
1

Empirical Software Engineering Laboratory

© 2005, Dewayne E Perry

Deriving Architectural Specifications
from KAOS Specifications: A

Research Case Study

Divya Jani, Damien Vanderveken, and Dewayne E Perry
Empirical Software Engineering Laboratory
ECE, The University of Texas at Austin

2

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Introduction
History

ICSE 2000, Limerick – Axel van Lamsweerde’s Keynote talk
Axel and I started talking about transforming R to A
Two independent threads of research

Perry/Brandozzi – 2002/2003
Van Lamsweerde - 2003

Case study background
Divya Jani – my MS student
Damien Vanderveken – Axel’s student, visiting for a semester

Case study strategy:
Create a new KAOS goal-oriented requirements specification
Two cases –

DJ and DV as method users; DEP as oracle and observer
Use the van Lamsweerde method to create an architecture
Use the Brandozzi/Perry method to create an architecture

Compare the two methods and resulting architectures

3

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Power Plant Specification
Based on Trio based design specifications
Created KAOS specifications

But paper descriptions were incomplete
Extended it in terms of non-functional characteristics

KAOS Goal Directed Requirements Specification
Goal Model

Goals from TRIO Spec → informal → temporal 1st order logic
Refinement patterns to expand the specification (eg, milestone)
Iterative until reach leaf goals
Robustness goals added: eg, DataTransmissionToDB

4

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Power Plant Specification – Goal Model

• PowerPlantSupervised :: FaultsDetected & RemedyActionsWhenFaultsDetected &
AlarmsCorrectlyManaged

• FaultsDetected :: FaultDetectedInSteamCondensor & FaultsDetectedInCoolingCircuit
• AlarmsCorrectlyManaged :: AlarmsRaisedIffFaultDetected & AlarmTraced & . . .

5

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Power Plant Specification
Object Model

Entities derived from TRIO spec
Attributes to characterize them

Some from spec
Most from underlying domain
Some added for a more complete model

3 main objects: sensor, fault and alarm
Agent Model

Each leaf in goal model assigned an agent
From TRIO Spec: precon, alarm, comm, db and sensor
Added: management unit, checks sensors for working properly
Differentiate: part of software to be & part of environment

Precon in former; sensor in latter
Operation Model

Relies on precise definition of goals
Operation: pre-, trigger- and post-conditions
Operationalization patterns:

Bounded achieve
Immediate achieve

6

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Power Plant Specification – Object Model

7

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Power Plant Specification – Agent Model

8

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Power Plant Specification – Object Model

Bounded achieve Immediate achieve

9

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Van Lamsweerde Method
3 steps: Requirements to Architecture Description

Abstract a dataflow architecture
Drive and refine the data flow using styles to meet
architectural constraints
Refine using design patterns to achieve non-functional
requirements

Step 1: Data Flow Architecture
Obtained from data dependencies between agents
Two sub-steps:

Agents become software components
Data dependencies modeled via dataflow connectors

Problem:
Dataflow connector between PRECON and ALARM
But really goes though COMM and DB

10

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Van Lamsweerde Method: DF Architecture

11

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Van Lamsweerde Method
Step 2: Style Based
Refinement

Results of step one
refined with a suitable
style
Main architectural
constraints:

Distributed components
Centralized communication

No appropriate style
transformation rule;
created one

12

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Van Lamsweerde Method: Style-Based R’ment

13

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Van Lamsweerde Method
Step 3: Pattern Based
Refinement

Refine to achieve non-
functional goals

Quality of service goals
Development goals

QOS
Security
Accuracy
Usability
Etc

Development goals
Minimal coupling
Maximum cohesion
Reusability
Etc

Fault tolerant refinement

Consistency maintainer
refinement

14

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Van Lamsweerde Method: Pattern Based R’ment

15

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Perry Method
Prescriptions based on Perry/Wolf Model

Element types: process, data & connector
Maps KAOS entities to architecture entities

Agent → process or connector
Event → [connector]
Entity → data
Relationship → data
Goal → constraint

5 Steps: Requirements to Architecture Prescription
Step 1: Choose initial architecture component structure
Step 2: derive sub-components
Step 3: Partition system goals and assign to components
Step 4: Achieve non-functional goals
[Step 5: Create box diagram]

16

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Perry Method
Step 1: Choose initial architecture component
structure

Using the goal refinement tree, select appropriate elements
Choose top goal:

Probably too vague
Choose leaves

Probably too constrained
Architecture structure dictated by the requirements structure

Based on experience in the problem/solution domains
Problem: hard to know where to start – creative decision
Chose PRECON, ALARM, DB and COMM as components

Step 2: Derive sub-components
Derive components from the KAOS Spec to implement these
components
Examples: Fault (data), FaultInformation (data),
SensorConnect (connector) and QUERYManager (process)
Continue to derive process and connector elements

17

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Perry Method
Step 3: Partition system goals and assign to
components

Assign goals and sub-goals to the defined components
Depends on how the architect intends to realize the system

Again, a creative decision rather than a methodical one
All KAOS goals and/or sub-goals must be accounted for
Elements with no constraints are discarded

Eg, fault was discarded since it was not needed for any goal
COMM handled all communication – too broad

UpdateDBConnect
Secure and 2s response time

FaultDetectionEngineAlarmManagerConnect
5s response time

QueryDBConnect
Fault tolerant, secure and 1s response time

18

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Perry Method: Component Refinement Tree

19

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Perry Method
Step 4: Achieve non-functional goals

Refine and transform the prescription
Goals such as reliability, reusability, etc
Introduced additional components and constraints

Connector between ALARM and PRECON
Redundant DBs for fault tolerance

Further constraints on connector and elements
Redundant PRECON and ALARM

[Step 5: Create box diagram]
Needed to provide a graphical view of the system

20

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Perry Method: Box Diagram

21

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Evaluation
Common

Neither has the means of addressing as architectural
constraints: reliability, fault tolerance, etc

Architectures are derived only from goals
Non-functional requirements may arise for architectural
reasons

Incomplete requirements
Eg, nothing about performance

Van Lamsweerde method
Easy to get started, harder to finish

Step 1 proceeded well
But few styles to use in step 2
Step 3 had pattern application problems

Limited choice of patterns
Some cases required multiple patterns – difficult to decide how to do it

Problem when introducing new components
New components, no operations defined
New connectors without complete definitions

22

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Evaluation
Van Lamsweerde method (continuted)

Problem in insuring consistency in redundant components
Method of communication between redundant components
Affect on the connector used to the components

Communication as a component was a problem
Communication among different components had different consistency,
performance and reliability constraints

Perry method
First hurdle was step 1 – a large degree of freedom

Lacked sufficient guidance
May be appropriate for an experienced architect
Difficult for a novice

Examples of goal trees and initial architecture would have helped
How much leeway to allow in each step

How free in distributing and allocating goals and subgoals
Component refinement tree indicates hierarchy

But box diagram makes it clear the architecture is a network
Need to add data as a constraint on connectors - critical

23

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Comparison
Level of design - most significant difference

Van Lamsweerde (vL) method produces a much lower level
architecture - descriptive

Components + operations creates a much more rigid design
Perry (P) higher level - prescriptive rather than descriptive

Emphasis on constraints

Basic view of architecture
vL produces a more ‘network like’ view
P appeared more hierarchical

For P, box diagram made network structure clearer

Process
Getting Started

vL more systematic at beginning; less so later
P hard to get past the first step

Continuing and finishing
vL got more confusing
P became more manageable given the initial structure

24

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

Comparison
Connectors

vL – focus on data but not constraints
P – focus on constraints but not data

Non-functional requirments
vL - applied appropriate patterns
P – added constraints

Overall
Both methods provided useful but different views of the
system

Subsequent work
Jani’s MS Thesis:

added patterns for non-functional properties
Extended connector prescriptions

Vanderveken’s MS Thesis (Co-supervised by AvL and DEP)
Added behavior view to architecture descriptions
Precise definitions and applications of transformation patterns

25

Empirical Software Engineering Laboratory EWSA 2005

© 2005, Dewayne E Perry ECE, UT Austin

After Thoughts
vL

RE driven approach
Initial structure dependent on RE structure
Transformations afterwards

P
Architect driven approach
Creative integration of requirements drives initial structure
May integrate transformations into initial structure
Architecture constraints include requirements goals

	Deriving Architectural Specifications from KAOS Specifications: A Research Case Study
	Introduction
	Power Plant Specification
	Power Plant Specification – Goal Model
	Power Plant Specification
	Power Plant Specification – Object Model
	Power Plant Specification – Agent Model
	Power Plant Specification – Object Model
	Van Lamsweerde Method
	Van Lamsweerde Method: DF Architecture
	Van Lamsweerde Method
	Van Lamsweerde Method: Style-Based R’ment
	Van Lamsweerde Method
	Van Lamsweerde Method: Pattern Based R’ment
	Perry Method
	Perry Method
	Perry Method
	Perry Method: Component Refinement Tree
	Perry Method
	Perry Method: Box Diagram
	Evaluation
	Evaluation
	Comparison
	Comparison
	After Thoughts

