Reliability & Errors

Dewayne E Perry
ENS 623
Perry@ece.utexas.edu
Errors in Measurement

- All measurements subject to fluctuations
 - Affects reliability and validity
- Reliability: constancy or stability
- Validity: appropriateness or meaningfulness
- Reliability coefficient: degree that what is measure is free from measurement fluctuation
- Observer agreement coefficient: objectivity and repeatability of rating procedures
- Random vs systematic errors
 - Random: cancel out on average over repeated measurements
 - Systematic: do not cancel out
- Systematic errors are known as Biases
 - Main concern of internal validity
 - Can compensate for known biases
 - Eg, in astronomy, known biases of observations
Reliability Criteria

- **Principle criteria of test reliability**
 - Test-retest reliability
 - Reliability of test components
 - ie internal consistency
- **Stability (Test-Retest)**
 - Temporal stability from one session to the next
 - Problem: distinguishing between real change and the effect of memory
 - Too short an interval between: memory effect possible
 - Too long an interval: real changes may interfere
 - May use changes to test sensitivity of tests
Reliability (of Test Components)

- Internal consistency reliability
- Depends on the average of Intercorrelations among all the single test items
- Coefficients of internal consistency increase as the number of test items goes up (if the new items are positively correlated with the old)
- The more items, the more internally consistent the test; if other relevant factors remain the same
 - Not always the same for different length tests
 - Boredom & fatigue can result in attenuation
Spearman Brown Formula

\[R = \frac{n\bar{r}}{1 + (n-1)\bar{r}} \]

★ \(R \) is the reliability coefficient
★ \(n \) is the factor by which the test is lengthened
★ \(\bar{r} \) is the mean correlation among all items

Suppose mean correlation is .50, determine reliability of test for twice, thrice:
★ \(2(.50)/[1+(2-1).50] = .667 \) – increase \(R \) by a third
★ \(3(.50)/[1+(3-1).50] = .75 \) – increase \(R \) by half

Other Tests
★ Kuder-Richardson formula 20 (K-R 20)
 ➢ Used to measure internal consistency when items of the test are scored 1 if marked correctly, 0 otherwise
★ Cronbach’s alpha coefficient
 ➢ Employ the use of analysis of variance procedures for estimating reliability of test components
Acceptable Reliability

- Need to evaluate whether low validity is due to low reliability
 - If so can it be improved by adding items
- What is the acceptable range of reliability?
 - Depends on situation and nature of variable being measured
 - For clinical testing $R = .85$ is considered as indicative of dependable psychological tests
 - In experimental research, accept much lower R
- Problem:
 - Reliability test reflects both individual differences and measurement fluctuations
 - If everyone alike, the only differences are in error variations
 - Hence, lower reliability where fewer differences
 - Eg, IQ at highly selective where students are more similar than at a public university
Acceptable Reliability

- Reliabilities of major psychological tests
 - MMPI – MN Multiphasic Personality Inventory
 - WAIS – Winchester Adult Intelligence Scale
 - Rorschach inkblot test
- MMPI and Rorschach most widely used, WAIS used as control
- Internal consistency – all three acceptable
 - WAIS $R = .87$, 12 studies with 1759 subjects
 - MMPI $R = .84$, 33 studies with 3414 subjects
 - Rorschach $R = .86$, 4 studies with 154 subjects
Acceptable Reliability

- **Stability** - respectable scores
 - Fewer studies available
 - WAIS as .82 - 4 studies with total N = 93
 - MMPI as .74 - 5 studies with total N = 171
 - Rorschach as .85 - 2 with total N = 125
 - WAIS/Rorschach difference not significant;
 - MMPI/Rorschach and WAIS/MMPI difference is highly significant

- Internal consistency usually higher than stability

- Problem of inter-rater reliability
 - Use test reliability measures to assess their aggregate internal consistency
 - Arises in SWE in classifying faults, root causes, evaluating designs, reviewing papers, evaluating developers, etc
Effective Reliability of Judges

- Problem: correlation of .60 between the ratings of two judges tells us only the reliability of either single judge in this situation.
- For aggregate or effective reliability, use approach as in “how many test items”
 - Use Spearman-Brown where
 - \(n \) is the number of judges and
 - \(\bar{r} \) is the mean correlation among them.
 - Aggregate reliability of
 - 2 judges: \(2(.60)/[1+(2-1).60] = .75 \)
 - 3 judges: \(3(.60)/[1+(3-1).60] = .82 \)
 - The more judges, the higher the reliability
 - Table 3.3 very useful for planning/analysis.
% Agreement & Reliability

- Many see percent agreement as an index of reliability
 - A agreements and D disagreements
 - %: \(\frac{A}{A+D} \times 100 \)
 - Net: \(\frac{(A-D)}{(A+D)} \times 100 \)
- Misleading - fails to differentiate between accuracy and variability
- Better - use the product moment correlation phi
 - can be computed from the chi-square
ANOVA & Reliability

- Sometimes need more than 2-3 judges
- Excellent approach based on analysis of variance
 - Tedious to do average of large number of correlations of previous approach
 - Assess how well judges are able to discriminate among sampling units (MS_{person}) minus the judge's disagreements ($MS_{residuals}$) controlling for rating bias or main effect, divided by a standardizing quantity

$$R_{est} = \frac{MS_{person} - MS_{residuals}}{MS_{person}}$$

$$\bar{r}_{est} = \frac{MS_{person} - MS_{residuals}}{MS_{person} + (n-1)(MS_{residuals})}$$
Replication & Reliability

- Reliability in research implies generalizability as indicated by replicability (repeatability) of the results
 - Across time (test-retest reliability)
 - Across different measurements, observers, or manipulations (reliability of components)
 - Note that may not be possible to repeat and authenticate every observation with perfect precision
Replication Factors

- Same experiment can never be repeated
 - At very least everyone is older

- 3 important factors affect the utility of a replication as an indicator of reliability:
 - When the replication is conducted
 - Earlier better than later; 2nd doubles our info
 - How the replication is conducted
 - The more imprecise, the more generalizability
 - By whom is the replication conducted
 - Independence is critical - rule out pre-correlations
 - Selection and training considerations
 - Correlated observers a critical problem in all fields
Statistical Analysis

Rationale

★ Essential aspect of the rhetoric of justification in behavioral sciences evaluation, defense and confirmation of claims of truth
★ Traditional ways to shore up facts and inductive inferences
★ Imposes a sense of order and lawfulness

4 problems in the methodological spirit of statistical data analysis

★ Dichotomous decisions on significance
★ Low power
★ Significance as defining results
★ Over emphasis on single studies
Statistical Analysis

- Over reliance on dichotomous on significance testing decisions
 - Anti-null if p is not greater than .05
 - Pro-null if p is greater than .05
 - .05 α considered to be axiomatic: on the one side joy; on the other side ruin
 - Comes from the fact we ought to avoid Type I errors
 - A convenient and stringent enough fail safe standard
 - Not axiomatic: strength of evidence is continuous on the magnitude of p

- Tendency to do many research studies in situations of low power
 - Often ignore the extent to which the sample size is stacking the deck against themselves
 - May be considered to be to complicated
 - Seminal work of Cohen on Power in the 60s - has resurfaced as an important issue
Statistical Analysis

- Defining results in terms of significance alone
 - Need to consider effect size estimation procedures
 - Both when p is significant as well as when not significant
 - Guides our judgment about sample size
 - Significant p values should not be interpreted as reflecting large effects or the practical importance of the results

- Over emphasis on single studies at the expense of accumulating results
 - Accumulating results critical for increasing weight of evidence
 - Evaluate impact on things other than p value – use multiple criteria
 - Make more use of meta-analysis
 - Accumulate data via meta-analysis, not just results
 - Often need to compute effect size and significance where it does not exist
Methodological Problems

- 4 problems on methodological substance
 - Omnibus tests
 - Need for contrasts
 - Misinterpretation of interaction effects
 - Hidden nesting

- Omnibus tests
 - In SWE, too much reliance on shotgun metrics
 - Need to ask focused questions
 - Focused test more relevant
 - Omnibus tests
 - Of dubious practical or theoretical significance
 - Effect size estimates are of doubtful utility

- Need for contrasts
 - Specific predictions are analyzed by comparing them to the data
 - Temporal progression levels are emphasized in contrast approach
 - Increased statistical power results from contrasts
 - Avoid Type II error
Methodological Problems

- **Misinterpretation of interaction effects**
 - Mathematical meaning of interaction effects is unambiguous
 - But only a tiny fraction of results interpreted correctly
 - May be due to lack of correspondence between the meaning of “interaction” in the analysis of variance model and its meaning in other discourse

- **Hidden nesting**
 - Concealed non-independence of observations
 - results from sampling without regard to sources of similarity in the persons sampled
 - Significance and effect size estimation become problematic
 - Samples too similar
 - Usual assumptions underlying analysis do not hold
 - Degrees of freedom fall somewhere between the number of people and the number of groups of people in the study
Re-Emphasis

- There will almost always be two kinds of information we want to have for each of our research questions:
 - The size of the effect and
 - Its statistical significance

- Magnitude of significance test = size of effect x size of study
 - Significance will increase for any given size of study
 - For any given size of effect and for any given size of study, there will be a corresponding test of significance

- Much of the analysis we will look at is about how to determine these three elements in a study
Errors Revisited

- **One reality**
 - H0 (Null Hypothesis) is True
 - H1 (Alternative Hypothesis) is False
 - There is no relationship, no difference, theory is wrong

- **We accept H0, reject H1**
 - Match reality
 - **Confidence level:** $1-\alpha$ (eg, .95)
 - The odds of saying there is no relationship or difference when in fact there is none
 - The odds of correctly not confirming our theory
 - Ie, 95 time out of 100 when there is no effect, we will say there is none.

- **Type I Error: we reject H0, accept H1**
 - **Contradict reality – say there is a relationship when there is none**
 - **Significance level:** α (eg, .05)
 - The odds of saying there is a relationship or difference when there is none
 - The odds of confirming our theory incorrectly
 - 5 times out of 100, when there is no effect, we will say there is
 - We should keep this small when we can't afford/risk wrongly concluding our treatment works
Errors Revisited

- **The other reality**
 - H0 (Null) is False
 - H1 (Alternative) is True
 - There is a relationship, is a difference, and our theory is supported

- **Type II Error:** we accept H0, reject H1
 - Contradict reality - say there is no relationship when there is one
 - \(\beta \) (eg, .20)
 - The odds of saying there is no relationship or difference when in fact there is one
 - The odds of not confirming our theory when it is true
 - 20 times out 100, when there is an effect, we will say there isn't

- **We accept H1, reject H0**
 - Match reality
 - Power: 1-\(\beta \) (eg, .80)
 - The odds of saying there is a relationship or difference when there is one
 - The odds of confirming our theory correctly
 - 80 times out 100 when there is an effect we will say there is
 - We generally want this to be as large as possible
Decreasing Errors

- Decrease Type I Error by setting a more stringent α
 - Eg, .01 instead of .05
 - Decreasing Type I increases the likelihood of Type II Error
- Decrease Type II Error by setting less stringent α
 - Eg, .10 instead of .05
- Seek a balance between the two
 - As Type I goes up, Type II goes down and vice versa
Purpose of Power Analysis

- **Planning of research**
 - Determine size of sample needed
 - To reach a given α level
 - For any particular size of effect expected

- **Evaluation of research completed**
 - Determine if failure to detect an effect at a given α is primarily due to too small a sample

- **Level of Power determined by**
 - Statistic used to determine the level of significance
 - Level of α selected, size of the sample, size of the effect

- **Increasing Power can be achieved by**
 - Raising the level of significance required,
 - Reducing the standard deviation,
 - Increasing the magnitude of the effect by using strong treatments, and
 - Increasing the size of the sample
Example

- X compares OO programming against standard programming randomly assigning 40 programmers to use OO and 40 as the control group
 - The OO treatment programs have significantly fewer bugs
 - Using t test (comparing means), $t(78) = 2.21$, $p < .05$

- Y is skeptical and replicates X’s work
 - Assigns 10 programmers to each
 - Results: $t(18) = 1.06$, $p > .30$
 - Y claims X results unrepeatable

- Misleading conclusions
 - Y’s results in the same direction as X’s
 - Y’s effect size same as X’s ($\frac{1}{2\sigma} = \frac{2t}{\sqrt{df}}$)
 - Y’s sample size too small: X’s power = .6, Y’s power = .2
Effect Size (ES)

- Effect Size: *standardized measure of the change in the dependent variable as a result of the independent variable*
- Standardization of effect size is done in the simplest case by dividing the change in the dependent measure by the standard deviation of the control group
- If ES=1, the experimental and control results differ by 1 standard deviation
- Effect Sizes are usually less than 1
- Cohen 1988 argues
 - Small effect size = 0.2
 - Medium effect size = 0.5
 - Large effect size = 0.8
- Enables us to compare the effects in different studies of the same phenomena
- Enables us to combine results from different studies in meta-analyses
Example

- **Comparison:**
 - Treatment: 8 designers, design method X
 - Control: 8 designers, std design method Y

- **Results in terms of errors:**
 - Treatment: 5 6 9 4 8 3 7 6
 - Control: 10 11 10 9 9 8 9 14

- **Means:**
 - Treatment: 6
 - Control: 10

- **Standard deviations**
 - Calculate sum of squared deviations from the mean via shortcut formula:
 \[
 \sum_{i=1}^{n}(x_i - \bar{x})^2
 \]
Example

- **Treatment:**
 - Squares: 25, 36, 81, 16, 64, 9, 49, 36
 - Sum = 48, sum of squares = 316
 - $316 - 2304/8 = 316 - 288 = 28$
 - Std dev is $\sigma = \sqrt{28/7} = \sqrt{4} = 2$

- **Control:**
 - Squares: 100, 121, 100, 81, 81, 64, 81, 196
 - Sum = 80, sum of squares = 824
 - $824 - 6400/8 = 824 - 800 = 24$
 - Std dev is $\sigma = \sqrt{24/7} = \sqrt{3.53} = 1.85$

- **Effect size** $d = \text{mean 1} - \text{mean 2} / \sigma$
 - $(6 - 10) / 1.85 = 2.16$
 - A very large effect (Cohen: 0.8 is a large effect)
Power Tables

- **Cohen 1969, 1977, 1988**
 - Comprehensive, elegant and useful discussion of power analysis in behavioral research
 - Defines small, medium and large effects for 7 statistics from t to F
 - Tables provide sample sizes vs power and significance
Neglect of Power

- Behavioral researcher faces a high risk of committing Type II errors
 - For medium effect sizes and $\alpha = .05$ the odds are better than 50:50 that the null hypothesis would not be rejected when its false
 - Since Cohen's work, situation has gotten worse apparently
 - Continue to work at low power
 - Continue to rate Type I errors as more significant than Type II errors
Neglect of Power

- Assessing relationship of Type I vs Type II errors
 - Use ratio β/α
 - Remember β is the likelihood we will make a Type II error, α the likelihood of making a Type I error
 - Eg, $\alpha = .05$ and power = .40,
 - $\beta/\alpha = .6/.05 = 12$, ie Type I errors are considered to be 12 times more serious than Type II
 - What would we need to do if we wanted $\alpha = .05$ and power = .95, $\beta/\alpha = .05/.05 = 1$
 - ie, consider I & II equally serious