A Unifying Theoretical Foundation (or perhaps better: Framework) for Software Engineering

Dewayne E Perry

Center for

Advanced Research in Software Engineering (ARISE)

perry@mail.utexas.edu

Separation of Concerns

- * An important separation of concerns distinguish between
 - * Theories about *software engineers*
 - > As people (individual or in teams), as designers, as creators, as programmers, as architects, as engineers, etc
 - > How people and teams interact, cooperate to create and evolve software systems
 - > Cognition is located here
 - * Theories about software engineering
 - > The actual crafting and engineering of software systems
 - > The structure of the artifacts
 - > How to create and evolve them
 - Techniques and structures to manage complexity is here
 - * Theories about software project management
 - > Managing software engineers and software engineering
 - > How to best organize and assign people given resources
 - > Managing project resources, roles, etc

© 2000-present, Dewayne E Perry

Separation of Concerns

- * Theories about the relationship between the theories of software engineers and software engineering
 - > Eg, various cognitive issues for SEs are related to various principles and structures used in SEing
- * Theories about the relationships between theories of project management, software engineers, and software engineering
 - > Eg, SPM is concerned about the utility and effectiveness of SEs and the progress, quality and cost of SEing
 - > Eg, PM metrics and productivity of SEs
 - > Eg, SE roles and responsibilities wrt SEing artifacts
- * I am primarily interested in *Theories about Software Engineering*
- * But ultimately will want to compose?/integrate? theories of SE, SPM, SEing, SE-SEing, and SPM-SE=SEing

© 2000-present, Dewayne E Perry

Adolph/Kruchten Theory - P

- * "A Grounded Theory is a set of integrated conceptual hypotheses systematically generated to produce a theory"
- * "Grounded Theory generates a substantive theory that explains participants' behavior as a set of integrated hypotheses"
- * "the main concern of people involved in the process of software development is getting the job done and that different points of view and expectations create impediments - a perspective mismatch"
- * When a perspective mismatch is discovered, people converge their mismatched perspectives by reaching out and negotiating a consensual perspective (which I refer to as observations or for grounded theory, hypotheses)

Adolph/Kruchten Theory - P

- * Incorporates D and E
- * New elements for P

```
★ P person (ie software engineer)
★ O observations - negotiated perspectives - hypotheses
★ R researcher (a special subset of P)
```

★ T_{se} theory of software engineering

* At an abstract level

```
\star P+ \star D \rightarrow O+
```

> One or more people derive one or more observations about creating/evolving a design

```
* P+ * (E:D) → O+
```

One or more people derive one or more observations about evaluating a design

```
* R+ * O+ \rightarrow T<sub>se</sub> or alternatively R+ * O+ * T<sub>se</sub> \rightarrow T<sub>se</sub>
```

> One or more researchers create or modify a theory of SE using the observations

Adolph/Kruchten - P

* Need to expand D

P+ * W
$$\rightarrow$$
 O+
P+ * T \rightarrow O+
P+ * M \rightarrow O+
P+ * (W \rightarrow T) \rightarrow O+
P+ * (T \rightarrow M) \rightarrow O+
P+ * (M*W \rightarrow T) \rightarrow O+
R+ * O+ * T_{se} \rightarrow T_{se}

* Need to expand E:D

P+ * E:W
$$\rightarrow$$
 O+
P+ * E:T \rightarrow O+
P+ * E:M \rightarrow O+
P+ * E:(W \rightarrow T) \rightarrow O+
P+ * E:(T \rightarrow M) \rightarrow O+
P+ * E:(M*W \rightarrow T) \rightarrow O+
R+ * O+ * T_{se} \rightarrow T_{se}

P+ * E:P
$$\rightarrow$$
 O+
P+ * E:O \rightarrow O+

 $P+*O \rightarrow O+$

Adolph/Kruchten - P

- * P * E:(T \rightarrow M) \rightarrow O+ Model E from Atomic to Open Structured
 - \star P+ \star W:(T \rightarrow M) \rightarrow O+
 - > People's observations about the world of creating a model from a theory
 - \star P+ \star T:(T \rightarrow M) \rightarrow O+
 - People's observations about a theory of creating a model from a theory
 - \star P+ \star H:(T \rightarrow M) \rightarrow O+
 - People's observations about an hypothesis about creating a model from a theory
 - \star P+ \star R:(T \rightarrow M) \rightarrow O+
 - People's observations about a regimen about creating a model from a theory

Adolph/Kruchten - P

- * P+ * $((W \rightarrow T):(T \rightarrow M)) \rightarrow O+$ = P+ * W: $((T \rightarrow M) \rightarrow T:(T \rightarrow M)) \rightarrow O+$
 - > People's observations about deriving a theory of creating a model from a theory, from a world of creating models from theories
- * P+ * $((T\rightarrow H):(T\rightarrow M)) \rightarrow O+$ = P+ * T: $((T\rightarrow M) \rightarrow H:(T\rightarrow M)) \rightarrow O+$
 - > People's observations about deriving an hypothesis about creating a model from a theory, from a theory of creating models from theories
- * P+ * $((H \rightarrow R): (T \rightarrow M)) \rightarrow O+$ = P+ * H: $((T \rightarrow M) \rightarrow R: (T \rightarrow M)) \rightarrow O+$
 - > People's observations about deriving a regimen for evaluating the derivation of an model from a theory, from an hypothesis about creating models from theories
- * P+ * $((R*W \rightarrow T):(T \rightarrow M)) \rightarrow O+$ P+ * $(R:(T \rightarrow M) * W:(T \rightarrow M) \rightarrow T:(T \rightarrow M)) \rightarrow O+$
 - > People's observations about reconciling the evaluation of a theory of creating a model from a theory, with the world of creating models from theories, possibly modifying that evaluated theory

Adolph/Kruchten - Model E:P

* To evaluate the creation/evolution of P

```
\star E:(P+ \star W \rightarrow O+)
\star E:(P+ \star T \rightarrow O+)
\star E:(P+ \star M \rightarrow O+)
\star E:(P+ * (W \rightarrow T) \rightarrow O+)
\star E:(P+ * (T \rightarrow M) \rightarrow O+)
\star E:(P+ \star (M \star W \rightarrow T) \rightarrow O+)
\star E:(P+ \star E:(W \rightarrow O+))
\star E:(P+ \star E:(T \rightarrow O+))
\star E:(P+ \star E:(M \rightarrow O+))
\star E:(P+ \star E:(W \rightarrow T) \rightarrow O+)
\star E:(P+ * E:(T \rightarrow M) \rightarrow O+)
\star E:(P+ \star E:(M \star W \rightarrow T) \rightarrow O+)
\star E:(R+ * O+ * T<sub>s</sub> \rightarrow T<sub>s</sub>)
```

Adolph/Kruchten - Model E:P

- - > A world of peoples observations about deriving a model from a theory
 - \star T:(P+ \star (T \rightarrow M) \rightarrow O+)
 - > A theory about people's observations about deriving a model from a theory
 - \star H:(P+ \star (T \rightarrow M) \rightarrow O+)
 - > An hypothesis about people's observations about deriving a model from a theory
 - \star R:(P+ * (T \rightarrow M) \rightarrow O+)
 - > A regimen for evaluating people's observations about deriving a model from a theory
 - * $(W \rightarrow T):(P+ * (T \rightarrow M) \rightarrow O+)$ = $W:(P+ * (T \rightarrow M) \rightarrow O+) \rightarrow T:(P+ * (T \rightarrow M) \rightarrow O+)$
 - > Deriving a theory about peoples observations about deriving a model from a theory from the world of peoples observations about deriving a model from a theory

Adolph/Kruchten - Model E:P

- * $(T \rightarrow H): (P + * (T \rightarrow M) \rightarrow O +)$ = $T: (P + * (T \rightarrow M) \rightarrow O +) \rightarrow H: (P + * (T \rightarrow M) \rightarrow O +)$
 - Deriving an hypothesis about peoples observations about deriving a model from a theory from a theory of peoples observations about deriving a model from a theory
- * $(H \rightarrow R): (P + * (T \rightarrow M) \rightarrow O +)$ = $H: (P + * (T \rightarrow M) \rightarrow O +) \rightarrow R: (P + * (T \rightarrow M) \rightarrow O +)$
 - > Deriving an hypothesis about peoples observations about deriving a model from a theory from a theory of peoples observations about deriving a model from a theory
- * $(R^*W \to T):(P + * (T \to M) \to O +)$ = $(R:(P + * (T \to M) \to O +) * W:(P + * (T \to M) \to O +))$ $\to T:(P + * (T \to M) \to O +)$
 - > Reconciling the results of a regimen evaluating peoples observations about deriving a model from a theory, with the world of peoples observations about deriving a model from a theory, possibly modifying the evaluated theory

Batory Theory of Design F

- * "Feature Oriented Programming (FOP) is a design methodology and tools for program synthesis. The goal is to specify a target program in terms of the features that it offers, and to synthesize an efficient program that meets these specifications"
 - ★ "the constants and functions of a domain model which is an algebra — can be implemented with many different technologies"
 - * "equational representations of programs are very powerful"
 - * "Design rules capture semantic constraints that govern legal compositions"

Batory Theory of Design F - Model

world

* Elements in F (simplified - ie no iteration)

*	W
*	T
*	F
*	A
*	R
*	M
*	$W \rightarrow T$
*	$T \rightarrow F+$

 \star A * F+ * R+ \rightarrow M

 \star M \star W \rightarrow W

theory
feature
algebra
design rule
model
derive a theory from the world
derive features from the theory
derive a model from the features via
the algebra
inject the model into the world

E:F - Evaluating Design Theory F

Evaluating F - E:F

- **★ E:W**
- **★ E:T**
- **★** E:F
- **★** E:A
- **★** E:R
- **★ E:M**
- $\star E:(W \rightarrow T)$
- \star E:(T \rightarrow F+)
- \star E:(A * F+ * R+ \rightarrow M)
- \star E:(M \star W \rightarrow W)

evaluate the relevant world

evaluate the theory

evaluate the features

evaluate the algebra

evaluate the design rules

evaluate the model

evaluate the process of deriving a

theory from the world

evaluate the process of deriving

features from the theory

evaluate the creation of a model

from appying the algebra and design rules to the features

design rules to the features

evaluate injecting the model into the world

Theory of Research D:F and D:(E:F)

```
* D:F
   D:W
   D:T
   D:F
   D:A
   D:R
   D:M
   D:(W \rightarrow T)
   D:(T \rightarrow F+)
   D:(A * F+ * R+ \rightarrow M)
   D:(M * W \rightarrow W)
```

```
* D:(E:F)
   D:(E:W)
   D:(E:T)
   D:(E:F)
   D:(E:A)
   D:(E:R)
   D:(E:M)
   D:(E:(W \rightarrow T))
   D:(E:(T \rightarrow F+))
   D:(E:(A * F+ * R+\rightarrow M))
   D:(E:(M * W \rightarrow W))
```

Theory of Research D:F and D:(E:F)

- \star D:(T \rightarrow F+)
 - * W:(T→F+)
 - > World of processes where features are derived from a theory
 - **★** T:(T→F+)
 - > Theory of a process of deriving features from a theory
 - * M:(T→F+)
 - Model of a process of deriving features from a theory
 - \star (W \rightarrow T):(T \rightarrow F+) = W:(T \rightarrow F+) \rightarrow T:(T \rightarrow F+)
 - > A process of creating a theory of deriving features from a world of deriving features from a theory
 - \star (T \rightarrow M):(T \rightarrow F+) = T:(T \rightarrow F+) \rightarrow M:(T \rightarrow F+)
 - > A process of deriving a model of deriving features from a theory from a theory of deriving features from theories
 - \star (M*W \rightarrow W):(T \rightarrow F+) = M:(T \rightarrow F+) * W:(T \rightarrow F+) \rightarrow W:(T \rightarrow F+)
 - > Injecting a model of deriving features from a theory into the world of deriving features from theories

Evaluating Batory's F-O Research

```
* E:(D:F)
   E:(D:W)
   E:(D:T)
   E:(D:F)
   E:(D:A)
   E:(D:R)
   E:(D:M)
   E:(D:(W \rightarrow T))
   E:(D:(T \rightarrow F+))
   E:(D:(A * F+ * R+\rightarrow M))
   E:(D:(M * W \rightarrow W))
```

```
* E:(D:(E:F))
  E:(D:(E:W))
  E:(D:(E:T))
  E:(D:(E:F))
  E:(D:(E:A))
  E:(D:(E:R))
  E:(D:(E:M))
   E:(D:(E:(W \rightarrow T)))
  E:(D:(E:(T \rightarrow F+)))
   E:(D:(E:(A * F+ * R+\rightarrow M)))
  E:(D:(E:(M * W \rightarrow W)))
```

18

Summary

- Small, simple theories D and E form the basis for laying out a very rich space and an underlying theoretical foundation for SE, SE research, and other design disciplines
 - ★ Compose D and E into more complex theories to extend and illuminate the space for design disciplines
- Useful properties
 - * Regularity among the various theories
 - * Levels of abstraction (stratification) within the composed theories providing
 - > Intuitive high level abstractions
 - > Explicit low level detailed abstractions
- * Used approach to model two very different approaches to theories of software engineering: P and F and the utility of applying D and E to both of them.