
1

1

Architecture and Design Intent

© 2006, Dewayne E Perry

Lecture 2

EE 382V

General Overview

Dewayne E Perry
ENS 623A

Office Hours: T/Th 11:00-12:00
perry @ ece.utexas.edu

www.ece.utexas.edu/~perry/education/382v-s06/

2

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Background
Architecture and Design Intent in Component/COTS
Based Systems

Keynote talk for ICCBSS 2006
Continues in the vein of my previous research at Bell Labs

Inscape
Software architecture

Current, important, emerging topic in software architecture
Eg, see Bosch 2004, Duenas 2005

Reflects some of the initial thinking for Matt Hawthorne’s
and Paul Grisham’s thesis proposals

3

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Basic Issues
In creating systems we make choices because we have some
intent in mind

Some requirements over others
One architecture instead of another
A specific algorithm or data structure over others

When we create a product or component we have some idea of
how we intend it to be used

May be specific or it may be general
We use products or components with specific intent in mind

If a general product or component, may only use a part of it
If a specialized product or component may still use only a part of it

In evolving systems
We often have to divine the original intent to understand how to
make changes
We change things because we have some new intent in mind

4

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Basic Facts about COTS/Components
Integrating COTS and components often results in
disasters from architectural mismatch [Garlan et al]

Lack of understanding of the intent (or assumptions) of
components with respect to

Resources
Who controls them, who uses them, how they are used, etc

Interactions with other components
Who they interact with, their characteristics, their data models, etc
How they interact, eg, synchronously or asynchronously, etc

Global architecture
Topology, control flow, etc

System Construction
Construction, instantiation, interactions, etc

2

5

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Basic Facts
Spend 80% of our time in (re)discovery to understand
legacy systems [Bell Labs Study]

A large part of that is trying to determine the original
intent of the architecture, design and code

Rarely a problem in small group projects
But even there can be forgotten or misunderstood

Coordination of multiple developers a major problem
Intent critical in choreographing multiple developers in initial
development
Intent even more critical in evolutionary development

6

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Basic Problems & Benefits
Traditionally, intent conveyed by documentation

OS360 documentation
6 months project workbook: 5 feet
Daily changes: 2 inches

One release of Lucent’s 5ESS system
11.8% of design and implementation faults due to ambiguous
requirements
30.6% of design and implementation faults due to incomplete
or omitted requirements or design
42.4% - due to traditional problems of documentation

Documentation as a shared model of intent
Requirements – a shared model of the problem
Architecture – a shared model of the basic solution structure
Design and code – shared model of the machine in more
detail

7

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Intent and Evolution
Everything changes

World changes: uses and requirements change
Technology changes
Operating context changes
System itself changes: improvements, faults fixed

What persists in the face of evolution: CODE
Requirements, architecture, design documents out of date
Code is only thing up to date
Code: desiccated relic of a long intellectual process

Difficult to reconstruct the intent and reasoning
Too many ways to backtrack

Difficulties result:
Not clear how requirements changes impact the system
Not clear how structural changes impact the system
Not clear how code changes impact the architecture or the
system

8

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Some Basic Distinctions
Decisions – is at best a description of what is
decided

May indicate alternatives
May have some considerations about the alternatives
May go further and evaluate the alternatives
May indicate why the decision was made

Intent – why decisions were made the way they were
Why alternatives were not chosen
What effect the evaluations had on the design choices
What expectations result from the choice

3

9

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Some Prior Approaches
Potts and Bruns 1988

Generic model for delineating generic elements of a design rationale
Artifacts, issues, alternatives, justifications, etc
Relationships among these elements

Design deliberation: issue, set of alternatives, and a justification
for the decision
Result: a design history that can be used in the face of changing
requirements

Perry/Wolf 1989/1992
Called for rationale in addition to elements and form

Gruenbacher, Egyed and Medvidovic 2001/4
Component, bus, system, property model
Captures enumerated design decisions in terms of dimensions

C, B, S, CP, BP, SP, etc
Eg, bus properties (BP): synch, asynch, local, distributed, secure

Lightweight approach

10

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Recent Complaints
Bosch 2004

Laments general lack of support for architecture rationale
Design decisions are not first class entities
Design decisions often cross cutting and intertwined
Design rules easily violated
Obsolete design decisions and artifacts rarely removed
High maintenance costs

Duenas and Capilla 2005
Propose a set of

Elements
Information
Graphical notations

to record design decisions
Architecture = composition of design decisions

11

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Intent and Uncertainty
Uncertainty a fundamental fact of development life

Change and uncertainty interdependent
Each causing the other

Changes often have far reaching effects
Especially if persist until later states of a project
Technology changes can simplify or complicate
Business changes can create significant uncertainty

Attempts to cope
Delayed binding to create dynamically adaptable systems
Still, deferred design decisions can cause significant
problems

Need methods, techniques, processes and tools
To support design decisions
Convey architecture and design intent
Robustly in the face of change and uncertainty

12

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Intent and Evolution
Two interesting development contexts

Traditional planned developments
Often large projects
Heavyweight processes
Highly concurrent, heavily coordinated
Dominated by project plans and milestones

Agile developments
Often small projects, or small parts of larger projects
Lightweight processes, customer focused
Test driven, immediate solution, refactored evolution
Concurrent, lightly coordinated

Two ideas to explore
Planned: rationale reification

Formal and semi-formal representations of rationale
In the context of formal models of requirements and architecture
Basis for self-managing and self-adaptive systems

Agile: Intent-first design
Analogous to test-first design
Embedding light-weight, maintainable requirements models into source
code
Use semi-formal models of intent

4

13

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Earlier work
The Inscape Environment

Constructive approach based on
Formal interface specifications
Semantic interconnections determined during construction
Set of propagation rules

Basic rule: all preconditions and obligations must be satisfied
or propagated to the interface
Preconditions or obligations unpropagated and unsatisfied
represent faults

Called precondition ceiling and obligations floors
Specification contributions

Obligations
Multiple results, some of which are considered as exceptions

Set of rules for handling them
Useful for fault tolerance and reliability

Predicate based retrieval of components

14

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Earlier Work
Perry/Wolf Architecture model

Architecture = (elements, form, rationale)
Components and connectors the basic elements
Form is properties and relationships (ie, interactions) and
constraints on those properties and relationships
Rationale is the justification for the elements and form

The primary carrier of architectural intent
Architecture styles codify basic aspects of intent to be
applied to elements and form
Rationale and styles are critical for managing evolution

15

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Earlier Work
Architectural Prescriptions

Transforming software requirements into architecture
prescriptions
KAOS Preskriptor

Goals constraints
Architect has freedom to chose how goals are distributed
among architectural elements as constraints
Goals as a means of expressing requirements intent
Prescriptions as a means of expressing architectural intent

Architectural styles important as a form of constraint
codification

Incomplete architecture prescriptions
Applied to specific elements, collections of elements of the
entire system
Also capture architecture intent

16

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Earlier Work
Intent-based Architectures

Introduces architecture intent as a key concept
Intent of an element encapsulates its functional purpose
Intent associated with roles in architecture

Elements with similar intent can be substituted for each other
Based on higher levels of abstraction
Direct link between requirements and architecture

Enables reification of an architecture in one or more
functionally equivalent implementations
Basis for self-configuring adaptive systems

Respond to changes in environmental or operational conditions
By reconfiguring – subject to functional and nonfunctional
constraints

5

17

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Rationale Reification
Basic idea:

Begin with formally specified requirements and architecture
Eg, KAOS requirements specifications and architecture
prescriptions

Requirements are in problem domain terms; architecture
often in solution domain terms

Systems drivers such as user needs, business goals, strategies
are incorporated in requirements

Currently no connection between the two
No rationale, even informally
Mapping from problem domain to solution is problematic

Current focus of architecture:
Elements and form
Rationale, if treated at all, is informal and general

Rationale reification
Capture refinements and transformations used by architects in
creating the architecture from the requirements

18

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Rationale Reification
Basis for systematic requirements and architecture based
evolution

Changing requirements lead to changes in rationale and associated
changes in the architecture
Requirements become an integrated part of the system structure
rather than something separate and apart

Rationale determines the mapping between the functional and
non-functional requirements and the architecture

Abstract architecture in terms of problem domain (ala Preskriptor)
and models functional intent
Concrete architecture then related to abstract via intent
Refinement used to decompose functinality into smaller functional
elements
Transformations used functional structure into an architecture that
satisfies the non-functional requirements
Requirements (rationale) architecture

Captures semantics and conditions for mappings
Enables traceability from goals to structure

19

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Rationale Reification – Tool Support
Requirements modeling support

Such as the KAOS System of Axel van Lamsweerde
Rationale modeling support

Create and evolve mappings and transformations
Architecture modeling support

Create, edit and view the architecture models
Intent modeling and visualization support

Ties everything together
Self-managing/adaptive support

Styles, components, etc

20

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Agile Intent
Agile context

Set of methods, techniques and processes to cope with
changing and uncertain requirements. Eg,

Feature oriented milestones
sort iterations with frequent deliveries
Close interactions with customers
Deferred design decisions

Most popular: extreme programming (XP)
Requirements captured as acceptance and unit test cases

Written from customer stanpoint
Test-first design

Written before code
Can determine if requirements already satisfied

Code written to meet minimum needs of requirements
Just sufficient, complex as needed – simple as possible

Requirements change test cases added or evolved

6

21

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Agile Intent
Test cases an integral part of the project

Living active artifacts, rather than separate informal
document

Downside: maintaining test cases just as difficult as
maintaining any artifact (eg, requirements document)

Especially where problem and design intent are missing
Unit tests are not semantically rich enough by themselves to
capture design decisions
No way to determine which goals and intentions are still valid
and which have been abandoned

22

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Agile Intent
Proposed approach: Intent-First Design

Semi-formal intent annotations
Light-weight, maintainable documentation of requirements
Get benefits without extra-process burdens

Sufficiently comprehensible intentional models
Sufficiently usable support tools
Should meld easily with agile processes

Underlying ideas
Intent expressed in terms of goals is appropriate abstraction

Help maintain both requirements (test cases) and code
Programmers assistant

Interactive feedback on how
To model intent
To write code to meet requirements in intent model

Build on top of Inscape work
Capturing semantic intent
Coordinating developers

23

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Agile Intent
Intent-First Integrated Development Environment
(IDE)

Language aware editor
Plug-in tools to manage and evolve intent model
Automated support for testing and validation

Integrated with version management
Visualization support
Team support and coordination
Evolution support (ala Inscape)

Changes in requirements model revisions notices in intent
model
Changes in intent model notification of potential consistency
problems between code and intent model
Similarly backward consistency of code to requirements
Keeps requirements, intent model and code consistent

24

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Agile Intent
IF-IDE (continued)

Multiple views into the code
Code view: view into the traditional program editor environment,
annotated with intent

Explicitly or abstracted thru graphical and visual cues
Intent view: more comprehensive view

Includes use stories, features, non-functional goals, etc
Code elements abstracted to appropriate levels

(Both navigable thru hypertext links)
Status view: represents intent model relative to the current
level of implementation and correctness

Use requirements prioritized
Change view: code and requirements addressed in terms of
intent

Identify uncertain requirements, unstable code
Intent provides a useful and meaningful abstraction in this context

7

25

Architecture and Design Intent Lecture 2

© 2006, Dewayne E Perry EE 382V

Conclusions
Architecture and design intent are critical in creating
and evolving software systems
Need shared understanding of Intent, else

Too easy to introduce faults
Too easy to fail

Problem exacerbated with COTS and other
components that must be treated as a black box

Context of intent unavailable
Hence cannot (re)discover and (re)construct architectural and
design intent from internal details
Hence, explicit intent descriptions all the more critical for
correct and effective use

