Architecture and Design Intent Lecture 2

General Overview

Dewayne E Perry
ENS 623A
Office Hours: T/Th 11:00-12:00
perry @ ece.utexas.edu
www.ece.utexas.edu/~perry/education/382v-s06/

© 2006, Dewayne E Perry EE 382V

Architecture and Design Intent Lecture 2

Background

2 Architecture and Design Intent in Component/COTS

Based Systems

% Keynote talk for ICCBSS 2006

% Continues in the vein of my previous research at Bell Labs
> Inscape
> Software architecture

% Current, important, emerging topic in software architecture
> Eg, see Bosch 2004, Duenas 2005

L Reflects some of the initial thinking for Matt Hawthorne's

and Paul Grisham’s thesis proposals

© 2006, Dewayne E Perry EE 382V 2

Architecture and Design Intent Lecture 2

Basic Issues

2 In creating systems we make choices because we have some
intent in mind
% Some requirements over others
% One architecture instead of another
% A specific algorithm or data structure over others

2> When we create a product or component we have some idea of
how we intend it to be used
% May be specific or it may be general

2> We use products or components with specific /nfent in mind
% If a general product or component, may only use a part of it
& If a specialized product or component may still use only a part of it

> In evolving systems
% We often have to divine the original /intent to understand how to
make changes
% We change things because we have some new intent in mind

© 2006, Dewayne E Perry EE 382V 3

Architecture and Design Intent Lecture 2

Basic Facts about COTS/Components

2 Integrating COTS and components often results in

disasters from architectural mismatch [Garlan et al]
%Lack of understanding of the intent (or assumptions) of
components with respect to
> Resources
v"Who controls them, who uses them, how they are used, etc
> Interactions with other components
v'"Who they interact with, their characteristics, their data models, etc
v'How they interact, eg, synchronously or asynchronously, etc
> Global architecture
v Topology, control flow, etc
> System Construction
v'Construction, instantiation, interactions, etc

© 2006, Dewayne E Perry EE 382V 4




Architecture and Design Intent Lecture 2

Basic Facts

> Spend 80% of our time in (re)discovery to understand
legacy systems [Bell Labs Study]
% A large part of that is trying to determine the original
intent of the architecture, design and code
> Rarely a problem in small group projects
% But even there can be forgotten or misunderstood

> Coordination of multiple developers a major problem
% Intent critical in choreographing multiple developers in initial
development
% Intent even more critical in evolutionary development

© 2006, Dewayne E Perry EE 382V 5

Architecture and Design Intent Lecture 2

Basic Problems & Benefits

> Traditionally, intent conveyed by documentation
%0S360 documentation
> 6 months project workbook: 5 feet
> Daily changes: 2 inches

> One release of Lucent's 5ESS system
% 11.8% of design and implementation faults due to ambiguous
requirements
%30.6% of design and implementation faults due to incomplete
or omitted requirements or design
%42.4% - due to traditional problems of documentation

2 Documentation as a shared model of intent
% Requirements - a shared model of the problem
% Architecture - a shared model of the basic solution structure
% Design and code - shared model of the machine in more
detail

© 2006, Dewayne E Perry EE 382V 6

Architecture and Design Intent Lecture 2

Intent and Evolution

2 Everything changes
L World changes: uses and requirements change
% Technology changes
% Operating context changes
% System itself changes: improvements, faults fixed

2 What persists in the face of evolution: CODE
% Requirements, architecture, design documents out of date
% Code is only thing up to date
% Code: desiccated relic of a long intellectual process
> Difficult to reconstruct the intent and reasoning
» Too many ways to backtrack

> Difficulties result:
%Not clear how requirements changes impact the system
%Not clear how structural changes impact the system
%Not clear how code changes impact the architecture or the
system

© 2006, Dewayne E Perry EE 382V 7

Architecture and Design Intent Lecture 2

Some Basic Distinctions

2 Decisions - is at best a description of what is
decided
% May indicate alternatives
% May have some considerations about the alternatives
% May go further and evaluate the alternatives
% May indicate why the decision was made

> Intent - why decisions were made the way they were
% Why alternatives were not chosen
L What effect the evaluations had on the design choices
% What expectations result from the choice

© 2006, Dewayne E Perry EE 382V 8




Architecture and Design Intent Lecture 2

Some Prior Approaches

> Potts and Bruns 1988
% Generic model for delineating generic elements of a design rationale
> Artifacts, issues, alternatives, justifications, etc
> Relationships among these elements
% Design deliberation: issue, set of alternatives, and a justification
for the decision
% Result: a design history that can be used in the face of changing
requirements

> Perry/Wolf 1989/1992
% Called for rationale in addition to elements and form

> Gruenbacher, Egyed and Medvidovic 2001/4
% Component, bus, system, property model
% Captures enumerated design decisions in terms of dimensions
>C, B, S, CP, BP, SP, etc
> Eg, bus properties (BP): synch, asynch, local, distributed, secure
% Lightweight approach

© 2006, Dewayne E Perry EE 382V 9

Architecture and Design Intent Lecture 2

Recent Complaints
> Bosch 2004

%Laments general lack of support for architecture rationale
% Design decisions are not first class entities

% Design decisions often cross cutting and intertwined

% Design rules easily violated

% Obsolete design decisions and artifacts rarely removed

% High maintenance costs

> Duenas and Capilla 2005
%Propose a set of
> Elements
» Information
> Graphical notations
to record design decisions
% Architecture = composition of design decisions

© 2006, Dewayne E Perry EE 382V 10

Architecture and Design Intent Lecture 2

Intent and Uncertainty

2 Uncertainty a fundamental fact of development life
% Change and uncertainty interdependent
%Each causing the other

> Changes often have far reaching effects
% Especially if persist until later states of a project
% Technology changes can simplify or complicate
% Business changes can create significant uncertainty

> Attempts to cope
% Delayed binding to create dynamically adaptable systems
% Still, deferred design decisions can cause significant
problems

> Need methods, techniques, processes and tools
% To support design decisions
% Convey architecture and design intent

% Robustly in the face of change and uncertainty

© 2006, Dewayne E Perry EE 382V 1

Architecture and Design Intent Lecture 2

Intent and Evolution

> Two interesting development contexts

% Traditional planned developments
» Often large projects
» Heavyweight processes
» Highly concurrent, heavily coordinated
> Dominated by project plans and milestones

% Agile developments
> Often small projects, or small parts of larger projects
> Lightweight processes, customer focused
» Test driven, immediate solution, refactored evolution
» Concurrent, lightly coordinated

> Two ideas to explore

% Planned: rationale reification
> Formal and semi-formal representations of rationale
» In the context of formal models of requirements and architecture
> Basis for self-managing and self-adaptive systems

% Agile: Intent-first design
> Analogous to test-first design
» Embedding light-weight, maintainable requirements models into source

code

> Use semi-formal models of intent

© 2006, Dewayne E Perry EE 382V 12




Architecture and Design Intent Lecture 2

Earlier work

> The Inscape Environment
% Constructive approach based on
» Formal interface specifications
» Semantic interconnections determined during construction
> Set of propagation rules
% Basic rule: all preconditions and obligations must be satisfied
or propagated to the interface
%Preconditions or obligations unpropagated and unsatisfied
represent faults
> Called precondition ceiling and obligations floors
% Specification contributions
> Obligations
> Multiple results, some of which are considered as exceptions
v Set of rules for handling them
v'Useful for fault tolerance and reliability
% Predicate based retrieval of components

© 2006, Dewayne E Perry EE 382V 3

Architecture and Design Intent Lecture 2

Earlier Work

> Perry/Wolf Architecture model

% Architecture = (elements, form, rationale)

% Components and connectors the basic elements

% Form is properties and relationships (ie, interactions) and
constraints on those properties and relationships

% Rationale is the justification for the elements and form

> The primary carrier of architectural intent

% Architecture styles codify basic aspects of intent to be
applied to elements and form

% Rationale and styles are critical for managing evolution

© 2006, Dewayne E Perry EE 382V 14

Architecture and Design Intent Lecture 2

Earlier Work

> Architectural Prescriptions
% Transforming software requirements into architecture
prescriptions
%“KAOS > Preskriptor
> Goals > constraints
> Architect has freedom to chose how goals are distributed
among architectural elements as constraints
> Goals as a means of expressing requirements intent
> Prescriptions as a means of expressing architectural intent
% Architectural styles important as a form of constraint
codification
> Incomplete architecture prescriptions
> Applied to specific elements, collections of elements of the
entire system
> Also capture architecture intent

© 2006, Dewayne E Perry EE 382V 15

Architecture and Design Intent Lecture 2

Earlier Work

> Intent-based Architectures

L Introduces architecture intent as a key concept

L Intent of an element encapsulates its functional purpose

L Intent associated with roles in architecture
> Elements with similar intent can be substituted for each other
> Based on higher levels of abstraction
> Direct link between requirements and architecture

L Enables reification of an architecture in one or more

functionally equivalent implementations

% Basis for self-configuring adaptive systems
> Respond to changes in environmental or operational conditions
> By reconfiguring - subject to functional and nonfunctional

constraints

© 2006, Dewayne E Perry EE 382V 16




Architecture and Design Intent Lecture 2

Rationale Reification

> Basic idea:
% Begin with formally specified requirements and architecture
> Eg, KAOS requirements specifications and architecture
prescriptions
% Requirements are in problem domain terms: architecture
often in solution domain terms
» Systems drivers such as user needs, business goals, strategies
are incorporated in requirements
% Currently no connection between the two
> No rationale, even informally
> Mapping from problem domain to solution is problematic
% Current focus of architecture:
> Elements and form
> Rationale, if treated at all, is informal and general
% Rationale reification
> Capture refinements and transformations used by architects in
creating the architecture from the requirements

© 2006, Dewayne E Perry EE 382V 17

Architecture and Design Intent Lecture 2

Rationale Reification

> Basis for systematic requirements and architecture based
evolution
% Changing requirements lead to changes in rationale and associated
changes in the architecture
% Requirements become an integrated part of the system structure
rather than something separate and apart

2 Rationale determines the mapping between the functional and
non-functional requirements and the architecture
% Abstract architecture in terms of problem domain (ala Preskriptor)
and models functional intent
% Concrete architecture then related to abstract via intent
% Refinement used to decompose functinality into smaller functional
elements
Y Transformations used functional structure into an architecture that
satisfies the non-functional requirements
% Requirements > (rationale) 2> architecture
> Captures semantics and conditions for mappings
> Enables traceability from goals to structure

© 2006, Dewayne E Perry EE 382V 18

Architecture and Design Intent Lecture 2

Rationale Reification - Tool Support

> Requirements modeling support
% Such as the KAOS System of Axel van Lamsweerde

> Rationale modeling support
% Create and evolve mappings and transformations

> Architecture modeling support
% Create, edit and view the architecture models

> Intent modeling and visualization support
% Ties everything together

> Self-managing/adaptive support
% Styles, components, etfc

© 2006, Dewayne E Perry EE 382V 19

Architecture and Design Intent Lecture 2

Agile Intent

> Agile context
% Set of methods, techniques and processes to cope with
changing and uncertain requirements. Eg,
> Feature oriented milestones
> sort iterations with frequent deliveries
> Close interactions with customers
> Deferred design decisions
% Most popular: extreme programming (XP)
> Requirements captured as acceptance and unit test cases
v'Written from customer stanpoint
> Test-first design
v'Written before code
v'Can determine if requirements already satisfied
» Code written to meet minimum needs of requirements
v Just sufficient, complex as needed - simple as possible
» Requirements change > test cases added or evolved

© 2006, Dewayne E Perry EE 382V 20




Architecture and Design Intent Lecture 2

Agile Intent

> Test cases an integral part of the project
YLiving active artifacts, rather than separate informal
document

> Downside: maintaining test cases just as difficult as
maintaining any artifact (eg, requirements document)
% Especially where problem and design intent are missing
L Unit tests are not semantically rich enough by themselves to
capture design decisions
%No way to determine which goals and intentions are still valid
and which have been abandoned

© 2006, Dewayne E Perry EE 382V 21

Architecture and Design Intent Lecture 2

Agile Intent

> Proposed approach: Intent-First Design
% Semi-formal intent annotations
Y Light-weight, maintainable documentation of requirements
L Get benefits without extra-process burdens
> Sufficiently comprehensible intentional models
> Sufficiently usable support tools
» Should meld easily with agile processes

2 Underlying ideas
L Intent expressed in terms of goals is appropriate abstraction
» Help maintain both requirements (test cases) and code
% Programmers assistant
> Interactive feedback on how
v To model intent
v'To write code to meet requirements in intent model
> Build on top of Inscape work
v/ Capturing semantic intent
v Coordinating developers

© 2006, Dewayne E Perry EE 382V 2

Architecture and Design Intent Lecture 2

Agile Intent

> Intent-First Integrated Development Environment
(IDE)
%Language aware editor
%Plug-in tools to manage and evolve intent model
% Automated support for testing and validation
> Integrated with version management
% Visualization support
% Team support and coordination
% Evolution support (ala Inscape)
> Changes in requirements model > revisions notices in intent
model
» Changes in intent model > notification of potential consistency
problems between code and intent model
> Similarly backward consistency of code to requirements
> Keeps requirements, intent model and code consistent

© 2006, Dewayne E Perry EE 382V 23

Architecture and Design Intent Lecture 2

Agile Intent

> IF-IDE (continued)

% Multiple views into the code
> Code view: view into the traditional program editor environment,
annotated with intent
v Explicitly or abstracted thru graphical and visual cues
> Intent view: more comprehensive view
v'Includes use stories, features, non-functional goals, etc
v'Code elements abstracted to appropriate levels
> (Both navigable thru hypertext links)
> Status view: represents intent model relative to the current
level of implementation and correctness
v'Use requirements prioritized
» Change view: code and requirements addressed in terms of
intent
v Identify uncertain requirements, unstable code
v'Intent provides a useful and meaningful abstraction in this context

© 2006, Dewayne E Perry EE 382V 24




Architecture and Design Intent Lecture 2

Conclusions

2 Architecture and design intent are critical in creating
and evolving software systems

> Need shared understanding of Intent, else
%Too easy to introduce faults
% Too easy to fail

> Problem exacerbated with COTS and other

components that must be treated as a black box
% Context of intent unavailable
% Hence cannot (re)discover and (re)construct architectural and
design intent from internal details
% Hence, explicit intent descriptions all the more critical for
correct and effective use

© 2006, Dewayne E Perry EE 382V 25




