
1

1

Architecture and Design Intent

© 2006, Dewayne E Perry

Lecture 4

EE 382V

Propagation Logic & Exception Handling

Dewayne E Perry
ENS 623A

Office Hours: T/Th 11:00-12:00
perry @ ece.utexas.edu

www.ece.utexas.edu/~perry/education/382v-s06/

2

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

One Direction of Inscape Research
Make practical use of specification and verification technology

Use the module interface specifications in the construction of
software systems
Implement a semantic interconnection model that records unit,
syntactic and semantic dependencies as the basis for evolution
Make practical trade-offs between logic and analysis

how weak a logic?
how strong a form of consistency checking?

Instress — the module interface specification language
Specification logic (SL), C syntax for declarations
SL annotations for data object properties and operation interface
behavior

Inscape — using the specifications
Data object/operation specification instantiation

as the basis for the semantic interconnection and propagation
as a result of variable names and operation arguments

Propagation logic (PL)
construct interfaces for sequence, selection, iteration
construct interfaces for implementations of operations

3

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Goals of Analysis
Incremental Analysis

Use specifications as a bootstrapping mechanism — ie,
assume that they are correct and use them
An operation is the gross grain of incremental analysis (the
collection of operations individually analyzed forms the
analysis of a module)
A statement is the fine grain of incremental analysis (the
goal is to be able to consider each statement independent of
its surrounding context)

Basic Rule:
Every precondition and obligation must either be satisfied
within the implementation or propagated to its interface.

4

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Some Logical Intuition
Separate consistency from propagation

Consistency depends on trade-offs about how to manipulate
the specification logic
Propagation depends on trade-offs bout how to statically
represent a possible-execution tree as a single thread of
knowledge

Temptation to use or
In reducing a possible-execution tree to a static (sequential)
directed graph, how do you handle the results of joining two
paths?
Say P is true in one path, Q in the other — one is tempted
to describe the result as P or Q
However, if not P later becomes true, the inference of Q is
not a valid one, because it might well have been the path
that produced P that was actually executed.

2

5

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Some More Intuition
Why we can treat each statement/operation as an
indivisible unit

Intuitive picture of preconditions and postconditions
postconditions ‘‘sink down’’ through an implementation
preconditions ‘‘float up’’ through an implementation ‘‘looking’’ for
satisfaction

At the point where a precondition P occurs, either P is known
to be true or false, or it is not known whether P is true or
false

if P is true, then the precondition is satisfied (and it does not
matter where in the preceding sequence it became true)
if P is false, P cannot be propagated to the interface and
hence there is a problem with the implementation (it also does
not matter where P became false, except to provide a range in
which to fix the problem)
if P is unknown, then it is unknown ‘‘in’’ all of the preceding
statements as well

Unfortunately, obligations are not quite so tractable

6

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Inscape’s Propagation Logic (PL)
PL is a proposition calculus (SL is a predicate calculus
with quantification) in which

A proposition P is either true (P) or false (¬P)
The state of a proposition is either

unknown P is not known to be either true or false in any
execution path
known P is known to be true in all execution paths
possible P is known to be true in at least one execution path

There is one sentence connective, and
There are the inference rules

+seq a sequential addition or join based on the state of the
propositions
+par a parallel addition or join based on the state of the
propositions
+con a sequential addition or join based on the consistency of
the propositions

7

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Inscape’s Propagation Logic (PL)
Also used in the description of propagation are

Set theory operations: ∈, ∪, ∩, ⊂, ⊆, =, and −
Operations from SL:

consistent P is consistent with Q
isknown P is known in Q

8

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

The Definition of +seq
P1 +seq P2 is defined as follows

Note: P +seq Q is not symmetric
The state of P2 supercedes the state of P1.

whatever is known in P2 supplants that of P1.
whatever in P1 is unknown in P2 retains its state from P1
what is possible in P2 remains so in the result, but may also reduce
what is know in P1 to a possible in the result
except where it was known in P1

3

9

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

The Definition of +par
P1 +par P2 is symmetric and defined as follows

Only what is known (unknown) to be true in both
parts is known (unknown) to be true in a parallel join
of the two parts. What is known in only one part
becomes possible in the result.

10

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

The Definition of +con and -con
P1 +con P2 is defined as

{p1...pk ∈ P1 | p1...pk are consistent P2} ∪ P2
that is, the result of +con is P2 plus those
propositions in P1 that are consistent with P2
P1 -con P2 is defined as

P1 - (P1 +con P2)
that is, the result of -con are those propositions in
P1 that are inconsistent with P2

11

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

The Basis for Propagation

12

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Reasoning about Sequences
The following sets are used for reasoning about each
Sequent Si in the Sequence S = S1 .. Sn
Prei the set of preconditions for sequenti
Posti the set of postconditions for sequenti
Obli the set of obligations for sequenti
PreCeili the preconditions ceilinged by sequenti
OblFloori the obligations floored by sequenti
Statei the current state after sequenti
Promisedi the set of obligations outstanding after sequenti
Neededi the accumulated set of unsatisfied preconditions up

to and including sequenti (from sequentn)
SatPrei the satisfied preconditions for sequenti
UnsatPrei the unsatisfied preconditions for sequenti
SatObli the satisfied obligations for sequenti

4

13

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Sequents
For the Sequence S there is an initial State0 and
Promised0

For each Sequent Si in Sequence S = S1 .. Sn
Statei = Statei-1 +seq Posti
SatPrei = { P ∈ Prei | P is satisfied by Statei-1 }
UnsatPrei = Prei - SatPrei
Neededi = (Neededi+1 - PreCeili) ∪� UnsatPrei
PreCeili = (Neededi+1 -con Posti) ∪ (Neededi+1 -con Prei)
SatObli = { O ∈ Obli | O is satisfied by Statei }
Promisedi = (Promised i-1 - OblFloori) ∪ UnsatObli
OblFloori = Promisedi-1 -con Obli

14

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Sequence Example

15

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Sequence
Let the Sequence S = S1 .. Sn where State0 and
Promised0 have been initialized according to the
context of the sequence.
The interface for S is propagated as follows:

S.Pre = Needed1
S.Post = Staten
S.Obl = Promisedn

The content of S.PreCeil and S.OblFloor may be
amended according to the context of the use of the
sequence S

16

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Selection (IF)
Let the Selection Statement S consist of BE = the boolean
expression, T = the then sequence, and E = the else sequence
where
T.State0 = BE.True.Post
E.State0 = BE.False.Post
T.Promised0 = BE.True.Obl
E.Promised0 = BE.False.Obl

The interface for S is propagated as follows:
S.Pre = BE.Pre ∪ (T.Pre - T.PreCeil) ∪ (E.Pre - E.PreCeil)
S.Post = T.Post +par E.Post
S.Obl = T.Obl ∩ E.Obl

The state of the selection statement S is amended as follows:
T.OblFloor = T.Obl - S.Obl
E.OblFloor = E.Obl - S.Obl
T.PreCeil = (T.Pre -con BE.True.Post) ∪ (T.Pre -con E.Pre) ∪

(T.Pre -con B.Pre)
E.PreCeil = (E.Pre -con BE.False.Post) ∪ (E.Pre -con T.Pre) ∪

(E.Pre -con B.Pre)

5

17

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V 18

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Iteration [While]
Let the Iteration Statement W consist of BE = the
boolean expression, and B = the loop body (a
sequence) where
B.State0 = BE.True.Post
B.Promised0 = BE.True.Obl

The interface for I is propagated as follows:
W.Pre = BE.Pre ∪ (B.Pre - B.PreCeil)
W.Post = (B.Post +par ∅) +seq BE.False.Post
W.Obl = BE.False.Obl

The state of the loop body B is amended as follows:
B.OblFloor = B.Obl
B.PreCeil = (B.Pre -con BE.True.Post) ∪ (B.Pre -con BE.Pre)

∪ (B.Pre -con B.Post)
There is an Error when W.Pre -con B.Post ≠ ∅

19

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V 20

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Iteration [Repeat]
Let the Iteration Statement R consist of BE = the
boolean expression, and B = the loop body (a
sequence) where
B.State0 = BE.True.Post
B.Promised0 = BE.True.Obl

The interface for I is propagated as follows:
R.Pre = BE.Pre ∪ (B.Pre - B.PreCeil)
R.Post = B.Post +seq BE.False.Post
R.Obl = B.Obl +seq BE.False.Obl

The state of the loop body B is amended as follows:
B.OblFloor = B.Obl - I.Obl
B.PreCeil = (B.Pre -con BE.True.Post) ∪ (B.Pre -con BE.Pre)

∪ (B.Pre -con B.Post)
There is an Error when R.Pre -con B.Post ≠ ∅

6

21

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Operation
• Let the Operation O have an implementation
sequence S = S1 .. Sn where S.State0 = and
S.Promised0 = ∅
The interface for O is propagated as follows:
O.Pre = S.Pre - { P | P refers to local variables }
O.Post = S.Post - { P | P refers to local variables }
O.Obl = S.Obl - { P | P refers to local variables }

The state of the sequence S is amended as follows:
S.PreCeil = S.Pre - O.Pre
S.OblFloor = S.Obl - O.Obl

22

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Completeness & Correctness
An implementation I = sequence S = S1 .. Sn for an operation O
is complete if and only if

Every precondition P has either been satisfied or is in the interface
of O. That is, all precondition ceilings (recursively) in S are empty
Every obligation O has either been satisfied or is in the interface
of O. That is, all obligation floors (recursively) in S are empty.
There are no iteration errors (that is, I.Pre -con B.Post = ∅)

A propagated interface PI for operation O is correct with
respect to the specified interface SI for operation O if and
only if

the implementation I for operation O is complete
the interfaces PI and SI are identical

PI.Pre = SI.Pre
PI.Post = SI.Post
PI.Obl = SI.Obl

Note: Redefinition of the propagated interface may be needed to
cast it in terms of the specified interface.

23

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Conclusions
Have the building blocks for the synthesizing the
interfaces for complex
language statements
Mechanisms are in place for extension to handling
exceptions
Working on the semantics of assignment: partly
automatic, partly interactive
Punt on expressions: interact with the programmer
encapsulation in functions is a way out
Working on the specification logic (SL) and how
consistency determination can be strengthened and
made efficient.

24

Architecture and Design Intent

© 2006, Dewayne E Perry

Lecture 4

EE 382V

Error Handling

7

25

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Error Handling
50 - 70% of code in a large system is error handling
code
Error handling code is a weak link

no theory, little methodolgy
the errors are not well understood
the error handling code is not well-tested

20% of interface errors
Based on MRs (modification reports) from the third release
of UNIX RTR.

An Empirical Study of Software Interface Faults, New
Directions In Computing, IEEE, Trondheim, Norway, August
1985.
An Empirical Study of Software Interface Faults — An Update,
(July 1986) to be presented at HICSS-20 Software Track -
Code Analysis and Maintainability Session, January 1987, Kona,
Hawaii.

68.6% of all the MRs represented interface errors

26

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Extensions to Hoare Specifications
Hoare specifications provide the following paradigm
for describing programs:

Preconditions { Program } Postconditions
The Inscape paradigm of specification captures the
notions of exceptions and obligations with the
following single entrance, multi-exit specification:

Preconditions { Program }
Postconditions, Obligations
. . .
Postconditions, Obligations

Instress distinguishes three kinds of preconditions:
assumed, validated, and dependent preconditions.

27

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Exception Result Specifications
Explicit specification of the meaning

of partial results
of side-effects

Explicit specification of minimal handling requirements
satisfying obligations
undoing undesired side-effects

Possible specification of useful pragmatic information
about the severity of the exception
about possible recovery operations or techniques

28

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Kinds of Assumptions
Hoare states in "Programs are Predicates" (in Mathematical
Logic and Programming Languages, Prentice-Hall, 1985):

If the assumptions are falsified, the product may break, and its
subsequent (but not its previous) behaviour may be wholly arbitrary.
Even if it seems to work for a while, it is completely worthless,
unreliable, and even dangerous.

Instress distinguishes three kinds of preconditions to indicate
the different kinds of effects that these preconditions may
have.

Assumed preconditions are those which are assumed to be true.
Their falsification may indeed produce arbitrary behavior.
Validated preconditions are those which are tested for. Their
falsification results in predictable results.
Dependent preconditions are those whose truth is dependent upon
system circumstances. While the truth or falseness of the these
conditions is unpredictable, the behavior of the program itself is
predictable.

8

29

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V 30

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

31

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V 32

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Formalization of Exception Handling
precluded -The associated precondition has been satisfied —
there is no need to handle the exception.
pruned - A refusal to handle the exception. The associated
preconditions become assumed preconditions that must be
satisfied.
reported - The exception is propagated, possibly with some
repair, to the interface.
recovered - The exception is handled by retrying the operation
that caused the exception. There may be some repair to
increase the likelihood of success.
repaired - The results of the exception are fixed, or
compensated for, in some fashion — for example, fixed to
match the successful results. Control flow then proceeds in the
same fashion as the successful case.
ignored - The results of the exception are satisfactory. The
exception is treated as a successful result.

9

33

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Examples of Exception Handling
If RecordExists(R) is known to be true, then the
handling of RecordNonexistent(R) is precluded.
If it is not known to be true, the most obvious
course is to report (ie, propagate) it to the caller.
One possible way to handle the RecordInconsistent(R)
exception is to fix the record (use the repair
handling form) by means of the recovery routine and
then continue.
If the damage to the record is unimportant, then
ignore the exception and treat the result as
successful.

34

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

35

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V 36

Architecture and Design Intent Lecture 4

© 2006, Dewayne E Perry EE 382V

Summary
Forward Error Recovery
Instress

explicit specification of each exception
explicit specification of minimal handling
pragmatic information about severity and recovery
method for determining exceptions

Inform/Infuse
formalization of exception handling
enforced handling of exceptions
knowledgeable about relations between preconditions and
exceptions
automatic construction of coherent interface (with
exceptions) from the implementation

