Architecture and Design Intent Lecture 4

Propagation Logic & Exception Handling

Dewayne E Perry
ENS 623A
Office Hours: T/Th 11:00-12:00
perry @ ece.utexas.edu
www.ece.utexas.edu/~perry/education/382v-s06/

©2006, Dewayne E Perry EE 382V 1

Architecture and Design Intent Lecture 4

One Direction of Inscape Research

2 Make practical use of specification and verification technology
% Use the module interface specifications in the construction of
software systems
% Implement a semantic interconnection model that records unit,
syntactic and semantic dependencies as the basis for evolution
% Make practical trade-offs between logic and analysis
> how weak a logic?
> how strong a form of consistency checking?

> Instress — the module interface specification language
& Specification logic (SL), C syntax for declarations
%ELhanpoTaﬁons for data object properties and operation interface
enhavior

> Inscape — using the specifications
% Data object/operation specification instantiation
> as the basis for the semantic interconnection and propagation
> as a result of variable names and operation arguments
% Propagation logic (PL)
> construct interfaces for sequence, selection, iteration
> construct interfaces for implementations of operations

©2006, Dewayne E Perry EE 382V 2

Architecture and Design Intent Lecture 4

Goals of Analysis

> Incremental Analysis

LUse specifications as a bootstrapping mechanism — ie,
assume that they are correct and use them

% An operation is the gross grain of incremental analysis (the
collection of operations individually analyzed forms the
analysis of a module)

LA statement is the fine grain of incremental analysis (the
goal is to be able to consider each statement independent of
its surrounding context)

> Basic Rule:
% Every precondition and obligation must either be satisfied
within the implementation or propagated to its interface.

©2006, Dewayne E Perry EE 382V 3

Architecture and Design Intent Lecture 4

Some Logical Intuition

> Separate consistency from propagation
% Consistency depends on trade-offs about how to manipulate
the specification logic
%Propagation depends on trade-offs bout how to statically
represent a possible-execution tree as a single thread of
knowledge

2 Temptation to use or

LIn reducing a possible-execution tree to a static (sequential)
directed graph, how do you handle the results of joining two
paths?

L Say Pis true in one path, Q in the other — one is tempted
to describe the result as P or Q

Y However, if not P later becomes true, the inference of Q is
not a valid one, because it might well have been the path
that produced P that was actually executed.

©2006, Dewayne E Perry EE 382V 4

Architecture and Design Intent Lecture 4

Some More Intuition

> Why we can treat each statement/operation as an
indivisible unit
% Intuitive picture of Erecondiﬁons and postconditions
> postconditions “sink down™ through an implementation
> preconditions “float up” through an implementation “looking” for
satisfaction
% At the point where a precondition P occurs, either P is known
}olbe true or false, or it is not known whether P is true or
alse
> if P is true, then the precondition is satisfied (and it does not
matter where in the preceding sequence it became true)
> if P is false, P cannot be propagated to the interface and
hence there is a problem with the implementation (it also does
not matter where P became false, except to provide a range in
which to fix the problem)
statements as well
%Unfortunately, obligations are not quite so tractable

©2006, Dewayne E Perry EE 382V 5

Architecture and Design Intent Lecture 4

Inscape's Propagation Logic (PL)

>PL is a proposition calculus (SL is a predicate calculus
with quantification) in which
% A proposition P is either frue (P) or false (-P)
% The state of a proposition is either
> unknown P is not known to be either true or false in any
execution path
> known P is known to be true in all execution paths
» possible P is known to be true in at least one execution path
L There is one sentence connective, and
% There are the inference rules
> +seq a sequential addition or join based on the state of the
propositions
> +par a parallel addition or join based on the state of the
propositions
> +con a sequential addition or join based on the consistency of
the propositions

©2006, Dewayne E Perry EE 382V 6

Architecture and Design Intent Lecture 4

Inscape's Propagation Logic (PL)

> Also used in the description of propagation are
L Set theory operations: €, U, N, c, <, =, and -
% Operations from SL:
> consistent P is consistent with Q
> isknown P is known in Q

©2006, Dewayne E Perry EE 382V 7

Architecture and Design Intent Lecture 4

The Definition of +seq

> P1 +seq P2 is defined as follows

Pl [Result
#p known P known P
*p known P known =P
P unknown P, =P ‘P
known P possible P known P
known P possible =P possible P. possible =P
known P possible =P possible P, possible =P
possible P possible ~P possible P. possible P
possible P possible P possible P
unknown P possible P possible P
unknown P possible =P possible =P

2> Note: P +seq Q is not symmetric

2 The state of P2 supercedes the state of P1.
% whatever is known in P2 supplants that of P1.
% whatever in P1 is unknown in P2 retains its state from P1
% what is possible in P2 remains so in the result, but may also reduce
what is know in P1 to a possible in the result
% except where it was known in P1

©2006, Dewayne E Perry EE 382V 8

Architecture and Design Intent Lecture 4

Architecture and Design Intent Lecture 4

The Definition of +par

>P1 +par P2 is symmetric and defined as follows

Pl P2 Result
known P (=P) known P (—=P) known P {(=P)
known P (=P) unknown P (=P) possible P (=P)
known P (=P) possible P (=P) possible P (=P)
known P known =P possible P, possible =P

known P possible =P
unknown P, =P unknown P, =P
unknown P (-P) possible P (=P)
possible P possible =P

possible P, possible =P
unknown P, —P
possible P (=P)
possible P, possible =P

2 Only what is known (unknown) to be true in both
parts is known (unknown) to be true in a parallel join
of the two parts. What is known in only one part
becomes possible in the result.

The Definition of +con and -con

>P1 +con P2 is defined as
{p1...pk € P1 | p1...pk are consistent P2} U P2

that is, the result of +con is P2 plus those
propositions in P1 that are consistent with P2

>P1 -con P2 is defined as
P1 - (P1 +con P2)

that is, the result of -con are those propositions in
P1 that are inconsistent with P2

©2006, Dewayne E Perry EE 382V

©2006, Dewayne E Perry EE 382V 10

Architecture and Design Intent Lecture 4

The Basis for Propagation

Operation

{Exception Exits

©2006, Dewayne E Perry EE 382V

Architecture and Design Intent Lecture 4

Reasoning about Sequences

2 The following sets are used for reasoning about each
Sequent S; in the Sequence S = S, .. S,

Pre; the set of preconditions for sequent;
Post; the set of postconditions for sequent;
Obl; the set of obligations for sequent;
PreCeil, the preconditions ceilinged by sequent;
OblFloor; the obligations floored by sequent;
State; the current state after sequent;

Promised; the set of obligations outstanding after sequent;
Needed;, the accumulated set of unsatisfied preconditions up
to and including sequent; (from sequent,)

SatPre; the satisfied preconditions for sequent;
UnsatPre; the unsatisfied preconditions for sequent;
SatObl; the satisfied obligations for sequent;

©2006, Dewayne E Perry EE 382V 12

Architecture and Design Intent Lecture 4

Sequents

> For the Sequence S there is an initial State, and
Promised,

> For each Sequent Si in Sequence S = S, .. S,
State; = State;_; +seq Post;
SatPre; = { P e Pre, | P is satisfied by State;_; }
UnsatPre; = Pre; - SatPre;

Needed; = (Needed,.; - PreCeil) Ul UnsatPre;

PreCeil, = (Needed,,; -con Post;) U (Needed,,; -con Pre;)
SatObl; = { O € Obl, | O is satisfied by State; }
Promised; = (Promised ;_; - OblFloor;) U UnsatObl,

OblFloor; = Promised,; -con Obl,

©2006, Dewayne E Perry EE 382V

Architecture and Design Intent Lecture 4

Sequence

> Let the Sequence S = S; .. S, where State, and
Promised, have been initialized according to the
context of the sequence.
> The interface for S is propagated as follows:
LS.Pre = Needed,
%S.Post = State,
%S.0bl = Promised,
> The content of S.PreCeil and S.OblFloor may be

amended according to the context of the use of the
sequence S

©2006, Dewayne E Perry EE 382V

Architecture and Design Intent Lecture 4
- Needed = [P, S)
I | Promised = Q)
A State = [Q}
Q PreCeil = |=P)
- Needed = {-P §}
Q- Satbre = [Q)
Rl promised = [V, 7R}
R State = [, R]
PreCeil = [-R}
Needed = [8, R}
SR State = [Q -R)
SatObl = {-R
R Promised = | V]
© 2006, Dewayne E Perry EE 382V 14
Architecture and Design Intent Lecture 4

Selection (IF)

> Let the Selection Statement S consist of BE = the boolean
expression, T = the then sequence, and E = the else sequence
where
T.State, = BE.True.Post
E.State, = BE.False.Post
T.Promised, = BE.True.Obl
E.Promised, = BE.False.Obl

> The interface for S is propagated as follows:

S.Pre = BE.Pre U (T.Pre - T.PreCeil) U (E.Pre - E.PrecCeil)
S.Post = T.Post +par E.Post
S.0bl = T.Obl n E.Obl

> The state of the selection statement S is amended as follows:
T.OblFloor = T.Obl - S.0bl
E.OblFloor = E.Obl - S.0bl

T.PreCeil = (T.Pre -con BE.True.Post) U (T.Pre -con E.Pre) U
(T.Pre -con B.Pre)
E.PreCeil = (E.Pre -con BE.False.Post) U (E.Pre -con T.Pre) u

(E.Pre -con B.Pre)

©2006, Dewayne E Perry EE 382V

Architecture and Design Intent Lecture 4

Iteration [While]

> Let the Iteration Statement W consist of BE = the
boolean expression, and B = the loop body (a
sequence) where

B.State, = BE.True.Post
B.Promised, = BE.True.Obl

2 The interface for I is propagated as follows:
W .Pre = BE.Pre U (B.Pre - B.PrecCeil)
W.Post = (B.Post +par &) +seq BE.False.Post
W.Obl = BE.False.Obl

> The state of the loop body B is amended as follows:
B.OblFloor = B.Obl
B.PreCeil = (B.Pre -con BE.True.Post) U (B.Pre -con BE.Pre)
U (B.Pre -con B.Post)

> There is an Error when W_.Pre -con B.Post = &

©2006, Dewayne E Perry EE 382V 18

Architecture and Design Intent Lecture 4
BF Pre FQ
True Post RS T -R.5. T False Post
True Obl -R R Fulse Obl
R.5.T Then Known Else Known SRS, T
R Then Flaor Else Floor
U.-P-T.V.W Then Pre Else Pre| -U,-PR-T.V.X
R.S.T.UV Then Post Else Post S.T.-R.-U.V
-RUY Then Obl Else Obl R Y
If Pre POV WX
If Post S.T. V. postU, —U. R, -R)y
1f Obl Y
©2006, Dewayne E Perry EE 382V 17
Architecture and Design Intent Lecture 4
BF Pre (LA 8]
False M'os I K5 True Post
False bl W v True Obl
By Known W5
Body Pre 4), =R, 5,0
Body Post X,)
Baody (bl W7
While Pre O,nQ
While Post T U, s X
While (bl W
©2006, Dewayne E Perry EE 382V 19

Architecture and Design Intent Lecture 4

Iteration [Repeat]

>Let the Iteration Statement R consist of BE = the
boolean expression, and B = the loop body (a
sequence) where

B.State, = BE.True.Post
B.Promised, = BE.True.Obl
> The interface for I is propagated as follows:
R.Pre = BE.Pre U (B.Pre - B.PrecCeil)
R.Post = B.Post +seq BE.False.Post
R.Obl = B.Obl +seq BE.False.Obl

2 The state of the loop body B is amended as follows:
B.OblFloor = B.Obl - I.0bl
B.PreCeil = (B.Pre -con BE.True.Post) U (B.Pre -con BE.Pre)
U (B.Pre -con B.Post)

> There is an Error when R.Pre -con B.Post = &

©2006, Dewayne E Perry EE 382V 20

Architecture and Design Intent Lecture 4 Architecture and Design Intent Lecture 4

Operation Completeness & Correctness
> Let the Operation O have an implementation > An impllemen';aﬁog I I= s;quence S =85, .. 5, for an operation O
= = is complete if and only i
Seguenc-e 3 —51 “ s" where 5.51'01'60 and % Every precondition P has either been satisfied or is in the interface
S.Promised, = & of O. That is, all precondition ceilings (recursively) in S are empty
> The interface for O is propagcn‘ed as follows: % Every obligation O has either been satisfied or is in the interface

of O. That is, all obligation floors (recursively) in S are empty.

O.Pre = S.Pre - { P | P refers to local vcr‘i'ables } % There are no iteration errors (that is, I.Pre -con B.Post = &)
O.Post = S.Post - { P | P refers to local variables }
_ . > A propagated interface PI for operation O is correct with
0.0bl = S5.0bl - { P | P refers to local variables } A . .
. respect to the specified interface SI for operation O if and
> The state of the sequence S is amended as follows: only if
S.PreCeil = S.Pre - O.Pre % the implementation I for operation O is complete
S.0blFloor = S.0bl - 0.0bl % the interfaces PI and SI are identical
» PL.Pre = SI.Pre
» PI.Post = SI.Post
> PI.Obl = SI.Obl
% Note: Redefinition of the propagated interface may be needed to
cast it in terms of the specified interface.
© 2006, Dewayne E Perry EE 382V 21 © 2006, Dewayne E Perry EE 382V 22
Architecture and Design Intent Lecture 4 Architecture and Design Intent Lecture 4

Conclusions

> Have the building blocks for the synthesizing the
interfaces for complex

2 language statements

2 Mechanisms are in place for extension to handling Error andling
exceptions

> Working on the semantics of assignment: partly
automatic, partly interactive

2 Punt on expressions: interact with the programmer
encapsulation in functions is a way out

2> Working on the specification logic (SL) and how
consistency determination can be strengthened and
made efficient.

©2006, Dewayne E Perry EE 382V 23 ©2006, Dewayne E Perry EE 382V 24

Architecture and Design Intent Lecture 4

Error Handling

250 - 70% of code in a large system is error handling
code

2 Error handling code is a weak link
% no theory, little methodolgy
% the errors are not well understood
% the error handling code is not well-tested

> 20% of interface errors
%Based on MRs (modification reports) from the third release
of UNIX RTR.
> An Empirical Study of Software Interface Faults, New
Directions In Computing, IEEE, Trondheim, Norway, August
1985.
> An Empirical Study of Software Interface Faults — An Update,
(July 1986) to be presented at HICSS-20 Software Track -
Code Analysis and Maintainability Session, January 1987, Kona,
Hawaii.
% 68.6% of all the MRs represented interface errors

©2006, Dewayne E Perry EE 382V

25

Architecture and Design Intent Lecture 4

Extensions to Hoare Specifications

> Hoare specifications provide the following paradigm
for describing programs:
Preconditions { Program } Postconditions
> The Inscape paradigm of specification captures the
notions of exceptions and obligations with the
following single entrance, multi-exit specification:

Preconditions { Program }
Postconditions, Obligations

l.’o's‘r.condiﬁons, Obligations
> Instress distinguishes three kinds of preconditions:
assumed, validated, and dependent preconditions.

©2006, Dewayne E Perry EE 382V 2

Architecture and Design Intent Lecture 4

Exception Result Specifications

> Explicit specification of the meaning
%of partial results
G of side-effects

> Explicit specification of minimal handling requirements
Y satisfying obligations
%undoing undesired side-effects

> Possible specification of useful pragmatic information

% about the severity of the exception
% about possible recovery operations or techniques

©2006, Dewayne E Perry EE 382V

27

Architecture and Design Intent Lecture 4

Kinds of Assumptions

> Hoare states in "Programs are Predicates"” (in Mathematical
Logic and Programming Languages, Prentice-Hall, 1985):
Y If the assumptions are falsified, the product may break, and its
subseguent (but not its previous) behaviour may be wholly arbitrary.
Even if it seems to work for a while, it is completely worthless,
unreliable, and even dangerous.

> Instress distinguishes three kinds of preconditions to indicate
the different kinds of effects that these preconditions may
have.

% Assumed preconditions are those which are assumed to be true.
Their falsification may indeed produce arbitrary behavior.

% Validated preconditions are those which are tested for. Their
falsification results in predictable results.

Y Dependent preconditions are those whose truth is dependent upon
system circumstances. While the truth or falseness of the these
conditions is unpredictable, the behavior of the program itself is
predictable.

©2006, Dewayne E Perry EE 382V 28

Architecture and Design Intent Lecture 4

Exception: HlegalRecordNr { R)
Posteonditions: ValidFilePr (FI*)
FileOpen (FP)
Not(LegalRecordNr (R))

Obligations: “nones

Recovery: Use a legal record number

©2006, Dewayne E Perry EE 382V

30

Architecture and Design Intent Lecture 4
Assumed ValidFikelPr 4 FI')
Validated : FileCpen | FI' §
LegalRecondNr (R)
RecordExists { R)
Dependent : BecordReadable (B}
FecordUonsistent | K)
ReadRecord { FP, R, &L, &Bufpte)
Poeteonditions : ValdFilePur ¢ FP)
FileOpen { FI')
LegalRecondNr (R)
RecordExists (R)
Was { RecordReadable d R 3)
Was { RecordUonsistent (R b
Alloc: Bufpir
0 <= L <= AllocatedSize { *Rufpar)
Becordind “Bufpar
Obligations Deallocaned ¢ “Bufpir)
©2006, Dewayne E Perry EE 382V 29
Architecture and Design Intent Lecture 4

Exception:

Posteonditions:

Obligations:

Recovery:

RecordIinconsistent (B)

ValidFilePur (FP)

FileOpen (FIP*)
LegalRecordNr (R)
RecordExists (R)

Was (RecordReadable (R))
Not (RecordConsistent { R))
Allocated (*Bufpur)

0 <=L <= Allocated (*Bulptr)
RecordIn (*Bufptr)

Deallocated (*Bulfpir)

ReconstructRecord (Bufptr)

©2006, Dewayne E Perry

EE 382V

31

Architecture and Design Intent Lecture 4

Formalization of Exception Handling

> precluded -The associated precondition has been satisfied —
there is no need to handle the exception.

> pruned - A refusal to handle the exception. The associated
preconditions become assumed preconditions that must be
satisfied.

> reported - The exception is propagated, possibly with some
repair, to the interface.

> recovered - The exception is handled by retrying the operation
that caused the exception. There may be some repair to
increase the likelihood of success.

> repaired - The results of the exception are fixed, or
compensated for, in some fashion — for example, fixed to
match the successful results. Control flow then proceeds in the
same fashion as the successful case.

> ignored - The results of the exception are satisfactory. The
exception is treated as a successful result.

©2006, Dewayne E Perry EE 382V

32

Architecture and Design Intent Lecture 4

Examples of Exception Handling

> If RecordExists(R) is known to be true, then the
handling of RecordNonexistent(R) is precluded.

> If it is not known to be true, the most obvious
course is to report (ie, propagate) it to the caller.

> One possible way to handle the RecordInconsistent(R)
exception is to fix the record (use the repair
handling form) by means of the recovery routine and
then continue.

2 If the damage to the record is unimportant, then

ignore the exception and treat the result as
successful.

©2006, Dewayne E Perry EE 382V 33

Architecture and Design Intent

Lecture 4

Exception:

Posteonditions:

Obligations:

Recovery:

RecordNonexistent (R)
ValidFilePtr (FP)
FileOpen (FP)
LegalRecordNr { R)
Not RecordExists (R)

<none=

Try a different record number

©2006, Dewayne E Perry

EE 382V

34

Architecture and Design Intent Lecture 4

Exception: L/O-Error (R)

Posteonditions: ValidFilePtr (FP)
FileOpen (FP)
LegalRecordNr (R)
RecordExists (R)
Not (RecordReadable (R))
or Not (RecordConsistent (R))
Allocated (#Bufptr)
0 <= L <= Allocated (*Bulptr)
Recordln { *Bufpir)

Obligations: Deallocated (*Bufptr)

Recovery: ReconstructRecord (Bufpir)

©2006, Dewayne E Perry EE 382V 35

Architecture and Design Intent

Lecture 4

> Instress

> Inform/Infuse

exceptions

Summary

> Forward Error Recovery

Lexplicit specification of each exception
Lexplicit specification of minimal handling

% pragmatic information about severity and recovery
Y method for determining exceptions

% formalization of exception handling
%enforced handling of exceptions
Y knowledgeable about relations between preconditions and

L automatic construction of coherent interface (with
exceptions) from the implementation

©2006, Dewayne E Perry

EE 382V

36

