Empirical Software Engineering Laboratory

Deriving Architectural Specifications
from KAOS Specifications: A
Research Case Study

Divya Jani, Damien Vanderveken, and Dewayne E Perry
Empirical Software Engineering Laboratory
ECE, The University of Texas at Austin

© 2005, Dewayne E Perry

Empirical Software Engineering Laboratory EWSA 2005

Introduction

> History
L ICSE 2000, Limerick - Axel van Lamsweerde's Keynote talk
Y Axel and I started talking about transforming R to A

% Two independent threads of research
» Perry/Brandozzi - 2002/2003
» Van Lamsweerde - 2003

> Case study background

% Divya Jani - my MS student
Y Damien Vanderveken - Axel's student, visiting for a semester

> Case study strategy:
Y Create a new KAOS goal-oriented requirements specification

% Two cases -
> DJ and DV as method users; DEP as oracle and observer
> Use the van Lamsweerde method to create an architecture
> Use the Brandozzi/Perry method to create an architecture

Y Compare the two methods and resulting architectures

© 2005, Dewayne E Perry ECE, UT Austin 2

Empirical Software Engineering Laboratory EWSA 2005

Power Plant Specification

> Based on Trio based design specifications
> Created KAOS specifications

% But paper descriptions were incomplete
U Extended it in terms of non-functional characteristics

> KAOS Goal Directed Requirements Specification

“ Goal Model

> 6oals from TRIO Spec — informal — temporal 15t order logic
> Refinement patterns to expand the specification (eg, milestone)
> Iterative until reach leaf goals

> Robustness goals added: eg, DataTransmissionToDB

Iélﬂ taTranamitte ﬂTﬁD]?(

o~

,f:'ill:b-]:luirt:T|II'|:-‘_'l:ﬁ-ﬂiiLl.-E::Ell.ij,{j"r HabDatalaaat Jf!/ Seguencefreserv=d ﬁla:a]'ra:smi:ted::?im{

© 2005, Dewayne E Perry ECE, UT Austin 3

Empirical Software Engineering Laboratory EWSA 2005

Power Plant Specification - Goal Model

RemedyActionsSuggested
WhenF autDietected

» PowerPlantSupervised :: FaultsDetected & RemedyActionsWhenFaultsDetected &
AlarmsCorrectlyManaged

e FaultsDetected :: FaultDetectedInSteamCondensor & FaultsDetectedInCoolingCircuit

» AlarmsCorrectlyManaged :: AlarmsRaisedIffFaultDetected & AlarmTraced & . . .

© 2005, Dewayne E Perry ECE, UT Austin 4

Empirical Software Engineering Laboratory EWSA 2005

Power Plant Specification

% Object Model
> Entities derived from TRIO spec
> Attributes to characterize them
v'Some from spec
v'"Most from underlying domain

v'Some added for a more complete model
> 3 main objects: sensor, fault and alarm

%, Agent Model
» Each leaf in goal model assigned an agent
» From TRIO Spec: precon, alarm, comm, db and sensor
» Added: management unit, checks sensors for working properly
> Differentiate: part of software to be & part of environment

v'Precon in former: sensor in latter

%, Operation Model
> Relies on precise definition of goals
> Operation: pre-, trigger- and post-conditions
> Operationalization patterns:
v'Bounded achieve
v'Immediate achieve

© 2005, Dewayne E Perry ECE, UT Austin 5

Empirical Software Engineering Laboratory

EWSA 2005

Power Plant Specification - Object Model

PowerPlant Fault Faultinformation
+PoweFPlan31Di‘Integei 1 1 +FaultID: Integer +FaultID: Integer
+Type._{Hy rolic, Nuclear, Petrol, Gas, Coal} +Type: {Temperature, Pressure} 1 1 [+Type: {Temperature, Pressure} 0N
TRower: M?gagztt 0N [+Priority: {Low, Medium, High, Critical} +Pricrity: {Low, Medium, High, Critical} [
tlocation: Address tDetectionTime: Time Representation |FoetectionTine: Time
Q +CorrectionTime: Time P tCorrectionTime: Time
tCorrected: Boolean tCorrected: Boolean
+Description: Btring 14Description: Etring
SteamCondenser CoolingCircuit
| Qceurs Causaliy AlarmDiagnosis
Location 1 FaultDiagnosis |
+Temp: Temperature -
+DesiredTemp: Temperature Alarm Alarminformation Starage
iﬁlngemp: $empera§ure 1 tAlarmID: Integer +AlarmID: Integer
axTemp: Temperature +Type 1 1 |+Type
tPress: Pressure +Priority: {Low, Medium, High, Critical} +Priority: {Low, Medium, High, Critical}
tDesiredPress: Pressure tActivationTime: Time Rentksentation tActivationTime: Time
tMinPress: Pressure tDeactivationTime: Time P t+DeactivationTime: Time
tMaxPress: Pressure tActivated: Boolean tActivated: Boolean
+Description: Btring 4Description: Etring
Monitoring 0.N
Storage
Sensor Sensorinformation 1
+8ensorID: Integer . +8ensorID: Integer 1
+8tatus: {0n, Off} Represematlon 1 |+status: {On, Off} DataBase 1
+Type: {Temperature, Pressure} +Type: {Temperature, Pressure} (1 | Storage 1
+Datavalue: float +Datavalue: float +5ize: MegaByte
+DataType: {Kelvin, Pascal} tDataType: {Kelvin, Pascal}
+HWorkProperly: Boolean tWorkProperly: Boolean
© 2005, Dewayne E Perry ECE, UT Austin 6

EWSA 2005

Empirical Software Engineering Laboratory

Power Plant Specification - Agent Model

/ PerformanceOfThePlantMonitored /

RemedyActionsSuggested
WhenFaultDetected

AlarmCorrectlyManaged

FaultDetected

FaultDetected
InCoolingCircuit

OperatorInterraction
Managed

AlarmRaisedIff
FaultDetected

FaultDetected

InSteanCondensor
Operator

DataQuerried PeriodicalChecksPerformed
UponlserRequest EReporturitten ppatinfe AlarnRaisedihen AMlarnInfornationstorsd AlarmInformationtrovided AlaranotRaised
FaultDetected FaultInfoTransmitted WheenalarmRaized UponUzerRequest IfFaultNotDetected

T

|

|

| / QueryTransmitted / QueryAnswered /
I

|

[

ChecksPerformed
WhenDataAcquired

Alarm Status
Updated

Datahcquired

Diagnosis
Written

ReportWritten
WhenChecksPerformed

CorrectData
PersistentlyStored

FaultDetected
WhenCalculat:onDone

DataCorrectlylUpdated

CorrectData
DataTransmittedToDB

PersistentlyStored

FaultStatus
Updated

Diagnosis
Written

Computedvariables
Stored

+ PRECON

DataUpdatedIf
Conziztent

Consistency
ChecksPerformed

DataAcquired
FromTheField

SanityChecks
/ DataTransmittedToDB // DataCorrectlyUpdated /

Performed

Maintain[Sensor AnalogData DigitalData
CorrectValue] Acquired Acquired

/ DataTransmittedToDB // DataCorrectlyUpdated /

‘hcquisition | | :Acquisition
Unit Unit

Sensor

© 2005, Dewayne E Perry ECE, UT Austin

Empirical Software Engineering Laboratory EWSA 2005

Power Plant Specification - Object Model

2 Bounded achieve 2 Immediate achieve
l'fl::‘{:li'i-r Jr C=oT
Operation Op _ /i\ :
Operation Op1 Operation Op2

DomPre =T DomPre — T DomPre T
DDHIPGSIT DomPost T DomPost — T
ReqTrig for RootGoal: ReqTrig for ReotGoal: ReqPre for RootGoal:

=T 5=d-1 (C =T c -C

© 2005, Dewayne E Perry ECE, UT Austin 8

Empirical Software Engineering Laboratory EWSA 2005

Van Lamsweerde Method

> 3 steps: Requirements to Architecture Description
L, Abstract a dataflow architecture
% Drive and refine the data flow using styles to meet
architectural constraints
L Refine using design patterns to achieve non-functional
requirements

> Step 1: Data Flow Architecture
%, Obtained from data dependencies between agents
% Two sub-steps:
> Agents become software components
» Data dependencies modeled via dataflow connectors
% Problem:
> Dataflow connector between PRECON and ALARM
> But really goes though COMM and DB

© 2005, Dewayne E Perry ECE, UT Austin 9

Empirical Software Engineering Laboratory EWSA 2005

Van Lamsweerde Method: DF Architecture

© 2005, Dewayne E Perry ECE, UT Austin 10

Empirical Software Engineering Laboratory

EWSA 2005

Van Lamsweerde Method

> Step 2: Style Based

Refinement
L Results of step one
refined with a suitable
style
Y Main architectural
constraints:
»Distributed components
»>Centralized communication
" No appropriate style
transformation rule;
created one

CentralizedfommunicationVia{C)

d

T

hasTheResponsabitly0f | piatributed (1,220

4

/Tranmﬂ::n:ﬂ[d,f_"l 221 /

© 2005, Dewayne E Perry

ECE, UT Austin 1

Empirical Software Engineering Laboratory EWSA 2005

Van Lamsweerde Method: Style-Based R'ment

© 2005, Dewayne E Perry ECE, UT Austin 12

Empirical Software Engineering Laboratory EWSA 2005

Van Lamsweerde Method

- Sfep 3: Pattern Based > Fault tolerant refinement
Ref ine men.'- / Maintain [FauliTolerantCommunication (C1, C2]] /
L Refine to achieve non- '

functional goals [crb—0a|
»Quality of service goals
»Development goals
LQOS

»Security > Consistency maintainer
» Accuracy

»Usability refinement

»Etc
Q{) DeVC'Cpmen'l' goal S / Maintain [AccurateData (C1, C2)] /

»>Minimal coupling 5 > - o0
»Maximum cohesion ;\? 0

»Reusability C°?§f2§§§$§i””
>Etc

© 2005, Dewayne E Perry ECE, UT Austin 13

Empirical Software Engineering Laboratory EWSA 2005

Van Lamsweerde Method: Pattern Based R'ment

© 2005, Dewayne E Perry ECE, UT Austin 14

Empirical Software Engineering Laboratory EWSA 2005

Perry Method

> Prescriptions based on Perry/Wolf Model
L Element types: process, data & connector

> Maps KAOS entities to architecture entities
&, Agent — process or connector
“Event — [connector]
% Entity — data
% Relationship — data
% Goal — constraint

> 5 Steps: Requirements to Architecture Prescription
L Step 1: Choose initial architecture component structure
L, Step 2: derive sub-components
L, Step 3: Partition system goals and assign to components
L, Step 4: Achieve non-functional goals
L [Step 5: Create box diagram]

© 2005, Dewayne E Perry ECE, UT Austin 15

Empirical Software Engineering Laboratory EWSA 2005

Perry Method

> Step 1: Choose initial architecture component

structure
L Using the goal refinement tree, select appropriate elements
» Choose top goal:

v'Probably too vague
» Choose leaves

v'Probably too constrained

v'Architecture structure dictated by the requirements structure
> Based on experience in the problem/solution domains

U Problem: hard to know where to start - creative decision
Y Chose PRECON, ALARM, DB and COMM as components

> Step 2: Derive sub-components
% Derive components from the KAOS Spec to implement these
components
Y Examples: Fault (data), FaultInformation (data),
SensorConnect (connector) and QUERYManager (process)
% Continue to derive process and connector elements

© 2005, Dewayne E Perry ECE, UT Austin 16

Empirical Software Engineering Laboratory EWSA 2005

Perry Method

> Step 3: Partition system goals and assign to

components
L Assign goals and sub-goals to the defined components
Y Depends on how the architect intends to realize the system
> Again, a creative decision rather than a methodical one
% All KAOS goals and/or sub-goals must be accounted for

4 Elements with no constraints are discarded
> Eg, fault was discarded since it was not needed for any goal

U COMM handled all communication - too broad
» UpdateDBConnect

v'Secure and 2s response time
» FaultDetectionEngineAlarmManagerConnect

v'Bs response time
> QueryDBConnect

v'Fault tolerant, secure and 1s response time

© 2005, Dewayne E Perry ECE, UT Austin 17

Empirical Software Engineering Laboratory EWSA 2005

Perry Method: Component Refinement Tree

4N

© 2005, Dewayne E Perry ECE, UT Austin 18

Empirical Software Engineering Laboratory

EWSA 2005

Perry Method

> Step 4: Achieve non-functional goals
Y Refine and transform the prescription
L Goals such as reliability, reusability, etc

% Introduced additional components and constraints
» Connector between ALARM and PRECON
> Redundant DBs for fault tolerance

v'Further constraints on connector and elements
> Redundant PRECON and ALARM

> [Step 5: Create box diagram]
Y Needed to provide a graphical view of the system

© 2005, Dewayne E Perry ECE, UT Austin

19

Empirical Software Engineering Laboratory EWSA 2005

Perry Method: Box Diagram

EFREECON

FaultDeteckl I'lI'IEI'Il_l in=
FpultInfocematl ;|.1|.'I|.'|T"'1.'I||:|t rConneEct ALARM

I r-—--—— ~"~—"=-"=-"=-"==-===-

| FaulbD=t=ct icnEngline I

e plarnMang=roonnect
aultDetectic | Jeronner

Engins I AlarmManager fularmDiagnos 1_'I JlarmInformatio

I Upda t=TECorme i:l'l]|'||.'r':L' ractionManager

I Update=DECormect

EansorConn=ct I UpdateCBConnect

Sensorlonnack

— Updatelanager TusryHanager

HensorInfoematic

UF'II."t aTECormieck I — — — — — — — — — J
DataBase

FaulbCdagqnosd

© 2005, Dewayne E Perry ECE, UT Austin 20

Empirical Software Engineering Laboratory EWSA 2005

Evaluation

> Common
Y Neither has the means of addressing as architectural
constraints: reliability, fault tolerance, etc
» Architectures are derived only from goals
» Non-functional requirements may arise for architectural
reasons

Y Incomplete requirements

» Eg, nothing about performance

2 Van Lamsweerde method

L Easy to get started, harder to finish
> Step 1 proceeded well
> But few styles to use in step 2
> Step 3 had pattern application problems
v'Limited choice of patterns
v'Some cases required multiple patterns - difficult to decide how to do it
% Problem when introducing new components
> New components, no operations defined
> New connectors without complete definitions

© 2005, Dewayne E Perry ECE, UT Austin 21

Empirical Software Engineering Laboratory EWSA 2005

Evaluation

2 Van Lamsweerde method (continuted)

% Problem in insuring consistency in redundant components
> Method of communication between redundant components
> Affect on the connector used to the components

& Communication as a component was a problem
» Communication among different components had different consistency,
performance and reliability constraints

o Perry method
% First hurdle was step 1 - a large degree of freedom
> Lacked sufficient guidance
v May be appropriate for an experienced architect
v Difficult for a novice
> Examples of goal trees and initial architecture would have helped
% How much leeway to allow in each step
» How free in distributing and allocating goals and subgoals
%, Component refinement tree indicates hierarchy
> But box diagram makes it clear the architecture is a network
% Need to add data as a constraint on connectors - critical

© 2005, Dewayne E Perry ECE, UT Austin 22

Empirical Software Engineering Laboratory EWSA 2005

Comparison

> Level of design - most significant difference

% Van Lamsweerde (vL) method produces a much lower level
architecture - descriptive
> Components + operations creates a much more rigid design

%Per'r'ty (P) higher level - prescriptive rather than descriptive
> Emphasis on constraints

> Basic view of architecture
L vL produces a more 'network like' view

%P appeared more hierarchical
» For P, box diagram made network structure clearer

= Process

Y Getting Started
> vL more systematic at beginning: less so later
> P hard to get past the first step
Y Continuing and finishing
> vL got more confusing
> P became more manageable given the initial structure

© 2005, Dewayne E Perry ECE, UT Austin 23

Empirical Software Engineering Laboratory EWSA 2005

Comparison

> Connectors
Lyl - focus on data but not constraints
LWP - focus on constraints but not data

= Non-functional requirments
Y vL - applied appropriate patterns
%P - added constraints

= Overall

% Both methods provided useful but different views of the
system

> Subsequent work
L Jani's MS Thesis:
> added patterns for non-functional properties
> Extended connector prescriptions
Y Vanderveken's MS Thesis (Co-supervised by AvL and DEP)
» Added behavior view to architecture descriptions
> Precise definitions and applications of transformation patterns

© 2005, Dewayne E Perry ECE, UT Austin 24

Empirical Software Engineering Laboratory EWSA 2005

After Thoughts

ovlL
% RE driven approach
% Initial structure dependent on RE structure
Y Transformations afterwards

>P

% Architect driven approach

Y Creative integration of requirements drives initial structure
Y May integrate transformations into initial structure

% Architecture constraints include requirements goals

© 2005, Dewayne E Perry ECE, UT Austin 25

	Deriving Architectural Specifications from KAOS Specifications: A Research Case Study
	Introduction
	Power Plant Specification
	Power Plant Specification – Goal Model
	Power Plant Specification
	Power Plant Specification – Object Model
	Power Plant Specification – Agent Model
	Power Plant Specification – Object Model
	Van Lamsweerde Method
	Van Lamsweerde Method: DF Architecture
	Van Lamsweerde Method
	Van Lamsweerde Method: Style-Based R’ment
	Van Lamsweerde Method
	Van Lamsweerde Method: Pattern Based R’ment
	Perry Method
	Perry Method
	Perry Method
	Perry Method: Component Refinement Tree
	Perry Method
	Perry Method: Box Diagram
	Evaluation
	Evaluation
	Comparison
	Comparison
	After Thoughts

