Quasi-Experimental Designs

Dewayne E Perry ENS 623 perry@mail.utexas.edu

Non-random Assignments

- * Random assignment not always possible
- * Alternative approaches serve as approximations
- * Quasi same except for randomization
- * Basic presumption: groups are non-equivalent
 - * Result: internal validity threatened by a full range of threats
- * Three classes of designs
 - * Non-equivalent group designs
 - ***** Interrupted time-series designs
 - * Correlational designs

Non-equivalent Group Designs

- * Most widely used in quasi experiments
- * Pre/post measures on treatment/control
- Problem: expect subjects in different groups to differ because assignment not controlled
 - ***** Must make assumptions about variables
- * Alternatives
 - * Randomization after assignment into treatment and control if sample mandated
 - ***** Match groups as closely as possible
 - * Non-volunteers as wait-list; compare against volunteers
 - ***** Compare different amount of treatments

Interrupted Time Series

- * Effects of treatments are inferred
 - ***** Compare outcome measures at different time intervals
 - \succ A single data point for each point in time
 - ***** Before and after treatment is introduced
 - > A clear dividing line at the beginning of treatment
 - \star Four considerations
 - > Need a sufficient number of data points
 - > Same units thru-out equally spaced
 - > Sensitive to the particular effects being studied
 - Measurements should not fluctuate

Box-Jenkins Procedure

- * Auto-regressive integrated moving average
- * Aim: identify underlying model of serial effects
 - ***** Abrupt change at point of treatment
 - ***** Gradual constant changes in levels
 - * Abrupt change but lasting only a short while a pulse
- * Assumptions
 - ***** The series of observations must be stationary
 - \succ Fluctuate around the mean rather than drift
 - > Secular trend handled by differencing
 - ✓ 23456→11111
 - * Autocorrelation
 - > Dependence or independence of observations o each other
 - > Regular: adjacent observations on one another
 - > Seasonal: observations separated by a period

Single Case, Small N

- * N=1, single case
 - * Widely used to evaluate effects of behavioral control treatments
 - ***** Widely use in SWE
 - * Problematic to call these experimental randomization not a consideration at all
- * Argument
 - ***** Subjects serve as own controls
 - > Behavior monitored as treatment effects replicated over time
 - Changes in patterns of performance are basis for inferences about treatment

Single Case, Small N

- * Start by establishing a behavioral baseline:
 - \star the continuous, continuing performance of a single individual
- * Found niche for effects of clinical, counseling and educational interventions
- * Prototype procedure: A B A (variant of AB)
 - \star A is pretreatment phase
 - ***** B denotes introduction of independent variable
 - \star A treatment is withdrawn at the end and behavior measured
- * Variants non unambiguous wrt internal validity
 - \star A B BC B
 - \succ to tease out effects of BC and B alone
 - * A B A B
 - > To emphasize positive effects of treatment variable
- Seldom report elaborate statistical analyses, but use good graphical representations

- * Frequent in past, now employed with skeptical advocacy
- * Cross-lagged:
 - ★ a time series design
 - ★ some data treated as temporarily lagged values of the outcome variable
- * Panel: another name for longitudinal
 - ★ Two motivations
 - > Increase precision by measuring each subject in all conditions
 - > Examine individuals change response over time

- Assumption: longitudinal measurements of same two variables (A, B) would provide information about causal relationship between them
- Hence: a method for choosing between competing causal hypotheses

- * 3 sets of paired correlations
 - ***** Test-retest: rA1A2, rB1B2
 - > Indicates reliability of A and B over time
 - ***** Synchronous: rA1B1, rA2B2
 - > Reliability of relationship between A and B over time
 - * Cross-lagged: rA1B2, rB1A2
 - > Relationship between two sets of data points
 - > Is A a stronger cause of B than B of A
 - > Yes if rA1B2 is higher than rB1A2

✓ Eg, rA1B2=.585 and rB1A2=.405

- Interpretability considered maximum when r values remain the same at each period
- * However, seldom stationary
 - * Temporal erosion
 - * Attenuation leaves us with a residual effect
- * Seldom reliable and clear cut
 - ***** seldom a clear inference

Path Analysis

- * Eg, violence in TV and aggression
 - * Boys
 - * Time periods 1960 and 1970
 - * A1 and A2 preference for violent TV
 - * B1 and B2 peer-rated aggression
 - * rA1A2=.05, rB1B2=.38
 - * rA1B1=.21, rA2B2=-.05
 - * rA1B2=.31, rB1A2=.01
 - * Measures of aggression: who starts fights, takes others' things
 - * Predictors of aggression: three favorite TV shows
 - * Data indicates some not very reliable relationships
 - > AB positive in 1960, negative in 1970
 - > Test-retest only .05 for TV, .38 for aggression
 - > Statistically a significant relationship between violent TV in 1960 and aggressive behavior in 1970 (.31)
 - > Alternative causal pattern quite negligible (.01)

- * Plausible inferences
 - * Not possible to demonstrate a particular hypothesis is true
 - * Possible to reject untenable hypotheses and narrow down rival explanations

* A1 -> B2 - 5 plausible hypotheses

- ★ 1: A1 -> B1, A1 -> B2
 - Preferring to watch violent TV is a direct cause of aggressive behavior
 - > rA1B1=.21, rA1B2=.31 is consistent with this
 - Low test-retest might be explained by different overtly violent activities in teens
- ★ 2: A1 ->B1, B1 -> B2
 - Preference for violent TV stimulates children to be aggressive and carries over into teen years
 - > Ruled out: correlation between A1B2 much higher than rA1B1 x rB1B2

* 3: B1 -> A1, A1 -> B2

- > Aggressive children prefer violent TV
- > Ruled out for reasons similar to above
- rB1B2 much higher than product
- * 4: *B1 -> A1, B1 -> B2*
 - > Aggressive children are more likely to watch violent TV and to become aggressive teenagers
 - > Not so easily rejected
 - > Did a partial correlation
 - ✓ Removed other influences:
 - A1 and B2 controlling for B1
 - $\checkmark\,$ very close to original .25 vs .31
 - > Hence, implausible as complete causal explanation

- * 5: *B1 -> A2, B1 -> B2*
 - > Early aggression causes both a weaker preference for violent TV as a teenager and a penchant to continue to be aggressive
 - > Rejected: needed cross correlation for this basis of rejection

✓ *rB1A2*=.01 was very close to comparison base

- * Thus ruled out 2-5, leaving 1
 - * Watching violent TV was a direct causal link to aggressive behavior in some viewers

Cohort Designs - Utility

- * A wider set of longitudinal
 - * Pure: one cohort followed over time
 - * Mixed several cohorts followed
- * Age, time and cohort effects
 - * Eg, believed that IQ increase to a maximum at age 30 and then declined
 - ***** Confounded age and cohort effects
 - > Cohort: different life experiences etc
 - **★** Diachronic designs: changes in successive periods of time
 - ★ Useful in uncovering relationships that remain shrouded in synchronic designs

Cohort Designs - Limitations

- Example of age and no religious affiliation of women in The Netherlands
 - * Clearly cross-sectional conclusions cannot be correct
 - ***** With full cohort data can do other analyses
 - > Avoid fallacy of period centrism
 - ✓ One time period generalizable to another
 - > Age effect: due to natural aging process
 - > Time of measurement effect: impact of events on time that occur at points of measurement
 - Cohort effect: represents past history

Cohort Designs - Limitations

- Comparison where age, time and cohort effects are the major variables
 - * Simple cross-sectional
 - > Limitation: confounds age of subject with age of cohort
 - ★ Simple longitudinal
 - > Limitation: does not control for effects of history
 - ✓ Different results might be obtained using a different period of time
 - * Cohort sequential
 - > Takes into account age and cohort. But not the time of measurement fully
 - ★ Time sequential
 - > Does not take into account cohort
 - * Cross-sectional
 - > Does not take age fully into account
- * Each has limitations
 - ***** Hence best to employ a variety of methods