
1

1

Architecture and Design Intent

© 2006, Dewayne E Perry

Lecture 3

EE 382V

Semantic Interconnection Models
& Inscape

Dewayne E Perry
ENS 623A

Office Hours: T/Th 11:00-12:00
perry @ ece.utexas.edu

www.ece.utexas.edu/~perry/education/382v-s06/

2

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Introduction
Slow progress in management of software evolution

Increased use of tools, environments, automation
But, same underlying models

One of the primary approaches used: the
Interconnection Model

IM = ({ Objects } , { Relations })
Currently used models

Unit interconnection model
Syntactic interconnection model

Will introduce a new model
Semantic interconnection model

3

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Unit Interconnection Model
Basic Model

Unit IM = ({ units } , { ‘‘depends on’’ })
Units are typically files or modules
Basic relationship is one of dependency

Utility
Supports and encourages modularity
Captures notion of encapsulation
Captures notion of localization

4

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Example Uses of Unit IM
Compilation contexts

C IM = ({ files } , { ‘‘includes’’ })
Recompilation strategies

Ada IM =({ compilation-units }, { ‘‘with’’,‘‘changed more
recently than’’ })

Change notification
CN IM = ({ changed-units } , { ‘‘is used by’’ })

System modeling
SM IM = ({ systems, files }, { ‘‘is composed with’’ })

2

5

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Unit IM Evaluation
Useful in a wide variety of contexts
But, granularity is too large — units are generally
composite objects
Often need only part of the context supplied by this
grain of object, e.g.,

May recompile too much
May broadcast change notification more than is necessary

In general, want to compose systems out of smaller
pieces than supported by the unit model

Thus, we need a finer grain of interconnection for
more effective management of evolution in software
systems

6

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Syntactic Interconnection Model
Basic Model

Syntactic IM = (
{ functions, procedures, types, variables, ... } ,
{‘‘is used at’’, ‘‘is set at’’, ‘‘calls’’, ‘‘is called by’’,...}
)

objects are the syntactic elements in a programming language
relations reflect the basic uses of these objects

Utility
localizes the interconnections used to those used in writing
software
captures basic objects of evolution

7

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Example Uses of Syntactic IM
Change management
Cross Reference IM = (

{ functions, procedures, types, variables, ...,
locations} ,

{ ‘‘is defined at’’, ‘‘is set at’’, ‘‘is used at’’ }
)

Static analysis - basic model to determine
semantic analysis
unreachable code, unset variables, etc.

8

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Example Uses of Syntactic IM
Smart recompilation
Smart Recompilation IM = (

{ functions, procedures, types, variables, ... } ,
{‘‘is used at’’, ..., ‘‘is changed to’’, ‘‘is deleted from’’,
‘‘is added to’’}

)
System modeling
System Modeling IM =(

{systems, system-components, functions, procedures,
types, variables, ...} ,
{‘‘is used at’’, ‘‘is set at’’, ‘‘calls’’, ..., ‘‘is composed with’’}
)

3

9

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Syntactic IM Evaluation
Advantages over unit interconnection model:

Have a finer degree of interconnections and a richer set
of relations

Have explicit interconnections between objects of program
construction

But, the following shortcomings:
Have no notion why these interconnections exist
No indication how the objects were intended to be used
No indication why the objects were in fact used

Thus we need to incorporate semantic information into
our model in order to increase the effectiveness of
our tools in managing the evolution of software
systems

10

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Semantic Interconnection Model
Motivation

Need a way to express how objects are meant to be used
and to capture how, in fact, they are used
Algebraic specifications are particularly apt for expressing
relations between objects and how they are meant to be
used
Input/output predicates express this aspect perhaps less
elegantly, but are more suggestive about how objects are
used

Predicates and interconnections
Predicates provide the basic vocabulary with which to
describe the behavior required and produced by system
components
Metaphor for semantic interconnections: a component with
its pre-conditions and post-conditions as a hardware chip
with its input and output pins.

11

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Semantic Interconnection Model
Basic Model

Semantic IM = (
{functions, procedures, types, variables, ..., predicates} ,
{‘‘is used at’’, ‘‘is set at’’, ‘‘calls’’, ‘‘is called by’’, ...,
‘‘satisfies’’}
)

Example uses in The Inscape Environment
program construction
program evolution
version control

12

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Inscape Semantic IM
Inscape IM = (

{..., preconditions, obligations, postconditions, exceptions} ,
{..., ‘‘satisfied by’’, ‘‘satisfies’’, ‘‘propagated’’, ‘‘precludes’’,
‘‘handles’’, ...}

)

Pre-conditions/obligations are satisfied by post-conditions or
are propagated to the interface
Post-conditions satisfy preconditions/obligations and are
propagated to the interface
Failure of some preconditions can be handled by exception
handlers
Some exceptions can be precluded by the satisfaction of their
related preconditions

4

13

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Semantic IM Evaluation
Construction

Enforce the consistent use of the Instress specifications
Record the relationships between predicates
Enforce the semantics of program construction with respect
to the specified interfaces

Evolution
To determine the implications and extent that changes to
interfaces have on implementations — for example,

whether there is any effect at all
whether code is no longer needed
whether new code is required

To determine the implications and extent that changes to
implementations have on their interfaces
To provide facilities for simulating and propagating changes
To guarantee the consistency and completeness of changes

14

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Summary
The semantic interconnection model incorporates the
advantages of the unit and syntactic interconnection
models and provides extremely useful extensions

Formalize the semantics of program construction
Provide a deeper understanding of the semantics of change
Define intuitive notions of version equivalence and
compatibility

With this model, we provide tools that are
knowledgeable about the process of system
construction and evolution and that work in symbiosis
with system builders to construct and evolve large
systems

15

Architecture and Design Intent

© 2006, Dewayne E Perry

Lecture 3

EE 382V

The Inscape Environment

16

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Background
Complexity

Basic issues
No two parts alike - ie, all parts distinct
Scale up by addition, not replication
Very large number of states – hard to conceive, understand

2 kinds of complexity
Intricacy

Particularly true of algorithms
Like a Bach 4 voice fugue

• Horizontal and vertical relationships
• Hard to change one note without severe repercussions

Wealth of detail
Nothing very deep, just masses of details
Like a Strauss tone poem, or Mahler symphony

• Massive number of notes on a page – provide texture
• Missing one would hardly be noticed

Makes very hard to comprehend the entire system (eg, 10M lines)

5

17

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Complexity: Intricacy (Bach)

18

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Complexity: Wealth of Detail (Strauss)

19

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Background
Model of software development environments

SDE model = { policies, mechanisms, structures }
4 classes of SDEs

Individual:
Primary issue: construction
Mechanisms dominate

Family:
Primary issue: coordination
Structures dominate

City:
Primary issue: cooperation
Policies dominate

State:
Primary issue: commonality
Higher-order policies dominate

20

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Inscape Overview
A City Model SDE

Constructive use of module interface specifications
Environment supported crowd control

Concerned about:
Complexity: intricacy, wealth, and invisibility of detail
Evolution: not just a matter of ‘‘getting it right the first
time’’
Scale: lengthy, large projects with large groups of people

6

21

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Inscape Approach
Models of software interconnections
Models of software development environments
Formalize the software development process
(specifically system construction and evolution)
Practical use of specification and verification
technology: the constructive use of specifications
Incorporate intelligence/understanding into the
environment:

of specifications
of the software development process
of the implementation language

22

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Research Strategy
Systematically work out the implications of using
formal interface specifications.
Dance around the ‘‘tarpit’’ of verification

use ‘‘shallow’’ consistency checking (ie, tend toward pattern
matching, simple deductions)
automate as much as possible
interact where cannot automate

Use incremental techniques to distribute the cost of
analysis

fine grain: statement
large grain: operation

23

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Structure of the Inscape Project
Instress Interface Specification Language
Inform System Construction
Intertwine Interface Propagation
Inquire Project/System Browser/Search Mechanism
Infuse System Evolution
Integrate Integration/Regression Testing
Invariant Version Management

24

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Module Specifications — Basis
Basis: Hoare Input/Output Predicates
Extensions:

Obligations — ‘‘entailed’’ in addition to ‘‘known’’
Multiple Results — exceptional in addition to normal results
Three flavors of Preconditions (because of relationship with
exceptional results):

assumed - assumed to be true; must satisfy or propagate
validated internally validated preconditions; must either satisfy
or handle the exception
dependent truth not knowable until an attempt (without special
knowledge, no way to satisfy); must handle exception

7

25

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Module Specifications - Details
Vocabulary of the abstraction
Data objects and properties
Relationships among data objects
Operations - effects and side effects
Relationships among operations
Relationships among operations and data
Exceptions - effects and side effects
Exception recovery

26

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Module Specifications
Instress — the module interface specification
language

specification logic (SL)
C syntax for declarations
SL annotations for data object properties and operation
interface behavior
pragmatic information

Analysis - Instress analysis ensures that
Predicate definitions are consistent Precondition,
Postcondition, Obligation, and Property lists are consistent
Validated and Dependent Preconditions are represented as
Failed Conditions in at least one exception
<in> parameters have Preconditions
<out> parameters have Postconditions

27

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Construction — Semantic Basis
Semantic Dependencies

Origins
operation instantiation
user-specified assertions
object properties

Interconnections, Dependencies
postconditions satisfy preconditions
postconditions satisy obligations

Interface Propagation
Incremental Basis

unsatisfied preconditions/obligations
accumulated postconditions

Function of Components
sequence sequents
operation local declarations and implementation sequence
selection boolean expression, then and else sequences
Iteration boolean expression and loop bodysequence

28

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Construction — Control Flow Basis
Formalization of Exception Handling:

Precluded associated failure condition has been
satisfied - no need to handle the exception.

pruned conscious refusal - associated preconditions
become assumed

reported exception propagated, possibly with repair,
to the interface.

recovered exception handled by retrying the operation,
possibly with repair

repaired results of exception fixed & merged with
successful results the successful case

ignored results of the exception are satisfactory &
merged with successful results

coalesced two or more exceptions merged and
propagated

introduced arbitrary result considered exceptional and
propagated, possibly with repair

8

29

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Construction — Analysis
Basic rule: preconditions and obligations must be
satisfied or propagated to the interface
Logical barriers: precondition ceilings, obligation
floors (cannot be propagated, hence, must be
satisfied)
Errors in looping structures: postconditions from loop
form a logical barrier to preconditions at point of re-
entry
Completeness of implementation: empty precondition
ceilings and obligation floors, and no looping errors
Correctness: propagated interface ‘‘matches’’
specified interface

30

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Evolution
Semantic Interconnection details

precondition dependence and propagation
obligation dependence and propagation
postcondition satisfaction and propagation

Exception handling
exception preclusion
methods of exception handling

Kinds of Changes:
Predicate definitions - worst case
Precondition, obligation, postcondition, property additions/deletions
Exception failed condition addition/deletion
Exception addition/deletion

Effects on Implementation
Dependency re-analysis

no effect
code no longer needed
new code needed

Exception analysis
effects on preclusion, removal, handling, new handling decisions

31

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Evolution
Affects implementation and interface

Semantic Dependencies
add/remove satisfaction/dependence
add/remove logical barriers
alter propagated predicates (ie, interface)

Exception Handling
propagated internal
internal propagated
* pruned - may affect propagated interface
* ignored - may affect propagated postconditions,
obligations
* precluded - may affect propagated postconditions,
obligations

32

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Evolution
Crowd Control

Addresses Issues:
How to suport large numbers of programmers
How to manage the change process

Choreographed interactions
policies: enforced cooperation
mechanisms: dependence-order clustering, change propagation
structures: hierarchical experimental databases

Unconstrained interactions
policies: voluntary cooperation
mechanisms: user-selected population, change simulation
structures: workspaces

9

33

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Use and Reuse
Predicate-based assistence

Find objects to satisfy preconditions & obligations, produce
desired behavior
Provide associated cost of objects
Use unit, syntactic, and semantic interconnections for
browsing

Predicate-based plug-compatibility
Version equivalence
Version compatibility - dependency & function preservation
Implementation compatibility – effect on propagated
interface

34

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Validation
Incremental static analysis

weaken the specification logic to make it more tractable
weaken consistency checking to make it tractable
propagation - modal propositional calculus

Incremental dynamic analysis
marries module test harness with crowd-control structure
semi-automatic construction of integration test harness
automatic selection of regression tests
interactive extension of regression tests

35

Architecture and Design Intent Lecture 3

© 2006, Dewayne E Perry EE 382V

Research Contributions
Obligation and Multiple Result Specifications
Semantic Interconnections and Propagated Interfaces
Enforcing consistent use of Interface Specifications
Change implication in Interfaces and Implementations
Enforced and Voluntary Cooperation mechanisms and
structures
Integration Test Management
Predicate-based Assistance
Formalization of Version Management concepts

