Reliability & Errors

Dewayne E Perry ENS 623 Perry@ece.utexas.edu

1

Errors in Measurement

- * All measurements subject to fluctuations
 - * Affects reliability and validity
- * Reliability : constancy or stability
- * Validity : appropriateness or meaningfulness
- Reliability coefficient : degree that what is measure is free from measurement fluctuation
- Observer agreement coefficient : objectivity and repeatability of rating procedures
- * Random vs systematic errors
 - * Random: cancel out on average over repeated measurements
 - * Systematic: do not cancel out
- * Systematic errors are known as Biases
 - * Main concern of internal validity
 - \star Can compensate for known biases
 - > Eg, in astronomy, known biases of observations

Reliability Criteria

- * Principle criteria of test reliability
 - * Test-retest reliability
 - * Reliability of test components
 - > ie internal consistency
- * Stability (Test-Retest)
 - \star Temporal stability from one session to the next
 - * Problem: distinguishing between real change and the effect of memory
 - > Too short an interval between: memory effect possible
 - > Too long an interval: real changes may interfere
 - > May use changes to test sensitivity of tests

Reliability (of Test Components)

- * Internal consistency reliability
- * Depends on the average of Intercorrelations among all the single test items
- Coefficients of internal consistency increase as the number of test items goes up (if the new items are positively correlated with the old)
- The more items, the more internally consistent the test;
 if other relevant factors remain the same
 - * Not always the same for different length tests
 - ***** Boredom & fatigue can result in attenuation

$$R = \frac{nr}{1 + (n-1)\bar{r}}$$

- $\star R$ is the reliability coefficient
- $\star n$ is the factor by which the test is lengthened
- \star \overline{r} is the mean correlation among all items
- Suppose mean correlation is .50, determine reliability of test for twice, thrice:
 - * 2(.50)/[1+(2-1).50] = .667 increase R by a third * 3(.50)/[1+(3-1).50] = .75 - increase R by half
- * Other Tests
 - * Kuder-Richardson formula 20 (K-R 20)
 - > Used to measure internal consistency when items of the test are scored 1 if marked correctly, 0 otherwise
 - * Cronbach's alpha coefficient
 - Employ the use of analysis of variance procedures for estimating reliability of test components

Acceptable Reliability

- Need to evaluate whether low validity is due to low reliability
 - ***** If so can it be improved by adding items
- * What is the acceptable range of reliability?
 - * Depends on situation and nature of variable being measured
 - * For clinical testing R = .85 is considered as indicative of dependable psychological tests
 - \star In experimental research, accept much lower R
- * Problem:
 - * Reliability test reflects both individual differences and measurement fluctuations
 - * If everyone alike, the only differences are in error variations
 - * Hence, lower reliability where fewer differences
 - > Eg, IQ at highly selective where students are more similar than at a public university

Acceptable Reliability

- * Reliabilities of major psychological tests
 - * MMPI MN Multiphasic Personality Inventory
 - ***** WAIS Winchester Adult Intelligence Scale
 - ***** Rorschach inkblot test
- MMPI and Rorschach most widely used, WAIS used as control
- * Internal consistency all three acceptable
 - ***** WAIS R = .87, 12 studies with 1759 subjects
 - * MMPI R = .84, 33 studies with 3414 subjects
 - **\star** Rorschach R = .86, 4 studies with 154 subjects

Acceptable Reliability

- * Stability respectable scores
 - ***** Fewer studies available
 - ***** WAIS as .82 4 studies with total N = 93
 - * MMPI as .74 5 studies with total N = 171
 - * Rorschach as .85 2 with total N = 125
 - > WAIS/Rorschach difference not significant;
 - > MMPI/Rorschach and WAIS/MMPI difference is highly significant
- * Internal consistency usually higher than stability
- * Problem of inter-rater reliability
 - ★ Use test reliability measures to assess their aggregate internal consistency
 - * Arises in SWE in classifying faults, root causes, evaluating designs, reviewing papers, evaluating developers, etc

Effective Reliability of Judges

- Problem: correlation of .60 between the ratings of two judges tells us only the reliability of either single judge in this situation
- For aggregate or effective reliability, use approach as in "how many test items"
 - * Use *Spearman-Brown* where
 - \succ *n* is the number of judges and
 - > js the mean correlation among them
 - * Aggregate reliability of
 - > 2 judges: 2(.60)/[1+(2-1).60] = .75
 - > 3 judges: 3(.60)/[1+(3-1).60] = .82
 - \star The more judges, the higher the reliability
 - * Table 3.3 very useful for planning/analysis

% Agreement & Reliability

- * Many se percent agreement as an index of reliability
 - ***** A agreements and D disagreements
 - > %: [A/(A+D] × 100
 - > Net: [(A-D)/(A+D)] × 100
- Misleading fails to differentiate between accuracy and variability
- * Better use the product moment correlation phi
 - \star can be computed from the chi-square

ANOVA & Reliability

- * Sometimes need more than 2-3 judges
- * Excellent approach based on analysis of variance
 - * Tedious to do average of large number of correlations of previous approach
 - Assess how well judges are able to discriminate among sampling units (MS persons) minus the judge's disagreements (MS residuals) controlling for rating bias or main effect, divided by a standardizing quantity

$$R_{est} = \frac{MS_{persons} - MS_{residuals}}{MS_{persons}} \qquad \overline{r}_{est} = \frac{MS_{persons} - MS_{residuals}}{MS_{persons} + (n-1)(MS_{residuals})}$$

Replication & Reliability

- Reliability in research implies generalizability as indicated by replicability (repeatability) of the results
 - * Across time (test-retest reliability)
 - * Across different measurements, observers, or manipulations (reliability of components)
 - * Note that may not be possible to repeat and authenticate every observation with perfect precision

Replication Factors

- Same experiment can never be repeated
 At very least everyone is older
- * 3 important factors affect the utility of a replication as an indicator of reliability:
 - ***** When the replication is conducted
 - > Earlier better than later; 2nd doubles our info
 - \star How the replication is conducted
 - > The more imprecise, the more generalizability
 - * By whom is the replication conducted
 - > Independence is critical rule out pre-correlations
 - Selection and training considerations
 - > Correlated observers a critical problem in all fields

Statistical Analysis

* Rationale

- ★ Essential aspect of the rhetoric of justification in behavioral sciences evaluation, defense and confirmation of claims of truth
- ***** Traditional ways to shore up facts and inductive inferences
- ***** Imposes a sense of order and lawfulness
- * 4 problems in the methodological spirit of statistical data analysis
 - ***** Dichotomous decisions on significance
 - * Low power
 - ***** Significance as defining results
 - ***** Over emphasis on single studies

Statistical Analysis

- * Over reliance on dichotomous on significance testing decisions
 - * Anti-null if p is not greater than .05
 - * Pro-null if p is greater than .05
 - \star .05 α considered to be axiomatic: on the one side joy; on the other side ruin
 - ***** Comes from the fact we ought to avoid Type I errors
 - * A convenient and stringent enough fail safe standard
 - * Not axiomatic: strength of evidence is continuous on the magnitude of p
- Tendency to do many research studies in situations of low power
 - ★ Often ignore the extent to which the sample size is stacking the deck against themselves
 - * May be considered to be to complicated
 - * Seminal work of Cohen on Power in the 60s has resurfaced as an important issue

Statistical Analysis

- * Defining results in terms of significance alone
 - ***** Need to consider effect size estimation procedures
 - ***** Both when p is significant as well as when not significant
 - **★** Guides our judgment about sample size
 - * Significant p values should not be interpreted as reflecting large effects or the practical importance of the results
- * Over emphasis on single studies at the expense of accumulating results
 - * Accumulating results critical for increasing weight of evidence
 - * Evaluate impact on things other than p value use multiple criteria
 - * Make more use of meta-analysis
 - * Accumulate data via meta-analysis, not just results
 - ★ Often need to compute effect size and significance where it does not exist

Methodological Problems

- * 4 problems on methodological substance
 - ***** Omnibus tests
 - ***** Need for contrasts
 - ***** Misinterpretation of interaction effects
 - ***** Hidden nesting
- * Omnibus tests
 - \star In SWE, to much reliance on shotgun metrics
 - ★ Need to ask focused questions
 - ★ Focused test more relevant
 - Omnibus tests
 - > Of dubious practical or theoretical significance
 - > Effect size estimates are of doubtful utility
- * Need for contrasts
 - * Specific predictions are analyzed by comparing them to the data
 - **★** Temporal progression levels are emphasized in in contrast approach
 - ***** Increased statistical power results from contrasts
 - > Avoid Type II error

Methodological Problems

- * Misinterpretation of interaction effects
 - ***** Mathematical meaning of interaction effects is unambiguous
 - ***** But only a tiny fraction of results interpreted correctly
 - * May be due to lack of correspondence between the meaning of "interaction" in the analysis of variance model and its meaning in other discourse
- * Hidden nesting
 - ***** Concealed non-independence of observations
 - results from sampling without regard to sources of similarity in the persons sampled
 - ***** Significance and effect size estimation become problematic
 - ★ Samples too similar
 - > Usual assumptions underlying analysis do not hold
 - * Degrees of freedom fall somewhere between the number of people and the number of groups of people in the study

Re-Emphasis

- * There will almost always be two kinds of information we want to have for each of our research questions:
 - * The size of the effect and
 - ***** Its statistical significance
- * Magnitude of significance test = size of effect x size of study
 - ***** Significance will increase for any given size of study
 - * For any given size of effect and for any give size of study, there will be a corresponding test of significance
- * Much of the analysis we will look at is about how to determine these three elements in a study

Errors Revisited

* One reality

- * HO (Null Hypothesis) is True
- * H1 (Alternative Hypothesis) is False
- * There is no relationship, no difference, theory is wrong
- * We accept H0, reject H1
 - ★ Match reality
 - **\star** Confidence level: 1- α (eg, .95)
 - > The odds of saying there is no relationship or difference when in fact there is none
 - > The odds of correctly not confirming our theory
 - > Ie, 95 time out of 100 when there is no effect, we will say there is none.
- * Type I Error: we reject H0, accept H1
 - * Contradict reality say there is a relationship when there is none
 - **\star** Significance level: α (eg, .05)
 - > The odds of saying there is a relationship or difference when there is none
 - > The odds of confirming our theory incorrectly
 - \succ 5 times out of 100, when there is no effect, we will say there is
 - > We should keep this small when we can't afford/risk wrongly concluding our treatment works

Errors Revisited

- * The other reality
 - ★ HO (Null) is False
 - ★ H1 (Alternative) is True
 - * There is a relationship, is a difference, and our theory is supported
- * Type II Error: we accept H0, reject H1
 - * Contradict reality say there is no relationship when there is one
 - * β (eg, .20)
 - > The odds of saying there is no relationship or difference when in fact there is one
 - > The odds of not confirming out theory when it is true
 - \succ 20 times out 100, when there is an effect, we will say there isn't

* We accept H1, reject H0

- * Match reality
- ***** Power: $1-\beta$ (eg, .80)
 - > The odds of saying there is a relationship or difference when there is one
 - > The odds of confirming our theory correctly
 - > 80 times out 100 when there is an effect we will say there is
 - > We generally want this to be as large as possible

Decreasing Errors

- \ast Decrease Type I Error by setting a more stringent α
 - * Eg, .01 instead of .05
 - * Decreasing Type I increases the likelihood of Type II Error
- Decrease Type II Error by setting less stringent α
 ★ Eg, .10 instead of .05
- * Seek a balance between the two
 - * As Type I goes up, Type II goes down and vice versa

Purpose of Power Analysis

- * Planning of research
 - ***** Determine size of sample needed
 - **\star** To reach a given α level
 - * For any particular size of effect expected
- * Evaluation of research completed
- * Level of Power determined by
 - ***** Statistic used to determine the level of significance
 - **\star** Level of α selected, size of the sample, size of the effect
- * Increasing Power an be achieved by
 - * Raising the level of significance required,
 - ***** Reducing the standard deviation,
 - * Increasing the magnitude of the effect by using strong treatments, and
 - ***** Increasing the size of the sample

Example

- X compares OO programming against standard programming randomly assigning 40 programmers to use OO and 40 as the control group
 - \star The OO treatment programs have significantly fewer bugs
 - * Using t test (comparing means), t(78) = 2.21, p < .05
- * Y is skeptical and replicates X's work
 - ***** Assigns 10 programmers to each
 - * Results: *t* (18) 1.06, *p* > .30
 - * Y claims X results unrepeatable
- * Misleading conclusions
 - \star Y's results in the same direction as X's
 - * Y's effect size same as X's ($1/2\sigma = 2t / \sqrt{df}$)
 - * Y's sample size too small: X's power = .6, Y's power = .2

Effect Size (ES)

- * Effect Size: standardized measure of the change in the dependent variable as a result of the independent variable
- Standardization of effect size is done in the simplest case by dividing the change in the dependent measure by the standard deviation of the control group
- * If ES=1, the experimental and control results differ by 1 standard deviation
- * Effect Sizes are usually less than 1
- * Cohen 1988 argues
 - ***** Small effect size = 0.2
 - **\star** Medium effect size = 0.5
 - ***** Large effect size = 0.8
- Enables us to compare the effects in different studies of the same phenomena
- Enables us to combine results from different studies in meta-analyses

Example

* Comparison:

- * Treatment: 8 designers, design method X
- * Control: 8 designers, std design method Y
- * Results in terms of errors:
 - ★ Treatment: 56948376
 ★ Control: 101110998914
- * Means:
 - * Treatment: 6
 - * Control: 10
- * Standard deviations
 - * Calculate sum of squared deviations from the mean via shortcut formula:

Example

* Treatment:

- ***** Squares: 25, 36, 81, 16, 64, 9, 49, 36
- \star Sum = 48, sum of squares = 316
- ***** 316 2304/8 = 316 288 = 28
- * Std dev is $\sigma = \sqrt{(28/7)} = \sqrt{4} = 2$

* Control:

- * Squares: 100, 121, 100, 81, 81, 64, 81, 196
- * Sum = 80, sum of squares = 824
- ***** 824 6400/8 = 824 800 = 24
- ***** Std dev is $\sigma = \sqrt{(24/7)} = \sqrt{3.53} = 1.85$
- * Effect size d = mean 1 mean 2 / σ

* A very large effect (Cohen: 0.8 is a large effect)

Power Tables

- * Cohen 1969, 1977, 1988
 - * Comprehensive, elegant and useful discussion of power analysis in behavioral research
 - ★ Defines small, medium and large effects for 7 statistics from t to F
 - ***** Tables provide sample sizes vs power and significance

Neglect of Power

- Behavioral researcher faces a high risk of committing Type II errors
 - * For medium effect sizes and α = .05 the odds are better than 50:50 that the null hypothesis would not be rejected when its false
 - * Since Cohen's work, situation has gotten worse apparently
 - ***** Continue to work at low power
 - * Continue to rate Type I errors as more significant than Type II errors

Neglect of Power

- * Assessing relationship of Type I vs Type II errors
 - **\star** Use ratio β/α
 - > Remember β is the likelihood we will make a Type II error, α the likelihood of making a Type I error
 - * Eg, α = .05 and power = .40,
 - > β/α = .6/.05 = 12, ie Type I errors are considered to be 12 times more serious than Type II
 - * What would we need to do if we wanted α = .05 and power = .95, β/α = .05/.05 = 1
 - > ie, consider I & II equally serious