





Architecture and Design Intent

Lecture 4

## Some More Intuition

- $\rightarrow$  Why we can treat each statement/operation as an indivisible unit **SIntuitive picture of preconditions and postconditions** > postconditions "sink down" through an implementation
  - > preconditions "float up" through an implementation "looking" for satisfaction
  - St the point where a precondition P occurs, either P is known to be true or false, or it is not known whether P is true or false
    - > if P is true, then the precondition is satisfied (and it does not matter where in the preceding sequence it became true)
    - > if P is false, P cannot be propagated to the interface and hence there is a problem with the implementation (it also does not matter where P became false, except to provide a range in which to fix the problem)
    - > if P is unknown, then it is unknown "in" all of the preceding statements as well

Superiority, obligations are not quite so tractable

© 2006, Dewayne E Perry

EE 382V





| P1                  | is defined as 1<br>P2       | Result                    |         |
|---------------------|-----------------------------|---------------------------|---------|
| *P                  | known P                     | known P                   |         |
| *P                  | known ¬P                    | known ¬P                  |         |
| *P                  | unknown P, ¬P               | *P                        |         |
| known P             | possible P                  | known P                   |         |
| known P             | possible ¬P                 | possible P, possible ¬P   |         |
| known P             | possible ¬P                 | possible P, possible ¬P   |         |
| possible P          | possible ¬P                 | possible P, possible ¬P   |         |
| possible P          | possible P                  | possible P                |         |
| unknown P           | possible P                  | possible P                |         |
| unknown P           | possible ¬P                 | possible ¬P               |         |
| ote: P +se          | <mark>q Q</mark> is not syn | nmetric                   |         |
| he state o          | f P2 superced               | es the state of P1.       |         |
| <b>whatever</b>     | is known in P2 s            | supplants that of P1.     |         |
| م م برم 🕹 م مارید ا | in D1 in unknown            | n in P2 retains its state | from D1 |

## Lecture 4

| $\begin{array}{c} known P (\neg P) \\ possible P (\neg P) \end{array}$ |
|------------------------------------------------------------------------|
| ) possible $P(\neg P)$                                                 |
| possible P $(\neg P)$                                                  |
| possible P, possible $\neg P$                                          |
| possible P, possible ¬P                                                |
| unknown P, $\neg P$                                                    |
| possible P ( $\neg$ P)<br>possible P, possible $\neg$ P                |
|                                                                        |











| Architecture and Design Intent                                                                                                                      | Lecture 4 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Sequence                                                                                                                                            |           |
| → Let the Sequence $S = S_1 S_n$ where State <sub>0</sub> and Promised <sub>0</sub> have been initialized according to the context of the sequence. |           |
| → The interface for S is propagated as follows: &S.Pre = Needed <sub>1</sub> &S.Post = State <sub>n</sub> &S.Obl = Promised <sub>n</sub>            |           |
| → The content of S.PreCeil and S.OblFloor may be<br>amended according to the context of the use of<br>sequence S                                    | the       |
|                                                                                                                                                     |           |
| © 2006, Dewayne E Perry EE 382V                                                                                                                     | 15        |

| Architecture and D                                                                 | esign Intent Lect                                                                                                                                                                                                                                 | ure 4 |  |  |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| Selection (IF)                                                                     |                                                                                                                                                                                                                                                   |       |  |  |
| expression,<br>where<br>T.State <sub>0</sub><br>E.State <sub>0</sub><br>T.Promised | ection Statement S consist of BE = the boolean<br>T = the then sequence, and E = the else sequence<br>= BE.True.Post<br>= BE.False.Post<br>= BE.True.Obl<br>= BE.False.Obl                                                                        |       |  |  |
| S.Pre<br>S.Post                                                                    | ce for S is propagated as follows:<br>= BE.Pre ∪ (T.Pre - T.PreCeil) ∪ (E.Pre - E.PreCeil)<br>= T.Post +par E.Post<br>= T.Obl ∩ E.Obl                                                                                                             |       |  |  |
| T.OblFloor<br>E.OblFloor                                                           | f the selection statement S is amended as follows:<br>= T.Obl - S.Obl<br>= E.Obl - S.Obl<br>= (T.Pre -con BE.True.Post) ∪ (T.Pre -con E.Pre) ∪<br>(T.Pre -con B.Pre)<br>= (E.Pre -con BE.False.Post) ∪ (E.Pre -con T.Pre) ∪<br>(E.Pre -con B.Pre) |       |  |  |
| © 2006, Dewayne E Perry                                                            | EE 382V                                                                                                                                                                                                                                           | 16    |  |  |







| Architecture and Des                              | ign Intent                                                                                                                           | Lecture 4 |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                   | Iteration [Repeat]                                                                                                                   |           |
| boolean ex<br>sequence) v<br>B.State <sub>0</sub> | eration Statement R consist of BE =<br>pression, and B = the loop body (a<br>where<br>= BE.True.Post<br>= BE.True.Obl                | the       |
| R.Pre =<br>R.Post =                               | ace for I is propagated as follows:<br>= BE.Pre ∪ (B.Pre - B.PreCeil)<br>= B.Post +seq BE.False.Post<br>= B.Obl +seq BE.False.Obl    |           |
| B.OblFloor :                                      | of the loop body B is amended as fo<br>B.Obl - I.Obl<br>(B.Pre -con BE.True.Post) $\cup$ (B.Pre -con I<br>$\cup$ (B.Pre -con B.Post) |           |
| → There is a                                      | Error when R.Pre -con B.Post $\neq \emptyset$                                                                                        |           |
| © 2006, Dewayne E Perry                           | EE 382V                                                                                                                              | 20        |















| Architecture and I      | esign Intent   |                                                                                                                                                                                                                       | Lecture 4 |
|-------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                         | Assumed :      | ValidFilePtr ( FP )                                                                                                                                                                                                   |           |
|                         | Validated :    | FileOpen (FP)<br>LegalRecordNr (R)<br>RecordExists (R)                                                                                                                                                                |           |
|                         | Dependent :    | RecordReadable ( R )<br>RecordConsistent ( R )                                                                                                                                                                        |           |
|                         | ReadRecord ( F | P, R, &L, &Bufptr)                                                                                                                                                                                                    |           |
|                         | Postconditions | : ValidFilePtr (FP)<br>FileOpen (FP)<br>LegalRecordNr (R)<br>RecordEtists (R)<br>Was (RecordCasts(R))<br>Was (RecordConsistent (R))<br>Allocated ("Bufptr)<br>0 <= L <= AllocatedSize ("Bufptr)<br>RecordIn ("Bufptr) |           |
|                         | Obligations :  | Deallocated ( "Bufptr )                                                                                                                                                                                               |           |
| © 2006, Dewayne E Perry |                | EE 382V                                                                                                                                                                                                               |           |

| Architecture and Design Inten | t                           | Lecture 4 |
|-------------------------------|-----------------------------|-----------|
|                               |                             |           |
|                               |                             |           |
| Exception:                    | IllegalRecordNr ( R )       |           |
| Postconditions:               | ValidFilePtr ( FP )         |           |
|                               | FileOpen (FP)               |           |
|                               | Not ( LegalRecordNr ( R ) ) |           |
| Obligations:                  | <none></none>               |           |
| Recovery:                     | Use a legal record number   |           |
|                               |                             |           |
|                               |                             |           |
|                               |                             |           |
|                               |                             |           |
| © 2006, Dewayne E Perry       | EE 382V                     | 30        |

| chitecture and Design | Intent                            | Lecture |
|-----------------------|-----------------------------------|---------|
| Exception             | n: RecordInconsistent ( R )       |         |
| Postcon               | litions: ValidFilePtr ( FP )      |         |
|                       | FileOpen (FP)                     |         |
|                       | LegalRecordNr ( R )               |         |
|                       | RecordExists ( R )                |         |
|                       | Was (RecordReadable (R))          |         |
|                       | Not (RecordConsistent (R))        |         |
|                       | Allocated ( *Bufptr )             |         |
|                       | $0 \le L \le Allocated (*Bufptr)$ |         |
|                       | RecordIn (*Bufptr)                |         |
| Obligati              | ons: Deallocated ( *Bufptr )      |         |
| Recover               | y: ReconstructRecord ( Bufptr )   |         |
|                       |                                   |         |
|                       |                                   |         |

| Formaliza                             | ation of Exception Handling                                                                                                                                |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | ssociated precondition has been satisfied —<br>to handle the exception.                                                                                    |
|                                       | al to handle the exception. The associated<br>ome <i>assumed</i> preconditions that must be                                                                |
| → reported - The e repair, to the int | xception is propagated, possibly with some<br>erface.                                                                                                      |
|                                       | exception is handled by retrying the operatio<br>exception. There may be some repair to<br>ihood of success.                                               |
| compensated for,<br>match the succes  | esults of the exception are fixed, or<br>in some fashion — for example, fixed to<br>sful results. Control flow then proceeds in th<br>the successful case. |
|                                       | sults of the exception are satisfactory. The<br>ted as a successful result.                                                                                |
| 2006, Dewayne E Perry                 | EE 382V                                                                                                                                                    |

Architecture and Design Intent

Lecture 4

33

## Examples of Exception Handling

- → If RecordExists(R) is known to be true, then the handling of RecordNonexistent(R) is precluded.
- → If it is not known to be true, the most obvious course is to report (ie, propagate) it to the caller.
- → One possible way to handle the RecordInconsistent(R) exception is to fix the record (use the repair handling form) by means of the recovery routine and then continue.
- → If the damage to the record is unimportant, then ignore the exception and treat the result as successful.

EE 382V

© 2006, Dewayne E Perry

| Exce  | ption:      | RecordNonexistent ( R )       |  |
|-------|-------------|-------------------------------|--|
| Poste | conditions: | ValidFilePtr ( FP )           |  |
|       |             | FileOpen ( FP )               |  |
|       |             | LegalRecordNr ( R )           |  |
|       |             | Not RecordExists ( R )        |  |
| Oblig | gations:    | <none></none>                 |  |
| Reco  | very:       | Try a different record number |  |
|       |             |                               |  |

EE 382V

34

© 2006, Dewayne E Perry

| rchitecture an        | d Design Intent |                                   | Lecture |
|-----------------------|-----------------|-----------------------------------|---------|
|                       | Exception:      | I/O-Error (R)                     |         |
|                       | Postconditions: | ValidFilePtr ( FP )               |         |
|                       |                 | FileOpen (FP)                     |         |
|                       |                 | LegalRecordNr ( R )               |         |
|                       |                 | RecordExists ( R )                |         |
|                       |                 | Not ( RecordReadable ( R ) )      |         |
|                       |                 | or Not ( RecordConsistent ( R ) ) |         |
|                       |                 | Allocated ( *Bufptr )             |         |
|                       |                 | 0 <= L <= Allocated ( *Bufptr )   |         |
|                       |                 | RecordIn ( *Bufptr )              |         |
|                       | Obligations:    | Deallocated ( *Bufptr )           |         |
|                       | Recovery:       | ReconstructRecord ( Bufptr )      |         |
|                       |                 |                                   |         |
| 2006, Dewayne E Perry |                 | EE 382V                           |         |

| Architecture and Design I     | ntent                                                       | Lecture 4 |
|-------------------------------|-------------------------------------------------------------|-----------|
|                               | Summary                                                     |           |
| → Forward Error               | Recovery                                                    |           |
| → Instress                    |                                                             |           |
| &explicit specif              | ication of each exception                                   |           |
| Sexplicit specif              | ication of minimal handling                                 |           |
|                               | ormation about severity and recovery                        |           |
| Symethod for de               | etermining exceptions                                       |           |
| → Inform/Infuse               |                                                             |           |
| <b>S</b> formalization        | of exception handling                                       |           |
|                               | lling of exceptions                                         |           |
| ♦ knowledgeable<br>exceptions | about relations between preconditions of                    | and       |
|                               | struction of coherent interface (with on the implementation |           |
|                               |                                                             |           |
| 2006, Dewayne E Perry         | EE 382V                                                     | 3         |