Factorials, Blocking & Repeated Measures

Dewayne E Perry ENS 623 Perry@ece.utexas.edu

Factorial Design

- * Factorial design
 - * 2 or more factors
 - ***** Each with discrete values or levels
 - ***** all possible combinations of the levels across all factors
- * Enables the study of
 - ***** The effect of each factor on the dependent variable
 - * The effects of interactions between the factors on the dependent variable
- * Advantages
 - ***** Reduces the possibility of experimental error
 - ***** Reduces the possibility of confounding variables
- * Disadvantages
 - * Difficulties when more than two factors, or many levels

Comparing Multiple Conditions

	Psychotherapy				
Drug	present	absent	mean		
present	8[3]	4[3]	6[6]		
absent	4[3]	2[3]	3[6]		
mean	6[6]	3[6]	4.5[12]		

* Comparisons

- ***** Column means: effect of psychotherapy
- ***** Row means: effect of drug therapy
- ***** Number of observations for mean has doubled
- ***** Greater economy:
 - > Each condition or group contributes data to several comparisons

Analysis of Variance

* Can decomposed 4 basis means into

***** Grand mean

> (8 + 4 + 4 + 2)/4 = 4.5

* Residual/interaction effects of group membership

	group	mean	- 9	rand mean	=	residual effect
	PD	8	-	4.5	=	3.5
	D	4	-	4.5	=	-0.5
\succ	Ρ	4	-	4.5	=	-0.5
\succ	0	2	-	4.5	=	-2.5
\succ		18		18		0.0

***** Sum of residual effects is always zero

What Do We Learn

- Group Mean tells us general level of measurements
 Usually not of great interest
- * Row Effects
 - * Better to receive drug therapy than not
- * Column Effects
 - * Better to receive psychotherapy than not
- * Interaction effects
 - * Better to receive both than either
 - ★ Indication that it is better to receive neither than either is more than offset by row/column effects

Individual Differences

* Analysis so far does not tell quite the whole story

- ***** Does not take into account in various scores
- ***** Variability from mean deviations
- * Call these deviations errors
 - > Error = score group mean
 - > Large error: falls far from mean
 - > Small error: falls close to the mean
- ★ Score = grand mean + row effect + column effect + interaction effect + error

* Variance

- ***** Drug therapy and psychotherapy
 - \succ Large eta (.76), and significant (p = .012)
- ***** Interaction effect
 - Not trivial eta (.36), not close to statistically significant (p = .30)
 - > Important in two way and higher order analyses of variance
 - > Often misinterpreted

Interaction Effects

*
$$eta = \sqrt{SS_{between} / SS_{between} + SS_{within}}$$

- eta, like r, represents square root of proportion of variance accounted for
 - * But, eta is a very non-specific index of effect size when it is based on a source of variance with df > 1
 - * Eg, eta = .86 based on df = 3 is very large, but cannot say why it is large
 - ***** When df = 1, *eta* is identical with r
 - > Drug/psychotherapy: eta = r = .76
 - \succ Get all the ways of interpreting r
- While not significant (p = .30), eta is of promising magnitude (eta = r = .36)
- * We regard each effect size estimate as though it were the only one in the study
- * Remember that when r^2 or eta^2 exceeds 1.00
 - ***** .574 + .574 + .130 = 1.278

Testing Grand Mean

- * Lack of interest in the magnitude of grand mean
 - * In part due to arbitrary units of measurement often employed
- Sometimes, the constant of measurement may be of interest
 - ★ When we failed to replicate a relationship obtained in an earlier experiment; compare our sample of subjects with an earlier sample
 - * When dependent variable might estimate some skill that might or might not be better than chance
 - * When our dependent variable might already be a difference score eg, the difference between pre and post test
 - \succ GM is then a equivalent to a matched pair t test

Unequal Sizes

- For one-way or omnibus analysis of variance it does not matter if we have the same number of units per condition or not
- * For two-way or higher order analysis must take special care when number varies from condition to condition
 - ***** One possible approach:
 - > discard units til all conditions are equal
 - > Almost never justified
- * Multiple regression procedures available
 - * Yield identical results when sample sizes equal
 - * Vary substantially when samples sizes become increasingly unequal
 - * procedure here represents yields closer to the "fully simultaneous multiple regression method" (FSMR) recommended by Overall et al 75
 - * For factorial designs of any size, always having 2 levels per factor, yields results identical to FSMR

Higher Order Factorial Designs

- * So far dealt only with 2 way
- * Suppose current example had been done twice, once for females, once for males
 - * Benefits: more subjects, more comparisons
 - \star 2x2x2 factorial design = 2³ factorial
 - * 3 factors: drug, psychotherapy, gender
 - \star N = 2x2x2x3 = 24 if the same twice
 - * MSerror = 2.5, adjustment factor 1/3 = .833
- * General strategy
 - * Compute main effects first
 - \star Then two way interactions
 - > Ie, residuals when two contributing main effects are subtracted from the variation in the two tables
 - \star Then the three way interactions
 - > Ie, the residuals when the three main effects and the three two way interactions are subtracted from the total variation from the total variation among the 8 conditions

Higher Order Factorial Designs

- * Summary
 - * Effect sizes of .76, .76, and .36 are identical in earlier two way analysis
 - ***** F scores have all increases
 - \star p values are much smaller
 - > As we would expect: study size increased
 - ***** Tendency of gender to make some difference
 - > gender and drug interactions significant
- * Generalized strategy
 - * Eg four way factorial
 - > Construct all possible 2 and 3 way tables
 - Compute 4 main effects, 6 two way interactions, 4 three way interactions, and on four way interaction

Nature of Blocking

- * Remember one of the ways to increase power:
 - ***** Increase the size of the effect
- * One way to increase effect size
 - ***** Decrease the size of the within-group or error variation
- * Blocking does this increases precision
 - * Stratifying or subdividing of subjects/samples
 - ★ In such a way that those within a common block are more similar to each other on the dependent variable than they are to subjects/samples in another block/group

Nature of Blocking

* Example

- * Block according to anxiety level in study of new type of treatment
- * Measure anxiety level prior to treatment
- * Take top scores, randomly assign to T and C, iteratively
- ***** Anxiety hst lst h sum m 3 19 8 1 5 3 25 13 17 44 sum
- * Mean: T=3.8, C=5.0, GM=4.4
- \star Summary of sources

	SS	df	MS	F	р	eta
≻ T	3.60	1	3.60	10.29	.04	.85
> AB	77.40	4	19.35	55.29	.002	.99
≻ R	1.40	4	0.35			

* Comparison

- \succ Treatment effect is large and significant at p < .05
- > blocking variable effect even more so

Nature of Blocking

***** Omitting blocking

\triangleright	SS	df	MS	F	р	eta
≻T	3.60	1	3.60	0.37	.56	.21
> R	78.80	4	9.85			

***** Summary

- > Effect of treatment not very significant
- > But same mean squares
- Residual variance decomposed into a large between blocks component compared with the small one in the blocked
- Removes the large sources of variation known to be associated with the systematic pre-experimental differences among subjects

Benefits of Blocking

 Consider the size of the sample needed to achieve the same F ratio for blocked and unblocked analyses

 $reps = \frac{MS_{error_{unblocked}} \text{ (no. of blocks)}}{reps = (9.85 \times 5)/0.375 r_{block} 40.7}$

- * Would need 140 pairs in the unblocked experiment to reach the same F we have in our blocked with 5 pairs
- * But a difference in df and p: 4 and .04 vs 279.4 and .002
- To achieve the same significance level, would need 60.3 subjects/samples - a ratio of about 12 to 1 against blocked
- * Example designed to show dramatic effects of blocking
- the larger the correlation between the blocking variable and the dependent variable
 - \star the greater the benefits
 - \star the greater the precision

Blocking and Covariance

- * Analysis of covariance a special case of ANOVA
 - * observed scores adjusted for individual differences within conditions of
 - > some predictor variable, or
 - > some covariate known to correlate with the dependent variable
 - * typical covariate is the pretest administration of the same (or similar) test that is to be employed as the dependent variable
- * Detecting interactions
 - \star another benefit besides increasing precision
 - > detection of interactions between experimental and blocking variable
 - > usually in designs where each block has a number of replications for each treatment condition
 - * Example (Treatment, Control, Mean, Residual)
 - ➢ above 60: TM=6, CM=7 TR=.33, CR= -.33
 - ➤ 40-59: TM=3, CM=6 TR= -.67, CR=.67
 - > below 40: TM=6, CM=7 TR=.33, CR= -.33
 - > Middle age tend to benefit more than younger or older

Blocking and Covariance

- * Increasing precision
 - * Might have used ANOCVA instead of blocking
 - > Sometimes better at increasing precision
 - > Especially when pre and post test scores are highly correlated
 - > Special case of ANOVA when perfectly correlated
 - * Useful rules of thumb (Cox 57)
 - > Blocking better when correlation is .6 or less
 - > ANOCVA better when correlation .8 or more
 - \succ neither clearly better when correlation is between .6 and .8
 - * Blocking equally efficient for both linear and curvilinear; ANCOVA only when linear
 - * Blocking also useful when the blocks differ in qualitative rather than quantitative ways
 - * Blocking always imposes some cost in terms of loss of df for error.
 - > Cost usually small in relation to decreased MS error
 - if little reduction in MS error, can always unblock and recapture the lost df

Blocking and Repeated Measures

- * Remember matched pairs t test?
 - **★** Example of blocking: each pair of observations is a block
 - ***** simplest form of repeated measures design
- All repeated measures designs are examples of blocked designs
 - * the more positively correlated the successive observations on the same sampling units, the more we benefit from increased precision
 - > versus between subjects design
 - \succ typically get greatest precision when block on sampling unit itself

Blocking within Blocks

- Example: determining accuracy of decoding non-verbal clues from face, body, voice
 - * Repeated measures design
 - ★ 30 students, 60 clips, 20 of each
 - > might have face items over-represented in last half, eg
 - * Alternative: divide into 20 blocks of 3 each
 - randomly present one of each
 - > doesn't necessarily increase precision
 - > does eliminate possible confounding effects of the order of presentation
 - \succ does allow us to learn from blocks x channels interaction
 - ✓ extent to which differences change over time

Use of Repeated Measures

- * Between subjects designs
 - * Sampling units only observed once
 - * Variation based on individual differences between subjects
 - ***** subjects nested with in their treatment conditions
- * Within Subjects Designs
 - * very efficient to administer two or more treatments to same sampling units
 - * sampling units serve as their own control
 - * subjects crossed by treatment conditions
 - * the more correlated, the more advantageous this approach
- Intrinsic nature of experiment might call for repeated measures type of design
 - ***** effect of practice on learning a task
 - * effects in a longitudinal study of development
 - * series of tests or subtests for a variety of reasons
- * Simplest type: subjects measured twice
 - ***** compare scores under each condition
 - * use non-independent t test to compare correlation

Fixed and Random Effects

- * Distinction to help us employ the appropriate error term
 - * Fixed
 - > Selected particular levels of the factor
 - > Cannot generalize to other levels
 - Includes most factors involving experimental manipulations, various organismic variables and repeated measures factors
 - * Random
 - > Randomly sampled from population of levels
 - ✓ Most common is that of sampling units, especially people
- * In previous example
 - * If we regard between subjects as random
 - > We can test its significance only very conservatively
 - \star If we regard it as fixed
 - > Restrict inferences to this four subjects
 - > Can test subject factors against sessions × subjects interactions
 - * Will consider all combinations
 - Fixed and random
 - > For between and within subjects factors

Fixed and Random Effects

- * Examples
 - * 4 countries as our between sampling units factor
 - \succ If only interested in these 4, fixed
 - > If view as a sample from which we want to generalize, random
 - * Longitudinal design with a summary score for each country for each of 3 decades
 - > Scores are repeated measures, or within sampling units factors
 - > Regard as fixed if we have chosen them specifically
 - Regard as random if we view as samples from which to generalize
- * General principle that helps in determining the appropriateness of the error term
 - * The effect (fixed or random) we to test are properly tested by dividing MS for that effect by the MS for a random source of variation

Latin Squares

- * Consider three drugs and 4 patients
 - ***** Suppose each subject given three drugs in the same sequence
 - > Confound drug and order
 - > Suppose A is best
 - > Rival hypothesis is the first is best
 - ***** Use counterbalancing to avoid confounding
 - > Sequence is systematically varied
 - > Essential in organization and sequencing presentation
 - ✓ Primacy: opinions influenced by arguments presented 1st
 - $\checkmark\,$ Recency: opinions influenced by what is presented last

Latin Squares

- * Latin squares has counterbalancing built in
 - ***** Nr of rows equals the nr of columns
 - * The letter presenting treatments appears in each column and row only once
 - * Effects of treatment, order and sequence are isolated systematic counterbalancing

Order	1	2	3
seq 1	Α	В	С
seq 2	В	С	Α
sea 3	С	Α	В

Latin Squares

- * Analysis
 - * Sequence effects tell how sequencings differ
 - * Order effects tell how orders differ
 - ***** Where is the treatment effect in latin squares?
 - > In a 2 x 2 latin square, treatment effect is the sequence x order interaction effect
 - > Compares the two diagonals
 - > Sources of variation:
 - ✓ Sequences: 1 df
 - ✓ Orders: 1 df
 - ✓ Treatments (s x o): 1 df
 - ***** Significance testing is a problem
 - > No df available for error terms for the 3 sources of variation
 - Can use the mean of the MS 's of the other two in computing very conservative F 's
 - ★ As the size of the latin square increases, the df for an error term increases
 - > Get less conservative F 's
 - > More accurate in the sense of less Type II errors
 - > On average F 's will be too small

- * What if we have an unequal number of subjects and treaments?
- Useful strategies
 - ***** Multiple squares
 - * Rectangular arrays
- * Rectangular arrays
 - * Eg, 3 treatments and 6 subjects
 - > Could do two 3×3 squares
 - Could assign each subject a unique sequence of treatments since 3! = 6
 - **★** If 4 treatments, then would need 4! = 24 subjects
 - * Call such designs t x t ! designs (t = 2 is latin squares)
 - * Fewer than t ! sample units?
 - > Multiple latin squares
 - > Random assignment from t ! Sequences
 - ✓ Constraint: ensure maximum degree of balancing in the resulting samples
 - * More than t ! Sample units?
 - > Multiple rectangular arrays
 - > Subjects-within sequences designs

- * Subjects-within sequences Designs
 - ***** Suppose 2 x t ! Subjects
 - Could randomly assign half the subjects to each of two rectangular arrays
 - $\checkmark\,$ Treat each array as a different and replicated experiment
 - > Could randomly assign from t ! Sequences
 - ✓ Constraint: ensure maximum counterbalancing
 - ***** Suppose 18 subjects, 3 treatments
 - > 3! = 6, assign 3 subjects at random to each sequence
 - > Subjects are not confounded with sequence as in latin squares
 - > Subjects are nested within sequences so sequences can be tested

***** Noteworthy features of this design

- \succ More than a single error term in the design
 - ✓ Previously only one error term
 - ✓ Usually associate with differences among subjects
 - ✓ Have that: subjects within sequences
 - Used to test whether sequences differ from each other
 - Note: error is within conditions but between subjects
 - ✓ Other error term: orders x subjects within-sequences interaction
 - Test all within-subjects sources of variation
 - Is itself a within-subjects source of variation
 - Formed by crossing repeated measures factors by the random factor of sampling units

- To test for treatments, we must reach into the order x sequences interactions and pull out the variation of the treatment means around the grand mean
- > Analysis pretty much same as already discussed
 - ✓ Between-subjects SS is broken down into a sequences SS and a subjectswithin-sequences SS
 - ✓ Later is the difference between the between-subjects SS and the sequences SS
 - ✓ etc

3 or more Factors

- * So far considered only two factors
 - ***** Between-subjects factor
 - * Within-subjects or repeated measures factor
 - ***** Often have two or more of each
- * 2 or more between-subjects factors
 - * Does not increase complexity of the design as much increasing the number of within-subjects factors
 - * Eg, 4 subtests of personality test of three age levels and two genders

Fixed vs Random Factors

- * Examples so far have assumed that all factors other than subjects within conditions have been fixed
 - ***** The most common situation
- * Example:
 - ★ 5 f and 5 m teachers, 4 schools, teach lesson to 3 pupils, one designated as bright
 - ***** If fixed, 2 error terms
 - ***** If school is random factor, 5 error terms

Do repeated measures help?

- * Basic utility: subjects are their "own control"
- * High correlation yields advantages
- * If low correlations, little advantage
- * Note on Assumptions
 - * For F and t tests
 - > Independence of errors
 - > Homogeneity of variance
 - > Normality
 - ***** Additional needed for repeated measures
 - Homogeneity of correlation coefficients among the various levels of the repeated measures factors
 - Patterns of inter-correlations is consistent among various levels is consistent from level to level