
Software Faults in Evolving a Large, Real-Time

System: a Case Study

Dewayne E. Perry and Carol S. Stieg

1 AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 USA
2 AT&T Bell Laboratories, 263 Shuman Blvd, Naperville, NJ 60566 USA

Abstract. We report the results of a survey about the software faults
encountered during the testing phases in evolving a large real-time sys-

tem. The survey was done in two parts: the �rst part surveyed all the

faults that were reported and characterized them in terms of general
categories; the second part resurveyed in depth the faults found in the

design and coding phases. For the �rst part, we describe describe the

questionaire, report the general faults found, and characterize the re-
quirements, design and coding faults by the testing phases in which they

were found and by the time they were found during the testing inter-

val. For the second part, we describe the questionaire used to survey the
design and coding faults, report the faults that occurred, how di�cult

they were to �nd and �x, what their underlying causes were (that is,

what their corresponding errors were), and what means might have pre-
vented them from occurring. We then characterize the results in terms

of interface and implementation faults.

1 Introduction

It is surprising that so few software fault studies have appeared in the soft-
ware engineering literature, especially since monitoring our mistakes is one of
the fundamental means by which we improve our process and product. This is
particularly true for the development of large systems. In preceding work [13,
14], Perry and Evangelist reported the prevalence of interface faults as a major
factor in the development and evolution of a large real-time system (68% of the
faults). One of the main purposes of that software fault study was to indicate
the importance of tools (such as the Inscape Environment [16]) that manage
interfaces and the dependencies on those interfaces.

Prior to this work, Endres [7], Schneidewind and Ho�man [19], and Glass [8]
reported on various fault analyses of software development, but did not delineate
interface faults as a speci�c category. Thayer, Lipow and Nelson [21] and Bowen
[5] provide extensive categorization of faults, but with a relatively narrow view
of interface faults. Basili and Perricone [2] o�er the most comprehensive study
of problems encountered in the development phase of a medium-scale system,
reporting data on the fault, the number of components a�ected, the type of the
fault, and the e�ort required to correct the fault. Interface faults were the largest
class of faults (39% of the faults).

We make two important contributions in this case study. First, we present
software fault data on evolutionary development [16], not on initial development
as previous studies have done. Second, we use a novel approach in which we
emphasize the cost of the �nding (i.e., reproducing) and �xing faults and the
means of preventing them.

In section 2, we provide the background for the study, describing the system
in general terms, and the methodology employed in evolving the system. In
section 3, we describe our experimental strategy and the approach we used in
conducting the survey. In section 4, we report the overall Modi�cation Request
(MR) survey, providing �rst a summary of the questionnaire, then a summary
of the results, and �nally some conclusions. In section 5, we present the design
and coding fault survey, providing �rst a summary of the questionnaire, then a
discussion of the analysis, and �nally a summary relating the results to interface
faults. In section 6, we present conclusions and recommendations.

2 Background

The system discussed in this paper is a very large 3 scale, distributed, real-
time system written in the C programming language in a Unix-based, multiple
machine, multiple location environment.

The organizational structure is typical with respect to AT&T projects for
systems of this size and for the number of people in each organization. Not
surprisingly, di�erent organizations are responsible for various parts of the sys-
tem development: requirements speci�cation; architecture, design, coding and
capability testing; system and system stability testing; and alpha testing.

The process of development is also typical with respect to AT&T projects of
this size. Systems Engineers prepare informal and structured documents de�ning
the requirements for the changes to be made to the system. Designers prepare
informal design documents that are subjected to formal reviews by three to
�fteen peers depending on the size of the unit under consideration. The design is
then broken into design units for low level design and coding. The products of this
last phase are subjected both to formal code reviews by three to �ve reviewers
and to low level unit testing. As components become available, integration and
system testing is performed until the system is completely integrated.

The release considered here is a \non-initial" release |one that can be viewed
as an arbitrary point in the evolution of this class of systems. Because of the
size of the system, the system evolution process consists of multiple, concur-
rent releases |that is, while the release dates are sequential, a number of re-
leases proceed concurrently in di�ering phases. This concurrency accentuates
the inter-release dependencies and their associated problems. The magnitude of
the changes (approximately 15-20% new code for each release) and the general
make-up of the changes (bug-�xes, improvements, and new functionality, etc.)
are generally uniform across releases. It is because of these two facts that we

3 By \very large", we mean a system of 1,000,000 NCSL or more [4]. AT&T has a

wide variety of such very large systems.

consider this study to provide a representative sample in the life of the project.
This relative uniformity of releases contrasts with Lehman and Belady [11] where
releases alternated between adding new functionality and �xing existing prob-
lems.

Faults discovered during testing phases are reported and monitored by a
modi�cation request (MR) tracking system (such as for example, CMS [18]).
Access to source �les for modi�cation is possible only through the tracking sys-
tem. Thus all source change activity is automatically tracked by the system.
This activity includes not only repairs but enhancements and new functionality
as well. It should be kept in mind, however, that this fault tracking activity
occurs only during the testing and released phases of the project, not during
the architecture, design and coding phases. Problems encountered during these
earlier phases are resolved informally without being tracked by the MR system.

3 Survey Strategy

The goal of this study was to gain insight into the current process of system
evolution by concentrating on a representative release of a particular system.
The approach we used is that of surveying, by means of prepared questionnaires,
those who \owned" the MR at the time it was closed. We conducted two studies:
�rst, we surveyed the complete set of faults; second, we resurveyed the largest
set of faults (i.e., the design and coding faults) in more depth.

It was mandated by management that the survey be non-intrusive, anony-
mous and strictly voluntary. The questionaire was created by the authors working
with a group of developers involved in the study. It was reviewed by an indepen-
dent group of developers who were also part of the subject development. What
we were not able to do was to validate any of the results [3] and hence cannot
assess the accuracy of the resulting data.

68% of the questionaires were returned in both parts of the study. In each
case, the sample size was very large |su�ciently large to justify the precision
that we use in the remainder of the paper. While there might be some questions
about the representativeness of the responses, we know of no factors that would
skew the results signi�cantly [1].

4 Overall Survey

There were three speci�c purposes in the initial, overall survey:

{ to determine what kinds of general problems (which we report here) and
what kinds of speci�c application problems (which we do not report because
of their lack of generality) were found during the preparation of this release;

{ to determine how the problem was found (that is, in which testing phase);
{ to determine when the problem was found.

In the discussion that follows, we �rst present a summary of the question-
naire, summarize our results, and draw some conclusions.

4.1 Questionnaire

The �rst survey questionnaire has two main components: the determination of
the fault reported in the MR and the testing phase in which the fault was found.
In determining the fault, two aspects were of importance: �rst, the development
phase in which the fault was introduced, and second, the particular type of the
fault. Since the particular type of fault reported at this stage of the survey tended
to be application or methodology speci�c, we have emphasized the phase-origin
nature of the fault categorization. The general fault categories are as follows:

{ Previous |residual problems left over from previous releases;
{ Requirements |problems originating during the requirements speci�cation
phase of development;

{ Design |problems originating during the architectural and design phases
of development;

{ Coding |problems originating during the coding phases of development;
{ Testing Environment |problems originating in the construction or provision
of the testing environment (for example, faults in the system con�guration,
static data, etc);

{ Testing |problems in testing (for example, pilot faults, etc);
{ Duplicates |problems that have already been reported;
{ No problems |problems due to misunderstandings about interfaces, func-
tionality, etc., on the part of the user;

{ Other |various problems that do not �t neatly in the preceding categories
such as hardware problems, etc.

The other main component of the survey concerned the phase of testing that
uncovered the fault. The following are the di�erent testing phases.

{ Capability Test (CT) |testing isolated portions of the system to ensure
proper capabilities of that portion.

{ System Test (ST) |testing the entire system to ensure proper execution of
the system as a whole in the laboratory environment.

{ System Stability Test (SS) |testing with simulated load conditions in the
laboratory environment for extended periods of time.

{ Alpha Test (AT) |live use of the release in a friendly user environment.
{ Released (RE) |live use. However, in this study, this data refers not to
this release, but the previous release. Our expectation is that this provides
a projection of the fault results for this release.

The time interval during which the faults were found (that is, when the MRs
were initiated) was retrieved from database of the MR tracking system.

Ideally, the testing phases occur sequentially. In practice, however, due to
the size and complexity of the system, various phases overlap. The overlap is
due to several speci�c factors. First, various parts of the system are modi�ed in
parallel. This means that the various parts of the system are in di�erent states
at any one time. Second, the iterative nature of evolution results in recycling
back through previous phases for various parts of the system. Third, various

testing phases are begun as early as possible, even though it is known that that
component may be incomplete.

Looked at in one way, testing proceeds in a hierarchical manner: testing is
begun with various pieces, then subsystems and �nally integrating those larger
parts into the complete system. It is a judgment call as to when di�erent parts
of the system move from one phase to the next determined primarily by the
percentage of capabilities incorporated and the number of tests executed. Looked
at in a slightly di�erent way, testing proceeds by increasing the system's size and
complexity, while at the same time increasing its load and stress.

4.2 Results

We present the summary of each fault category and discuss some of the main
issues that stem from these results. Next we summarize the requirements, design
and coding faults �rst as found by testing phase and then as found by time
interval.

Table 1. Summary of Responses

MR Categories Proportion

Previous 4.0%

Requirements 4.9%

Design 10.6%

Coding 18.2%

Testing Environment 19.1%
Testing 5.7%

Duplicates 13.9%

No problems 15.9%
Other 7.8%

Responses. Table 1 summarizes the frequency of the MRs by category. \Pre-
vious" problems are those which existed in precious releases but only surfaced
in the current release. They indicate the di�culty in �nding some faults and the
di�culty in achieving comprehensive test coverage. The MRs representing the
earlier part of the development or evolution process (that is, those represent-
ing requirements, design and coding) are the most signi�cant, accounting for
approximately 33.7% of the MRs.

The next most signi�cant subset of MRs were those that concern testing
(the testing environment and testing categories) |24.8% of the MRs. It is
not surprising that a signi�cant number of problems are encountered in testing
a large and complex real-time system where conditions have to be simulated
to represent the \real-world" in a laboratory environment. First, the testing
environment itself is a large and complex system that must be tested. Second,
as the real-time system evolves, so must the laboratory test environment evolve.

\Duplicate" and \No Problem"MRs are another signi�cant subset of the data
|28.9%. Historically, they have been considered to be part of the overhead. The

Fig. 1. Fault Categories found by Testing Phase
6%

0%

3%

2%

1%

4%

5%

CT ST SS AT RE

. .
.

.
. .

. .
.

Requirements Faults:

Design Faults:

Coding Faults:

.

CT: Capability Test

ST: System Test

SS: System Stability

AT: Alpha Test

RE: Released

\duplicate" MRs are in large part due to the inherent concurrency of activities
in a large-scale project and, as such, are di�cult to eliminate.

Results by Testing Phase and Time. We focus on the early part of the
software process because that is where the most MRs occur and, accordingly,
where close attention should yield the most results. For this reason, we present
the requirements, design and coding faults distributed by testing phase.

For the requirements, design and coding fault categories, Figure 1 shows the
percentage of MRs found during each testing phase. There are two important
observations. First, system test (ST) was the source of most of the MRs in each
category; capability testing (CT) was the next largest source. Second, all testing
phases found MRs of each fault category.

We note that there are two reasons why design and requirements faults con-
tinue to be found throughout the entire testing process. First, requirements often
change during the long development interval represented here. Second, informal
requirement and design documents lack precision and completeness (a general
problem in the current state-of-practice rather than a project-speci�c problem).

The data present in �gure 2 represents the same MRs as in �gure 1, but
displayed according to when they were found during the testing interval. The

Fig. 2. Fault Categories found over Time
6%

0%

3%

2%

1%

4%

5%

t1 t2 t3 t4 t5 t6

.
. .

..
..

..
. .

..
..

..
. .

..
..

. .

Requirements Faults:

Design Faults:

Coding Faults:

.

time values here are �xed (and relatively long) intervals. From the shape of the
data, it is clear that System Testing overlaps interval t4.

For the requirements, design and coding fault categories over time, Figure 2
shows that all fault types peaked at time t4, and held through time t5, except
for the coding faults which decreased. The two �gures are di�erent because there
is non-trivial mapping between testing phase and calendar time.

4.3 Summary

The following general observations may be drawn from this general survey of the
problems encountered in evolving a very large real-time system:

{ all faults occurred throughout all the testing phases, and

{ the majority of faults were found late in the testing interval.

These observations are limited by the fact that the tracking of MRs is pri-
marily a testing activity. It would be extremely useful to observe the kinds and
frequencies of faults that exists in the earlier phases of the project. Moreover,
it would be bene�cial to incorporate ways of detecting requirements and design
faults into the existing development process.

5 Design/Code Fault Survey

As a result of the general survey, we decided to resurvey the design and coding
MRs in depth. The following were the goals we wanted to achieve in this part of
the study:

{ determine the kinds of faults that occurred in design and coding;

{ determine the di�culty both in �nding or reproducing these faults and in
�xing them;

{ determine the underlying causes of the faults; and

{ determine how the faults might have been prevented.

There were two reasons for choosing this part of the general set of MRs.
First, it seemed to be exceedingly di�cult to separate the two kinds of faults.
Second, catching these kinds of faults earlier in the process would provide a
signi�cant reduction in overall fault cost |that is, the cost of �nding faults before
system integration is signi�cantly less than �nding them in the laboratory testing
environment. Our internal cost data is consistent with Boehm's [4]. Thus, gaining
insight into these problems will yield signi�cant and cost bene�cial results.

In the three subsections that follow, we summarize the survey questionnaire,
present the results of our analysis, and summarize our �ndings with regard to
interface and implementation faults.

5.1 Questionnaire

For every MR, we asked for the following information: the actual fault, the
di�culty of �nding and �xing the fault, the underlying cause, the best means of
either preventing or avoiding the problem, and their level of con�dence in their
responses.

Fault Types. For this fault, consider the following 22 possible types and select
the one that most closely applies to the cause of this MR.

1. Language pitfalls |e.g., the use of \=" instead of \= =".

2. Protocol |violated rules about interprocess communication.

3. Low-level logic |e.g., loop termination problems, pointer initialization, etc.

4. CMS complexity |e.g., due to change management system complexity.

5. Internal functionality |either inadequate functionality or changes and/or
additions were needed to existing functionality within the module or subsys-
tem.

6. External functionality |either inadequate functionality or changes and/or
additions were needed to existing functionality outside the module or sub-
system.

7. Primitives misused |the design or code depended on primitives which were
not used correctly.

8. Primitives unsupported |the design or code depended on primitives that
were not adequately developed (that is, the primitives did not work cor-
rectly).

9. Change coordination |either did not know about previous changes or de-
pended on concurrent changes.

10. Interface complexity |interfaces were badly structured or incomprehensible.
11. Design/Code complexity |the implementation was badly structured or in-

comprehensible.
12. Error handling |incorrect handling of, or recovery from, exceptions.
13. Race conditions |incorrect coordination in the sharing of data.
14. Performance |e.g., real-time constraints, resource access, or response time

constraints.
15. Resource allocation |incorrect resource allocation and deallocation.
16. Dynamic data design |incorrect design of dynamic data resources or struc-

tures.
17. Dynamic data use |incorrect use of dynamic data structures (for example,

initialization, maintaining constraints, etc.).
18. Static data design |incorrect design of static data structures (for example,

their location, partitioning, redundancy, etc.).
19. Unknown Interactions |unknowingly involved other functionality or parts

of the system.
20. Unexpected dependencies |unexpected interactions or dependencies on other

parts of the system.
21. Concurrent work |unexpected dependencies on concurrent work in other

releases.
22. Other |describe the fault.

Ease of Finding or Reproducing the Fault. The MR in question is to be
ranked according to how di�cult it was to reproduce the failure and locate the
fault.

1. Easy |could produce at will.
2. Moderate |happened some of the time (intermittent).
3. Di�cult |needed theories to �gure out how to reproduce the error.
4. Very Di�cult |exceedingly hard to reproduce.

Ease of Fixing the Fault. For each MR, how much time was needed to design
and code the �x, document and test it. 4

1. Easy |less than one day
2. Moderate |1 to 5 days
3. Di�cult |6 to 30 days
4. Very di�cult |greater than 30 days

4 Note that what would be an easy �x in a single programmer system takes consid-

erably more time in a large, multi-person project with a complex laboratory test

environment.

Underlying Causes. Because the fault may be only a symptom, provide what
you regard to be the underlying root cause for each problem.

1. None given |no underlying causes given.

2. Incomplete/omitted requirements |the source of the fault stemmed from
either incomplete or unstated requirements.

3. Ambiguous requirements |the requirements were (informally) stated, but
they were open to more than one interpretation. The interpretation selected
was evidently incorrect.

4. Incomplete/omitted design |the source of the fault stemmed from either
incomplete or unstated design speci�cations.

5. Ambiguous design |the design was (informally) given, but was open to more
than one interpretation. The interpretation selected was evidently incorrect.

6. Earlier incorrect �x |the fault was induced by an earlier incorrect �x (that
is, the fault was not the result of new development).

7. Lack of knowledge |there was something that I needed to know, but did
not know that I needed to know it.

8. Incorrect modi�cation |I suspected that the solution was incorrect, but
could not determine how to correctly solve the problem.

9. Submitted under duress |the solution was submitted under duress, knowing
that it was incorrect (generally due to schedule pressure, etc).

10. Other |describe the underlying cause.

Means of Prevention. For this fault, consider possible ways to prevent or
avoid it and select the most useful or appropriate choice for preventing or avoid-
ing the fault.

1. Formal requirements|use precise, unambiguous requirements (or design) in
a formal notation (which may be either graphical or textual).

2. Requirements/Design templates|provide more speci�c requirements (or de-
sign) document templates.

3. Formal interface speci�cations |use a formal notation for describing the
module interfaces.

4. Training |provide discussions, training seminars, and formal courses.

5. Application walk-throughs |determine, informally, the interactions among
the various application speci�c processes and data objects.

6. Expert person/documentation |provide an \expert" person or clear docu-
mentation when needed.

7. Design/code currency|keep design documents up to date with code changes.

8. Guideline enforcement |enforce code inspections guidelines and the use of
static analysis tools such as lint.

9. Better test planning |provide better test planning and/or execution (for
example, automatic regression testing).

10. Others |describe the means of prevention.

Con�dence Levels. Con�dence levels requested of the respondents were: very
high, high, moderate, low and very low . We discarded the small number of
responses (6%) that had a con�dence level of either low or very low.

5.2 Analysis

Table 2. Chi-Square Analysis Summary

Variables Degrees of Total p

Freedom Chi-Square

Find, Fix 6 51.489 .0001

Fault, Find 63 174.269 .0001

Fault, Fix 63 204.252 .0001
Cause, Find 27 94.493 .0001

Cause, Fix 27 55.232 .0011

Fault, Cause 189 403.136 .0001
Prevention, Find 27 41.021 .041

Prevention, Fix 27 97.886 .0001

Fault, Prevention 189 492.826 .0001
Cause, Prevention 81 641.417 .0001

To understand the relationships between the faults, the e�ort to �nd and �x
them, their underlying causes, and their means of prevention, the results of the
survey were cross tabulated and then subjected to chi-square analysis. Table 2
provides a summary of the chi-square analysis.

To identify relationships, we tested against the hypothesis that each member
of pairs were independent of each other. To establish whether any relationship
existed we used the Chi-Square test [20]. Table 2 provides the results of that
test. The numbers show that the relationships are statistically signi�cant at the
level indicated by the value of p. Note that that in all cases the relationships are
statistically signi�cant.

The relationship between the means of prevention and the ease of �nding
the fault coming closest to being independent (because p = .041; if p had been
.05 or greater, we would say they were independent). The relationship between
the means of prevention and the underlying causes is the most signi�cantly
interdependent (because the total chi-square is so large).

In earlier work, Perry and Evangelist [13,14] received comments about the
cost of faults |speci�cally, were the interface faults the easy ones or the hards
ones. It is with these questions in mind that we included the questions about the
e�ort to �nd and �x the faults. We have devised simple weighting measures for
�nding and �xing faults that are meant to be indicative rather than de�nitive.
These measures are intended to support a relative, not absolute, comparison of
the faults with each other.

To estimate the e�ort to �nd a fault, we determine the weight by multiplying
the proportion of observed values for each fault by 1, 2, 3 and 4 for each e�ort
category, respectively, and sum the results. For example, if a fault was easy to
�nd in 66% of the cases, moderate in 23%, di�cult in 11%, and very di�cult in

1%, the weight is 146 = (66 * 1) + (23 * 2) + (10 * 3) + (1 * 4). The higher
the weight, the more e�ort required to �nd the fault.

To estimate the e�ort to �x a fault, we determine the weight by multiplying
the proportion of observed values for each fault by 1, 3, 15, and 30. We chose these
values because they are a reasonable approximation to the average length of time
to �x each set of faults. Using the same proportions as above, the corresponding
�x weight would be 315 = (66 * 1) + (23 * 3) + (10 * 15) + (1 * 30).

To compute the e�ort-adjusted frequencies of each fault, we multiply the
number of occurrences of each fault by its weight and divide by the total weighted
number of occurrences.

We �rst consider the di�culty of �nding and �xing the faults. We then dis-
cuss the faults and the cost of �nding and �xing them. Next we consider the
underlying causes and the means of prevention, correlate the faults and their
e�ort measures with underlying causes and means of prevention, and then corre-
late underlying causes and means of prevention. Finally, we divide the faults into
interface and implementation categories and compare them in terms of di�culty
to �nd and �x, their underlying causes and their means of prevention.

Finding and Fixing Faults. 91% of the faults were easy to moderate to �nd;
78% took less than 5 days to �x. In general, the easier to �nd faults were easier
to �x; the more di�cult to �nd faults were more di�cult to �x as well. There
were more faults that were easy to �nd and took less than one day to �x than
were expected by the chi-square analysis. Interestingly, there were fewer than
expected easy to �nd faults that took 6 to 30 days to �x.

Table 3. Summary of Find/Fix E�ort

Find/Fix E�ort � 5 Days � 6 Days

easy/moderate 72.5% 18.4%

di�cult/very di�cult 5.9% 3.2%

While the coordinates of the e�ort to �nd and �x the faults are not compara-
ble, we note that the above relationship between them is suggestive. Moreover,
it seems counter to the common wisdom that says \once you have found the
problem, it is easy to �x it". There is a signi�cant number of \easy/moderate
to �nd" faults that require a relatively long time to �x.

Faults.Table 4 shows the fault types of the MRs as ordered by their fre-
quency in the survey independent of any other factors. We also show the ef-
fort weights,the e�ort ranks, and the weight-adjusted frequencies for �nding and
�xing these faults.

The �rst 5 fault categories account for 60% of the observed faults. That \in-
ternal functionality" is the leading fault by such a large margin is somewhat
surprising; that \interface complexity" is such a signi�cant problem is not sur-
prising at all. However, that the �rst �ve faults are leading faults is consistent
with the nature of the evolution of the system. Adding signi�cant amounts of

Table 4. Faults Ordered by Frequency

Fault Description Observed Find Find Find Fix Fix Fix

Weight Rank Adj'd Weight Rank Adj'd

5 internal functionality 25.0% 134 14 23.4% 414 13 18.7%

10 interface complexity 11.4% 145 11 11.6% 607 10 12.6%

20 unexpected dependencies 8.0% 124 19 7.2% 786 4 11.3%

3 low-level logic 7.9% 132 15 7.3% 245 17 3.5%

11 design/code complexity 7.7% 164 3 8.8% 904 3 12.6%

22 other 5.8% 131 16 5.5% 499 12 5.4%

9 change coordination 4.9% 150 10 5.1% 394 14 3.5%

21 concurrent work 4.4% 131 16 4.0% 661 9 5.2%

13 race conditions 4.3% 209 1 6.3% 709 7 5.5%
6 external functionality 3.6% 139 13 3.5% 682 8 4.4%

1 language pitfalls 3.5% 141 12 3.3% 244 18 1.5%

12 error handling 3.3% 163 4 3.7% 717 6 4.3%
7 primitive's misuse 2.4% 120 20 2.0% 520 11 2.2%

17 dynamic data use 2.1% 158 6 2.3% 392 15 1.5%

15 resource allocation 1.5% 161 5 1.7% 1326 2 3.6%

18 static data design 1.0% 100 21 .7% 200 19 .4%

14 performance .9% 199 2 1.3% 1402 1 2.3%

19 unknown interactions .7% 157 7 .8% 785 5 1.0%
8 primitives unsupported .6% 151 9 .6% 200 19 .2%

2 protocol .4% 125 18 .2% 250 16 .2%

4 CMS complexity .3% 100 21 .2% 166 21 .1%
16 dynamic data design .3% 157 7 .3% 166 21 .1%

new functionality to a system easily accounts for problems with \internal func-
tionality", \low-level logic" and \external functionality".

The fact that the system is a very large, complicated real-time system easily
accounts for the fact that there are problems with \interface complexity", \unex-
pected dependencies" and design/code complexity", \change coordination" and
\concurrent work".

C has well-known \language pitfalls" that account for the rank of that fault
in the middle of the set. Similarly, \race conditions" are a reasonably signi�cant
problem because of the lack of suitable language facilities in C.

That \performance" faults are a relatively insigni�cant is probably due to
the fact that this is not an early release of the system. Their �rst ranking �x
weight is consistent with our intuition that they are extremely di�cult to �x.

Finding and Fixing Faults. We �nd the weighted ordering here a�rms our
intuition of how di�cult these faults might be to �nd. Typically, performance
faults and race conditions are very di�cult to isolate and reproduce. We would
expect that \code complexity" and \error handling" faults would also be di�cult
to �nd and reproduce.

When we inspect the chi-square test for faults and �nd e�ort, we notice that
\internal functionality", \unexpected dependencies" and \other" tended to be
easier to �nd than expected. \Code complexity" and \performance" tended to
be harder to �nd than expected. There tended to be more signi�cant deviations

where the sample population was larger.
Adjusting the frequency by the e�ort to �nd the faults results in only a slight

shift in the ordering of the faults. \Internal functionality", \code complexity",
and \race conditions" change slightly more than the rest of the faults.

Adjusting the frequency by the e�ort to �x the fault causes some interesting
shifts in the ordering of the faults. \Language pitfalls", \low-level logic", and
\internal functionality" drop signi�cantly in their relative importance. This co-
incides with one's intuition about these kinds of faults |i.e., they are easy to
�x. \Design/code complexity", \resource allocation", and \unexpected depen-
dencies" rise signi�cantly in their relative importance; \interface complexity",
\race conditions", and \performance" rise but not signi�cantly so.

The top four faults account for 55% of the e�ort expended to �x all the
faults and 51% of the e�ort to �nd them, but represent 52% of the faults by
observed frequency. Collectively, they are somewhat harder to �x than rest of
the faults and slightly easier to �nd. We again note that while the two scales are
not strictly comparable, the comparison is an interesting one none-the-less.

When we inspect the chi-square test for faults and �nd e�ort, we notice that
\language pitfalls", and \low-level logic" took fewer days to �x than expected.
\Interface complexity" and \internal functionality" took 1 to 30 days more often
than expected, while \design/code complexity" and \unexpected dependencies"
took longer to �x (that is, 6 to over 30 days) than expected. These deviations
reenforce our weighted assessment of the e�ort to �x the faults.

Underlying Causes. Table 5 shows the underlying causes of the MRs as or-
dered by their frequency in the survey independent of any other factors, the
e�ort weights, e�ort ranks, and e�ort-adjusted frequencies for �nding and �xing
the faults with these underlying causes.

Table 5. Underlying causes of Faults

Cause Description Observed Find Find Find Fix Fix Fix

Weight Rank Adj'd Weight Rank Adj'd

4 incomplete/omitted design 25.2% 139 8 24.6% 653 3 29.7%

1 none given 20.5% 150 2 21.5% 412 10 15.2%
7 lack of knowledge 17.8% 135 9 16.8% 525 8 16.8%

5 ambiguous design 9.8% 141 6 9.6% 464 9 8.1%

6 earlier incorrect �x 7.3% 147 4 7.5% 544 7 7.1%

9 submitted under duress 6.8% 158 1 7.5% 564 6 6.9%

2 incomplete/omitted req's 5.4% 143 5 5.4% 698 2 6.8%

10 other 4.1% 148 3 4.2% 640 4 4.7%

3 ambiguous requirements 2.0% 140 7 2.9% 940 1 3.4%

8 incorrect modi�cation 1.1% 109 10 .8% 588 5 1.3%

Weighting the underlying causes by the e�ort to �nd or reproduce the faults
for which these are the underlying causes produces almost no change in either
the ordering or in the relative proportion of the underlying causes.

With respect to the relative di�culty in �nding the faults associated with the
underlying causes, the resulting ordering is particularly non-intuitive: the MRs

with no underlying cause are the second most di�cult to �nd; those submitted
under duress are the most di�cult to �nd.

Weighting the underlying causes by the e�ort to �x the faults represented
by the underlying causes yields a few shifts in the proportion of e�ort: \incom-
plete/omitted design" increased signi�cantly, \unclear requirements" and \in-
complete/omitted requirements" increased less signi�cantly; \none" decreased
signi�cantly, \unclear design" and \other" decreased less signi�cantly. However,
the relative ordering of the various underlying causes is approximately the same.

The relative weighting of the e�ort to �x these kinds of underlying causes
seems to coincide with one's intuition very nicely.

When we inspect the chi-square test for �x e�ort and underlying causes,
we notice faults caused by \none given" tended to take less time to �x than
expected, while faults caused by \incomplete/omitted design" and \submitted
under duress" tended to take more time to �x than expected.

The high proportion of \none given" as an underlying cause requires some
explanation. One of the reasons for this is that faults such as \language pitfalls",
\low-level logic", \race conditions" and \change coordination" tend to be both
the fault and the underlying cause (7.8% |or 33% of the in the \none given"
underlying cause category). In addition, one could easily imagine that some of
the faults such as \interface complexity" and \design/code complexity" could
also be considered both the fault and the underlying cause (3.3% |or 16% of
the faults in the \none given" underlying cause category). On the other hand,
we were surprised that no cause was given for a substantial part of the \internal
functionality" faults (3.7% |or 18% of the faults in the \none given" category).
One would expect there to be some underlying cause for that particular fault.

Means of Prevention. Table 6 shows the suggested means of prevention of the
faults as ordered by their occurrence independent of any other factors, the e�ort
weights, e�ort ranks, and e�ort-adjusted frequencies for �nding and �xing the
faults to which these means of prevention are applicable.We note that the various
means of prevention are by no means independent or non-overlapping.Moreover,
the means selected may well reect a particular approach of the responder in
selecting one means over another (for example, see the discussion below about
formal versus informal means of prevention).

It is interesting to note that the application-speci�c means of prevention
(\application walk-throughs") is considered the most e�ective means of preven-
tion. This selection of application walk-throughs as the most useful means of
error prevention appears to con�rm the observation of Curtis, Krasner and Is-
coe [6] that a thin spread of application knowledge is one of the most signi�cant
problem in building large systems.

Further it is worth noting that informalmeans of prevention rank higher than
formal ones. On the one hand, this may reect the general bias in the United
States against formal methods. On the other hand, the informal means are a
non-technical solution to providing the information that may be supplied by the
formal representations (and which provide a more technical solution with higher

Table 6. Means of Error Prevention

Means Description Observed Find Find Find Fix Fix Fix

Weight Rank Adj'd Weight Rank Adj'd

5 appl'n walk-throughs 24.5% 140 8 24.0% 438 8 18.9%

6 expert person/doc'n 15.7% 145 2 15.9% 706 3 19.6%
8 guideline enforcement 13.3% 154 1 14.3% 389 10 9.1%

2 req's/design templates 10.0% 129 10 9.1% 654 5 11.6%

9 better test planning 9.9% 145 2 10.1% 401 9 7.0%
1 formal requirements 8.8% 144 6 8.8% 740 2 11.4%

3 formal interface spec's 7.2% 142 7 7.1% 680 4 8.6%

10 other 6.9% 145 2 7.0% 517 6 8.7%
4 training 2.2% 145 2 2.2% 1016 1 3.9%

7 design/code currency 1.5% 140 8 1.5% 460 7 1.2%

adoption costs).

The level of e�ort to �nd the faults for which these are the means of pre-
vention does not change the order found in the table above, with the exception
of \requirements/design templates" which seems to apply to the easier to �nd
faults and \better test planning" which seems to apply more to somewhat harder
to �nd faults.

When we inspect the chi-square test for �nd e�ort and means of prevention,
we notice that the relationship between �nding faults and preventing them is
the most independent of the relationships discussed here. \Application walk-
throughs" applied to faults that were marginally easier to �nd than expected,
while \guideline enforcement" applied to faults that were less easy to �nd than
expected.

When we inspect the chi-square test for �x e�ort and means of prevention,
it is interesting to note that the faults considered to be prevented by training
are the hardest to �x. Formal methods also apply to classes of faults that take
a long time to �x.

E�ort-adjusting the frequency by �x e�ort yields a few shifts in proportion:
\application walk-throughs", \guideline enforcement" and \better test planning"
decreased in proportion; \expert person/documentation" and \formal require-
ments" increased in proportion, \formal interface speci�cations" and \other"
less so. As a result, the ordering changes slightly to faults 6, 5, 2, 1, 8, 10, 3, 9,

4, 7: \expert person/documentation" and \ formal requirements" are weighted
signi�cantly higher; \requirements/design templates", \formal interface speci�-
cations", \training", and \other" are less signi�cantly higher.

When we inspect the chi-square test for faults and means of prevention, we
notice that faults prevented by \application walk-throughs", \guideline enforce-
ment", and \other" tended to take fewer days to �x than expected, while faults
prevented by \formal requirements", requirements/design templates" and \ex-
pert person/documentation" took longer to �x than expected.

UnderlyingCauses andMeans of Prevention. It is interesting to note that
in the chi-square test for underlying causes and means of prevention there are a
signi�cant number of deviations (that is, there is a wider variance between the

actual values and the expected values in correlating underlying causes and means
of prevention) and that there does not appear to be much statistical structure.
This indicates that there are strong dependencies between the underlying causes
and their means of prevention. Intuitively, this type of relationship is just what
we would expect.

5.3 Interface Faults versus Implementation Faults

The de�nition of an interface fault that we use here is that of Basili and Perri-
cone [2] and Perry and Evangelist [13, 14]: interface faults are \those that are
associated with structures existing outside the module's local environment but
which the module used". Using this de�nition, we roughly characterize \language
pitfalls" (1), \low-level logic" (3), \internal functionality" (5), \design/code com-
plexity" (11), \performance" (14), and \other" (22) as implementation faults.
The remainder are considered interface faults. We say \roughly" because there
are some cases where the implementation categories may contain some interface
problems |e.g., some of the \design/code complexity" faults were considered
preventable by formal interface speci�cations.

Table 7. Interface/Implementation Fault Comparison

Interface Implementation

frequency 49% 51%

�nd weighted 50% 50%

�x weighted 56% 44%

Interface faults occur with slightly less frequency than implementation faults,
but require about the same e�ort to �nd them and more e�ort to �x them.

In table 8, we compare interface and implementation faults with respect to
their underlying causes. Underlying causes \other", \ambiguous requirements",
\none given", \earlier incorrect �x" and \ambiguous design" tended to be the un-
derlying causes more for implementation faults than for interface faults. Under-
lying causes \incomplete/omitted requirements", \incorrect modi�cation" and
\submitted under duress" tended to be the causes more for interface faults than
for implementation faults.

We note that underlying causes that involved ambiguity tended to result
more in implementation faults than in interface faults, while underlying causes
involving incompleteness or omission of information tended to result more in
interface faults than in implementation faults.

In table 9, we compare interface and implementation faults with respect to
the means of prevention. Not surprisingly \formal requirements" and formal
interface requirements" were more applicable to interface faults than to imple-
mentation faults. \Training", \expert person/documentation" and \guideline
enforcement" were considered more applicable to implementation faults than to
interface faults.

Table 8. Interface/Implementation Faults and Underlying Causes

Interface Implementation
49% 51%

1 none given 45.2% 54.8%
2 incomplete/omitted requirements 79.6% 20.4%

3 ambiguous requirements 44.5% 55.5%

4 incomplete/omitted design 50.8% 49.2%

5 ambiguous design 47.0% 53.0%

6 earlier incorrect �x 45.1% 54.9%
7 lack of knowledge 49.2% 50.8%

8 incorrect modi�cation 54.5% 45.5%

9 submitted under duress 63.1% 36.9%
10 other 39.1% 60.1%

Table 9. Interface/Implementation Faults and Means of Prevention

Interface Implementation
49% 51%

1 formal requirements 64.8% 35.2%
2 requirements/design templates 51.5% 48.5%

3 formal interface speci�cations 73.6% 26.4%

4 training 36.4% 63.6%

5 application walk-troughs 48.0% 52.0%

6 expert person/documentation 44.3% 55.7%

7 design/code currency 46.7% 53.3%

8 guideline enforcement 33.1% 66.9%

9 better test planning 48.0% 52.0%

10 others 49.3% 50.7%

6 Conclusions

We have observed a large number of interesting facts about faults, the cost of
�nding and �xing them, their underlying causes and means of prevention. We
o�er the following general conclusions from these observations.

{ The evolution of large, complex software systems involves a large overhead:
approximately 51% of the MRs in the initial survey represented production
faults, while 49% represented overhead faults(such as \duplicate" MRs, \no
problem" MRs, and MRs on the system test environment).

{ Interface faults were roughly 49% of the entire set of design and coding faults
and were harder to �x than the implementation faults. Not surprisingly,
formal requirements and formal interface speci�cations were suggested as
signi�cant means of preventing interface faults.

{ Lack of information tended to dominate the underlying causes and knowledge
intensive activities tended to dominate the means of prevention. Clearly,
discovery (and rediscovery) are signi�cant in the evolution of a very large
real-time system.

{ Relatively few problems would be solved by \better" programming languages
(e.g., language pitfalls and race-conditions account for less than 8% of the
faults). Technology that helps manage complexity and dependencies would

be much more useful (e.g., internal functionality, interface complexity, un-
expected dependencies, low-level logic, and design/code complexity account
for 60% of the faults).

The system reported here was developed and evolved using the current \best
practice" techniques and tools with well-quali�ed practitioners. Because of this
fact, we feel that this development is generalizable to other large-scale, real-time
systems. With this in mind, we o�er the following recommendations to improve
the current \best practice".

{ Obtain fault data throughout the entire development/evolution cycle (not
just in the testing cycle) and use it monitor the progress of the evolution
process [9].

{ Incorporate the non-technological, people-intensive means of prevention into
the current process. As our survey has shown, this will yield bene�ts for the
majority of the faults reported here.

{ Introduce facilities to increase the precision and completeness of require-
ments [10,22], architecture and design documents [17] and to manage com-
plexity and dependencies [15]. This will yield bene�ts for those faults that
were generally harder to �x and will help to detect the requirements, archi-
tecture and design problems earlier in the life-cycle.

Acknowledgements David Rosik contributed signi�cantly to the general MR
survey; Steve Bruun produced the cross-tabulated statistical analysis for the
design/code survey and contributed, along with Carolyn Larson, Julie Federico,
H. C. Wei and Tony Lenard, to the analysis of the design/code survey; Clive
Loader increased our understanding of the chi-square analysis; and Larry Votta
helped re�ne and improve our presentation. We especially thank Marjory P.
Yuhas and Lew G. Anderson for their unagging support of this work. And
�nally, we thank all those that participated in the survey.

References

1. Basili, Victor R., Hutchens, David H.: An Empirical Study of a Syntactic Complexity

Family IEEE Transactions on Software Engineering SE-9:6 (November 1983) 664-

672

2. Basili, Victor R., Perricone, Barry T.: Software Errors and Complexity: an Empirical

Investigation. Communications of the ACM 27:1 (January 1984) 42-52

3. Basili, Victor R., Weiss, David M.: A Methodology for Collecting Valid Software

Engineering Data. IEEE Transactions on Software Engineering SE-10:6 (November

1984) 728-738

4. Boehm, Barry W.: Software Engineering Economics. Englewood Cli�s: Prentice-

Hall, 1981

5. Bowen John B.: Standard Error Classi�cation to Support Software Reliability As-

sessment. AFIPS Conference Proceedings, 1980 National Computer Conference

(1980) 697-705

6. Curtis, Bill, Krasner, Herb, Iscoe, Neil: A Field Study of the Software Design Process
for Large Systems. Communications of the ACM 31:11 (November 1988) 1268-1287

7. Endres, Albert: An Analysis of Errors and Their Causes in System Programs. IEEE

Transactions on Software Engineering SE-1:2 (June 1975) 140-149
8. Glass, Robert L.: Persistent Software Errors. IEEE Transactions on Software Engi-

neering SE-7:2 (March 1981) 162-168

9. Humphrey, Watts S.: Managing the Software Process. Reading, Mass: Addison-
Wesley, 1989.

10. Kelly, Van E., Nonnenmann, Uwe: Inferring Formal Software Speci�cations from

Episodic Descriptions. Proceedings of AAAI 87. Sixth National Conference on Ar-
ti�cial Intelligence (13-17 July 1987) Seattle WA, 127-132

11. Lehman, M. M., Belady, L. A.: Program Evolution. Processes of Software Change.

London: Academic Press, 1985
12. Ostrand, Thomas J., Weyuker, Elaine J.: Collecting and Categorizing Software

Error Data in an Industrial Environment. The Journal of Systems and Software 4

(1984) 289-300
13. Perry, Dewayne E., Evangelist, W. Michael: An Empirical Study of Software In-

terface Errors. Proceedings of the International Symposium on New Directions in

Computing, IEEE Computer Society (August 1985) Trondheim, Norway, 32-38
14. Perry, Dewayne E., Evangelist, W. Michael: An Empirical Study of Software Inter-

face Faults |An Update. Proceedings of the Twentieth Annual Hawaii International

Conference on Systems Sciences (January 1987) Volume II 113-126
15. Perry, Dewayne E.: The Inscape Environment. Proceedings of the 11th Interna-

tional Conference on Software Engineering, (15-18 May 1989) Pittsburgh PA, 2-12

16. Perry, Dewayne E.: Industrial Strength Software Development Environments. Pro-
ceedings of IFIPS Congress '89 |11th World Computer Congress (August 28 -

September 1, 1989) San Francisco CA

17. Perry, Dewayne E., Wolf, Alexander L.: Foundations for the Study of Software
Architecture. ACM SIGSOFT Software Engineering Notes 17:4 (October 1992) 40-

52

18. Rowland, B. R., Anderson, R. E., McCabe, P. S.: The 3B20D Processor & DMERT
Operating System: Software Development System. The Bell System Technical Jour-

nal 62:1 part 2 (January 1983) 275-290.

19. Schneidewind, N. F., Ho�man, Heinz-Michael: An Experiment in Software Error
Data Collection and Analysis", IEEE Transactions on Software Engineering SE-5:3

(May 1979) 276-286

20. Siegel, Sidney, and Castellan, Jr., N. John: Nonparametric Statistics for the Be-
havioral Sciences. Second Edition. New York: McGraw-Hill, 1988

21. Thayer, Thomas A., Lipow, Myron, Nelson, Eldred C.: Software Reliability - A

Study of Large Project Reality. TRW Series of Software Technology, Volume 2.
North-Holland, 1978.

22. Zave, Pamela, Jackson, Daniel: Practical Speci�cation Techniques for Control-
Oriented Systems. Proceedings of IFIPS Congress '89 |11th World Computer

Congress (August 28 - September 1, 1989) San Francisco CA

This article was processed using the LaTEX macro package with LLNCS style

