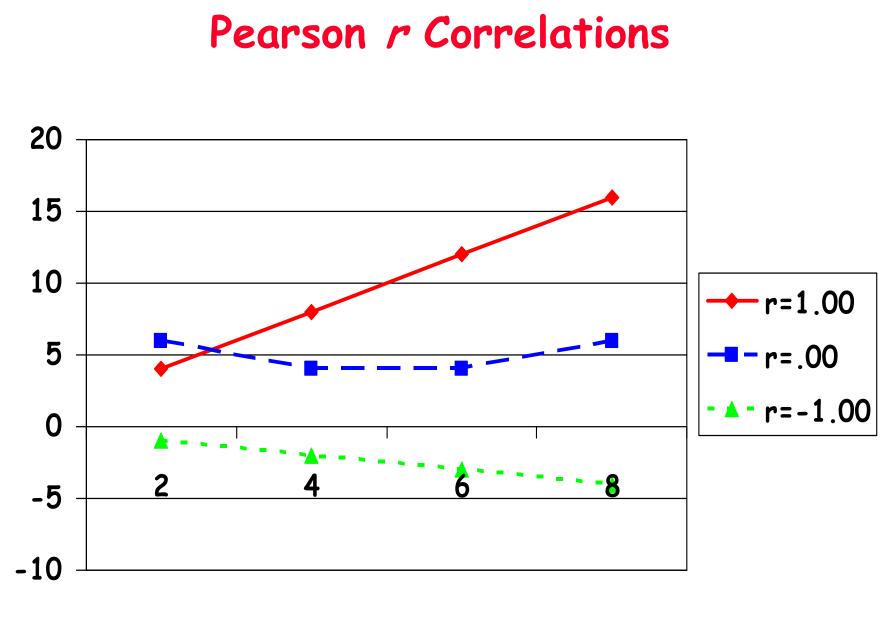
Correlations & Confounding Variables

Dewayne E Perry ENS 623 Perry@ece.utexas.edu

1

Pearson r

- * Most widely used index of relationship
- * Short for: Karl Pearson's product moment correlation coefficient
- * Values ranges between -1.00 and +1.00
 - \star .00 means there is no relationship
 - \star +1.00 a perfect positive linear relationship
 - \star -1.00 a prefect negative linear relationship
- * May be correlated even though scores do not agree


Pearson r

* Examples

 $\begin{array}{ll} \star \ (8, \ 6, \ 4, \ 2) \ \text{and} \ (16, \ 12, \ 8, \ 4) & r = 1.00 \\ \star \ (8, \ 6, \ 4, \ 2) \ \text{and} \ (6, \ 4, \ 4, \ 6) & r = .00 \\ \star \ (8, \ 6, \ 4, \ 2) \ \text{and} \ (-4, \ -3, \ -2, \ -1) & r = -1.00 \end{array}$

- * Results are what one would expect if standard scored (Z-scored): $Z = X \overline{X} / \sigma$
 - *product moment correlation: $r_{xy} = \sum Z_x Z_y$ /N
 - > Z's are distances from mean called *moments*
 - > multiplied by each other to form *products*

Interpretations

- * Prime interpretation: the larger *r*, the higher the degree of linear relationship
- The square of r: the proportion of the variance shared by X and Y
 - * Proportion of variance of Y scores attributable to variation in the X scores
 - ★ $r^2 + k^2 = 1.00$
 - $\star r^2$ is the coefficient of determination
 - \star k^2 is the coefficient of non-determinism
 - * Though useful, it is a poor reflection of the practical value of any given correlation
 - * More useful in regression (discussed later)

Interpretations

- * r as an indicator of practical importance
 - * Binomial effect-size display (BESD) procedure
 - * *Binomial* : research results cast as dichotomous
 - ***** Introduced because
 - > Interpretation is quite transparent
 - > Applicable whenever r is used
 - > Very conveniently computed
 - * BESD question: what is the effect on the *success rate* of the new treatment
 - > Displays the change attributable to treatment
 - Converts effect size r into a success rate via table lookup (RR Table 14.6)

 \checkmark r=.30, accounting for 9% of the variance

 \checkmark shows an increase in the success rate from 35% to 65%

> Short form: $r \times 100$ = percentage increase of success

> [Insight based on 50-50 probability of treatment effect]

* More clearly shows real-world importance of treatment than effect size estimates

Small but Important

- * While effect size may be small, the practical importance may be large
 - * May have important social, psychological or biological effects
- * Another way to compute r (or phi)

 $r = \frac{\text{difference between cross products}}{\sqrt{1-r^2}}$

 $\sqrt{\text{product of all marginal totals}}$

* Examples

- * Vietnam versus non-Vietnam veterans, 50% more likely to have an alcohol problem, *r=.0698*
- * Vietnam veterans about twice as likely to suffer depression as non-Vietnam, *r=.0597*
- * Small effects. But can reflect effects of enormous consequence
 - * Aspirin and heart attacks: r=.0337
 - ***** But this translates in a significant number of lives

Spearman Rank Correlation

- * ρ sometimes used as a quick index of correlation
 - **★** Easy and painless to compute
 - **★** Consider the following example (D is difference in rank)

X Y rank X rank y D D-squared

- 6.879.713211112.247.69112-11
 - 1.7 28.002 3 3 0 0
 - 0.3 11.778 4 4 0 0 $\rho = 1 - 6(2)/4^3 - 4 = 1 - 12/60 = .80$
- * Nothing sacrosanct in scale used
 - ***** Reduces skewedness
 - ***** Choose for symmetry, lack of skewedness
 - ***** Tends to increase accuracy of analysis
 - \succ Sometimes leads to slightly higher r
 - > Sometimes to lower

✓ case of logarithmic transformations: .80 instead if .99 (RR 14.11)

Spearman Rank Correlation

- * Most useful correlations are *product moment correlations*
- * When data in rank form, apply Spearman rho
 - * But nothing more than *Pearson r* computed on numbers that happen to be ranks
 - ***** Ranks are more predictable
 - * New ingredient: D the difference between the ranks assigned to each pair of sampling units

•
$$\rho = 1 - 6 \sum D^2 / N^3 - N$$

Point Biserial Correlation

* Special case of product moment correlation r * One variable continuous, * One dichotomous, > with arbitrarily applied numeric values \succ Such as 0 and 1, or -1 and +1 * Example: M vs F on verbal skills * M=2,3,3,4 vs F=4,5,5,6 $\star X$ is implicit in M/F, Y is explicit * Encode gender as 0,1 \star Y mean = 4, X mean = 0.5 ***** X1 mean = 5, X2 mean = 3

Point Biserial Correlation

*
$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{((1/n_1 + 1/n_2)S^2 \text{ pooled})}} = \frac{5-3}{\sqrt{((1/4 + 1/4))0.6667}} = 3.46$$

- * Which at 6df is significant at p < .01, one-tailed test * r = .816
- Significance test = size of effect X size of study
 - ★ Index for size of study varies with index of effect size:
 > Eg, N, df, square root of N or df
 - ***** As either increases, significance test score increases

$$t = \frac{r}{\sqrt{1 - r^2}} \times \sqrt{df}$$

 First term is proportion of variance explained by r to the proportion not explained by 4 - ie signal to noise ratio

Phi Coefficient

- Another special case of the product moment correlation r
 Both variables are dichotomous
 - * Arbitrarily applied numeric values 0,1 or +-1
- * Example Dem/Rep answer Yes/No
 - * D: 1Y, 4N vs R: 4Y, 1N
 - $\star r$ = .60 for party membership and answer
 - * If sample size not too small (N >20) and both variables are not too far from 50-50 split (no greater than 75/25), can use t test for significance
 - \star t = 2.12 which is p = .034, one-tailed
 - * More common is chi-square test for significance of phi

$$\chi^2(1) = \phi^2 \times N$$

- \star since *phi* = .60 and N = 10, *chi-square* = 3.60
- * which is significant at the .058 level

Curvilinear Correlation

- Sometimes predictions are not linear but curvilinear (quadratic - U shaped)
 - * higher (U shaped) or lower levels (upside down U) at ends
 - * eg, extreme levels of arousal associated with great/poor performance

5 Product-Moment Correlations

- * Pearson r
 - ***** both variables continuous
 - ***** *t* test for significance
- * Spearman rho
 - ***** both variables ranked
 - ***** *t* test for significance
 - \star or exact probability test if N is small (N < 7)
- * Point biserial (r-pb)
 - ***** one continuous, one dichotomous
 - ***** *t* test for significance
- * Phi
 - ***** both variables dichotomous
 - * chi-square, t and Z tests
- * Curvilinear r
 - ***** both continuous
 - \star *t* test

Lecture 12

Comparing Correlations

- * Primary question
 - ***** often not so much about relationship
 - ***** but about difference in such relationships
 - ***** comparison of independent correlation coefficients
 - > based on different independent subjects
 - ***** comparison of non-independent correlation coefficients
 - > based on the same subjects

Sampling Information

- * Must describe sample sufficiently
 - * To judge representativeness
 - ***** To evaluate equivalence of different groups of participants
 - ***** To assess whether participant variables have been controlled
 - * Enough details to compare with other studies
- * Representativeness
 - ★ In many cases simply assumed
 - \succ Eg, the populations fir the major categories
 - > Assumed sample in Chicago behaves the same as sample in NYC or London
 - * In surveys, representativeness critical
 - > Eg, Roosevelt/Landon election
 - ✓ Predicted for Landon
 - $\checkmark\,$ Huge sample for prediction
 - ✓ BUT from car/telephone owners
 - ✓ Biased towards conservative and hence Landon

Non-probability Sampling

- * Self selected sampling
 - ***** Eg, in media: open invitations to respond to questions
 - * Sampling limited to those who saw the request
 - > Eg, people with computers
 - * Unclear whom any the self-selected surveys represent
 - ***** Slightly different: consumer's reports
 - Select population
 - Self-selected within that
- * Haphazard sample
 - * Recruiting in public space eg, airports, malls
 - ***** Difficult to replicate
 - * Danger of biased samples
 - > People who travel airlines don't go to laundromats, etc
 - > But some topics don't make a difference: optical illusions
 - > For social attitudes, bias could be pivotal
 - ***** NOT random sampling

Non-probability Sampling

- * Sample of opportunity
 - ***** Convenience samples
 - > Pool of participants who are available
 - \checkmark Eg, this class
 - > For the psychologist might be ok
 - * The more the dependent variables are associated with variables other than the independent variables the more crucial representativeness becomes
 - * A variation: participants from a hospital, school, clinic, project etc
 - > May have more than enough people to meet requirements
 - > And random selection from population
 - > May need to know how representative population is

Non-probability Sampling

- * Homogeneous, restricted, purposive sample
 - * A specific subset of a convenience group
 - > Can restrict homogeneity wrt feature shared
 - > Eg, personal adjustment patterns in freshmen
 - But expected to represent all freshmen, not just Princeton or exclusively Caucasians
 - **★** Eg, bias effects if too restrictive a sample
 - > SAT national average: 906; Mississippi: 1001; NJ: 889
 - > Only 3% take it in Mississippi; 65% in NJ
- * Networking (snowballing) sample
 - * Ask for references if do not have enough samples
 - * Eg, networks of mothers who have small children
 - * Can suffer from inbreeding, ie, too homogeneous
 - * Vulnerable to contamination of the results if participants talk with each other about the experiment
- * Systematic sample
 - \star Eg, first 50 people thru the door
 - * But early arrivals may differ from latecomers in systematic ways

Probability Sampling

* Random sampling

- ***** Each member has an equal chance of being selected
- ***** large population often beyond scope of most researchers
- * From more limited populations is possible, but have to be careful
- * Systematic sampling
 - * Often hoped that systematic methods are unbiased and equivalent to random
 - > Have to be careful that no bias introduced
 - \star Eg, every third person on list

Probability Sampling

- * Stratified sampling
 - ***** Usually limited opportunities, unless well-funded
 - * Costly to represent/match target populations on all demographic and other variables
 - * Physical scientist can assume 1 oz of silver representative worldwide
 - * By psychologist studying female depression has to worry about a host of demographic and personal variables
- * Cluster sample
 - ***** Randomly target clusters of people
 - \succ Eg, students in schools in a city
 - > Then randomly within schools

Sample Sources

* Direct samples

- ***** Obtain data directly from people in sample
- * Experimental, quasi- and non-experimental commonly obtain data this way
- * Archival samples
 - \star Use data already gathered and are a matter of record
 - > Eg, actuarial records such as vital statistics, medical records, etc
 - \star Experimenter bias can have no influence on them
 - ***** Disadvantages: forced to rely on accuracy and timeliness of data
 - > Eg, income of 20 years ago not very useful today
 - > On test records, have no control over qualifications of examiner
 - > Or accuracy of scoring, administration, or interpretation
 - * Advantages: not contaminated by the experiment more than balances
 - ***** Other disadvantages
 - > Selective deposit, survival
 - > Selective entry factors may distort

Sample Biases

* Volunteers

- ***** Accept or decline may bias sample
- * May not be representative of population
 - > Unrepresentative characteristics
 - > Could threaten generalizability
- ***** Ethical issues
 - > Need sufficient info for informed decision
 - Foreknowledge can cause problems
- ***** Levels of volunteering
 - > Anonymous opinion of social issue
 - > Participation where no noxious effects
 - > Out of their way, extra time, some discomfort
- * Declining may be a function of commitment
- ★ Recompense could effect level as well
- ***** Greater the sacrifice, fewer volunteers
- ***** Cannot know characteristics of non-volunteers

Sample Biases

- * Rosenthal & Rosnow 1991
 - Maximum confidence: tend to be better educated, higher in social class, more intelligent, more approval motivated, and more sociable
 - * Considerable confidence: see arousal, be unconventional, female, Jewish, non-authoritarian, nonconforming
 - * Some confidence:from smaller towns, interested in religion, more altruistic, more self-disclosing, more maladjusted, younger

Sample Biases

- * Biasing by selective attrition
 - ***** At beginning sample may be representative
 - ***** Attrition may cause non-representative
 - > Dropouts are mainly women, middle aged, poor, etc
 - * Obligation to exclude those no longer willing or able causes problems
 - > What about people who do not respond to treatment
 - > Eg, people who are not stressed by stress condition
 - ***** Have we lost randomness as a result?
 - ***** Rationale for exclusion should be made clear

Assignment

* Random

- * Selection brings into study, assignment places them in treatment
- * Does not solve problem of non-equivalent groups
- ***** Randomness by random number table simplest
- * Systematic
 - * Potential for bias always present
 - * May have confounding variable present
 - * Must convince two groups are equivalent

Assignment

- * Sample size
 - ***** As many as possible dwindles quickly to as many as feasible
 - Significant results can be obtained with 20-30 participants, 10 per treatment, provided
 - > Distributions are reasonably normal
 - > Statistical assumptions are met
 - ***** Inconclusive results: sample size problem?
 - ***** Large sample -> small differences could be significant
 - * Power analysis: increase power by
 - > Raising level of significance required
 - > Reducing standard deviation
 - > Increasing magnitude of effect by using strong treatments
 - > Increasing the size of the sample
 - \star p < .05 usual desired level of significance
 - > Depends on study context not sufficient for life-threatening