQ)

- ***** Continuous full-range distribution
 - > Sometimes linear correlations, sometimes not
 - > Eg, learning (perhaps), visual acuity (not)
- ***** Theory driven levels
 - > Hypothesis stated consistently with current theory
- ***** Strength of independent variable (magnitude of effect)
 - Extreme groupings tend to magnify effect
 - > Increasing magnitude may reduce generality
 - > Can more easily argue weaker to stronger (eg, stress) and have great generality
 - > Levels of independent variable should match hypothesis

Dependent Variables

- * Many possible flavors, literally thousands
- * Eg, learning new design techniques
 - ***** Direction of observed change
 - \star Amount of change
 - \star The ease with which change effected
 - ***** Persistence of changes over time
- * 2 general classes
 - ★ Diffusion fan out
 - \succ Eg, technology insertion and adoption
 - ***** Hierarchical variations changes in ranking
 - > Eg, changing roles in organizational structures

Practical Application

- * Distinguish two kinds of control groups
 - * No treatment
 - > Ok for physical effects
 - > Problems where belief may confound
 - * Placebo
 - > Rule out belief effects
- * Practical decision is not easy which to use
 - ***** Question of greatest interest
 - * Experience or knowledge of the general area
 - * Easy to make mistakes in a new area

* Design 1

- ★ One shot case study: X O
- * H- M- I(NR) S-
 - > Deficient in terms of any reasonable controls
 - \checkmark History may be alternative explanation
 - Maturation not controlled for
 - \checkmark May be changes in instruments or judges
 - ✓ Unknown state of participants

> Instrumentation not a factor: no pre-measurement

- * Design 2
 - \star One group pretest: O X O
 - * Slight improvement, but no comparison

- * Design 3 Solomon Design
 - * True experimental, 4 group
 - > I ROXO
 - > II R X O
 - > III ROO
 - > IV R O
 - * H+ M+ I+ S+
 - > All well controlled for

- * Solomon provides elegant illustration of logic of control
 - * Pretest performance scores in I & III to estimate pretest scores in II & IV
 - > Requires a leap of faith even if scores the same
 - Even if differ greatly, II & IV could be equal to the mean of I & III
 - * Use estimated pre-test scores to enrich factorial analysis of variance of post test scores
 - * Tells us if any confounding of pre-test and treatment

- * Pre/post test effects:
 - \star I+ II- III+ IV-

* Experimental treatment effects:

- \star I+ II+ III- IV-
- * Pretest & X sensitization:
 - \star I+ II- III- IV-

* Pretest sensitization =

$$\left(\overline{Y}_{I}-\overline{Y}_{III}
ight)-\left(\overline{Y}_{II}-\overline{Y}_{IV}
ight)$$

* Extraneous effects:

 \star I+ II+ III+ IV+

- * External Validity
 - * All 3 suffer from the possible confounding of selection and treatment
 - ***** Design 3 Solomon:
 - > controls for confounding of treatment and pre-test sensitization
 - \star Design 4:
 - >I ROXO III ROO
 - > IV: H+ M+ I+ S+
 - Deficient in pre-test sensitization eg, problem in attitude change or learning experiments
 - * Design 5
 - >II R XO IV R O
 - > IV: H+ M+ I+ S+
 - > Avoids pretest sensitization issues

- * Within subjects designs
 - * Each subject receives all treatments in turn
 - * Useful in SWE/CS repeated measures design
 - ***** Advantages:
 - > Same number of subjects used more effectively
 - > Each sampling unit serves as its own control
 - > Can examine relationships longitudinally
 - ***** Difficulties:
 - Sensitization problems
 - ✓ Learning etc
 - > Order of treatments may produce differences in successive measures
 - ***** Another threat to IV in longitudinal studies
 - > Regression towards mean
 - \checkmark When linear relationship is imperfect
 - Eg, overweight people appear to lose weight, low IQs appear to become brighter
 - \checkmark Observed when variables consists of the same measure taken at two points in time and the correlation r < 1

- * Solve threat by standard Z score
 - * A raw score from which the sample mean has been subtracted and the difference then divided by the standard deviation
 - **★** Regression equation: $Z_Y = r_{XY}Z_X$
 - > The estimated score of Y is predicted from the XY correlation r times the standard score of X
 - > If there is a perfect correlation, the Z scores will be equivalent; otherwise not if r < 1