Quasi-Experimental Designs

Dewayne E Perry
ENS 623
perry@mail.utexas.edu
Non-random Assignments

- Random assignment not always possible
- Alternative approaches serve as approximations
- Quasi - same except for randomization
- Basic presumption: groups are non-equivalent
 - Result: internal validity threatened by a full range of threats
- Three classes of designs
 - Non-equivalent group designs
 - Interrupted time-series designs
 - Correlational designs
Non-equivalent Group Designs

- Most widely used in quasi experiments
- Pre/post measures on treatment/control
- Problem: expect subjects in different groups to differ because assignment not controlled
 - Must make assumptions about variables

Alternatives
- Randomization after assignment into treatment and control if sample mandated
- Match groups as closely as possible
- Non-volunteers as wait-list; compare against volunteers
- Compare different amount of treatments
Interrupted Time Series

- Effects of treatments are inferred
 - Compare outcome measures at different time intervals
 - A single data point for each point in time
 - Before and after treatment is introduced
 - A clear dividing line at the beginning of treatment
 - Four considerations
 - Need a sufficient number of data points
 - Same units throughout equally spaced
 - Sensitive to the particular effects being studied
 - Measurements should not fluctuate
Box-Jenkins Procedure

- **Auto-regressive integrated moving average**
- **Aim:** identify underlying model of serial effects
 - Abrupt change at point of treatment
 - Gradual constant changes in levels
 - Abrupt change but lasting only a short while – a pulse

- **Assumptions**
 - The series of observations must be stationary
 - Fluctuate around the mean rather than drift
 - Secular trend handled by differencing
 - $2 3 4 5 6 \rightarrow 1 1 1 1 1$
 - **Autocorrelation**
 - Dependence or independence of observations on each other
 - Regular: adjacent observations on one another
 - Seasonal: observations separated by a period
Single Case, Small N

- **N=1, single case**
 - Widely used to evaluate effects of behavioral control treatments
 - Widely use in SWE
 - Problematic to call these experimental – randomization not a consideration at all

- **Argument**
 - Subjects serve as own controls
 - Behavior monitored as treatment effects replicated over time
 - Changes in patterns of performance are basis for inferences about treatment
Single Case, Small N

- Start by establishing a behavioral baseline:
 - the continuous, continuing performance of a single individual
- Found niche for effects of clinical, counseling and educational interventions
- Prototype procedure: A B A (variant of AB)
 - A is pretreatment phase
 - B denotes introduction of independent variable
 - A treatment is withdrawn at the end and behavior measured
- Variants - non unambiguous wrt internal validity
 - A B BC B
 - to tease out effects of BC and B alone
 - A B A B
 - To emphasize positive effects of treatment variable
- Seldom report elaborate statistical analyses, but use good graphical representations
Cross-Lagged Panels

- Frequent in past, now employed with skeptical advocacy
- **Cross-lagged:**
 - a time series design
 - some data treated as temporarily lagged values of the outcome variable
- **Panel:** another name for longitudinal
 - Two motivations
 - Increase precision by measuring each subject in all conditions
 - Examine individuals change response over time
Cross-Lagged Panels

- Assumption: longitudinal measurements of same two variables (A, B) would provide information about causal relationship between them
- Hence: a method for choosing between competing causal hypotheses
Cross-Lagged Panels

- 3 sets of paired correlations
 - **Test-retest:** \(r_{A1A2}, r_{B1B2} \)
 - Indicates reliability of A and B over time
 - **Synchronous:** \(r_{A1B1}, r_{A2B2} \)
 - Reliability of relationship between A and B over time
 - **Cross-lagged:** \(r_{A1B2}, r_{B1A2} \)
 - Relationship between two sets of data points
 - Is A a stronger cause of B than B of A
 - Yes if \(r_{A1B2} \) is higher than \(r_{B1A2} \)
 - Eg, \(r_{A1B2} = 0.585 \) and \(r_{B1A2} = 0.405 \)
Cross-Lagged Panels

- Interpretability considered maximum when r values remain the same at each period
- However, seldom stationary
 - Temporal erosion
 - Attenuation leaves us with a residual effect
- Seldom reliable and clear cut
 - seldom a clear inference
Path Analysis

- Eg, violence in TV and aggression
 - Boys
 - Time periods 1960 and 1970
 - A1 and A2 - preference for violent TV
 - B1 and B2 - peer-rated aggression
 - $r_{A1A2} = 0.05$, $r_{B1B2} = 0.38$
 - $r_{A1B1} = 0.21$, $r_{A2B2} = -0.05$
 - $r_{A1B2} = 0.31$, $r_{B1A2} = 0.01$
 - Measures of aggression: who starts fights, takes others' things
 - Predictors of aggression: three favorite TV shows
 - Data indicates some not very reliable relationships
 - AB positive in 1960, negative in 1970
 - Test-retest only .05 for TV, .38 for aggression
 - Statistically a significant relationship between violent TV in 1960 and aggressive behavior in 1970 (.31)
 - Alternative causal pattern quite negligible (.01)
Cross-Lagged Panels

- **Plausible inferences**
 - Not possible to demonstrate a particular hypothesis is true
 - Possible to reject untenable hypotheses and narrow down rival explanations

- **A1 -> B2 – 5 plausible hypotheses**
 - **1**: A1 -> B1, A1 -> B2
 - Preferring to watch violent TV is a direct cause of aggressive behavior
 - \(r_{A1B1} = .21, r_{A1B2} = .31 \) is consistent with this
 - Low test-retest might be explained by different overtly violent activities in teens
 - **2**: A1 -> B1, B1 -> B2
 - Preference for violent TV stimulates children to be aggressive and carries over into teen years
 - Ruled out: correlation between A1B2 much higher than \(r_{A1B1} \times r_{B1B2} \)
Cross-Lagged Panels

★ 3: \(B1 \rightarrow A1, A1 \rightarrow B2 \)
 - Aggressive children prefer violent TV
 - Ruled out for reasons similar to above
 - \(r_{B1B2} \) much higher than product

★ 4: \(B1 \rightarrow A1, B1 \rightarrow B2 \)
 - Aggressive children are more likely to watch violent TV and to become aggressive teenagers
 - Not so easily rejected
 - Did a partial correlation
 ✓ Removed other influences:
 • \(A1 \) and \(B2 \) controlling for \(B1 \)
 ✓ Very close to original - .25 vs .31
 - Hence, implausible as complete causal explanation
Cross-Lagged Panels

★ 5: \(B1 \rightarrow A2, B1 \rightarrow B2 \)

- Early aggression causes both a weaker preference for violent TV as a teenager and a penchant to continue to be aggressive
- Rejected: needed cross correlation for this basis of rejection
 - \(r_{B1A2} = .01 \) was very close to comparison base

♦ Thus ruled out 2-5, leaving 1
 - Watching violent TV was a direct causal link to aggressive behavior in some viewers
Cohort Designs - Utility

- A wider set of longitudinal
 - Pure: one cohort followed over time
 - Mixed - several cohorts followed
- Age, time and cohort effects
 - Eg, believed that IQ increase to a maximum at age 30 and then declined
 - Confounded age and cohort effects
 - Cohort: different life experiences etc
 - Diachronic designs: changes in successive periods of time
 - Useful in uncovering relationships that remain shrouded in synchronic designs
Cohort Designs - Limitations

- Example of age and no religious affiliation of women in The Netherlands
 - Clearly cross-sectional conclusions cannot be correct
 - With full cohort data can do other analyses
 - Avoid fallacy of period centrism
 - One time period generalizable to another
 - Age effect: due to natural aging process
 - Time of measurement effect: impact of events on time that occur at points of measurement
 - Cohort effect: represents past history
Cohort Designs - Limitations

- Comparison where age, time and cohort effects are the major variables
 - Simple cross-sectional
 - Limitation: confounds age of subject with age of cohort
 - Simple longitudinal
 - Limitation: does not control for effects of history
 - Different results might be obtained using a different period of time
 - Cohort sequential
 - Takes into account age and cohort. But not the time of measurement fully
 - Time sequential
 - Does not take into account cohort
 - Cross-sectional
 - Does not take age fully into account

- Each has limitations
 - Hence best to employ a variety of methods