
1

1

Architecture and Design Intent

© 2006, Dewayne E Perry

Lecture 5

EE 382V

Vesion Management & Retrieval

Dewayne E Perry
ENS 623A

Office Hours: T/Th 11:00-12:00
perry @ ece.utexas.edu

www.ece.utexas.edu/~perry/education/382v-s06/

2

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Introduction
Aspects of Programming-In-The-Large

describing component interfaces
managing interface and implementation variants
configuring systems from components
generating systems from configurations

Will consider the implications that Inscape’s
interface specifications have for version management,
system configuration and system generation.
Why Is There A Problem?

corrections
improvements
alternative implementations
divergent functionality
different configurations

Result: a forest of versions

3

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Versions
Kinds of Versions

Successive
corrections
improvements

Parallel
alternative implementations
divergent functionality

Composed
different configurations

4

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Questions and Issues
Important Questions

How does one determine the correct version to use?
When does a version become a different version?

When does a successive version become a parallel version?
When does a parallel version become a different version
altogether?

How will different versions interact?
Important Issues

Identity
Equivalence
Compatibility
Consistency

syntactic
semantic

2

5

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Versions Control Systems
Current Mechanisms

No version control
Basic version control
Strongly-typed version control

No Version Control
Kinds of Versions

may get some notion from file system
possibly some vague notions of successive and parallel
composition is whatever we throw together

Issues
identity, equivalence and compatibility determined by fiat
consistency determined by compile/link/execute

Evaluation
no control
system building very error prone
very difficult to reconstruct previous versions

6

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Versions Control Systems
Basic Version Control

Kinds of Versions
successive, parallel, composed
successive and parallel distinguished by version identifiers
(append ‘n.1’ for a new parallel version; increment rightmost
digit for new successive version)
composition: S-lists that are user defined for unit-level
components with explicit versions specified

Issues
workable solution to version identity
no system notion of either equivalence or compatibility
consistency determined by compile/link/execute

Evaluation
no system determined difference between successive and
parallel
composition only at system level
dependencies are implicit and too coarse grained

7

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Versions Control Systems
Strongly-Typed Version Control

Kinds of Versions
successive, parallel and composed versions are syntactic objects
successive versions: successive revisions
parallel versions: determined by fiat
composed versions:

explicit versions of syntactic objects
explicit dependencies — can be general, default, or definitive
for small objects as well as systems

Issues
better solution to version identity (concatenate p-id and s-id)
version equivalence defined in terms of syntactic equivalence
no real notion of compatibility except what is not equivalent is
incompatible
syntactic consistency guaranteed; semantic consistency by
execution

8

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Versions Control Systems
Strongly-Typed Version Control (continued)

Evaluation
on the one hand, notion of equivalence is too broad: allows
versions that really are not equivalent
on the other hand, notion of equivalence is too narrow: rules
out cases that are equivalent
notion of compatibility is too strict: bound to name and
parameter list for operations

e.g., P1(int) is not equivalent to P2(int, bool) and hence is incompatible
with P2, even if, in an intuitive sense, P2 is upwardly compatible with P1

3

9

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Inscape’s Invariant
Versions in Invariant

successive versions: revisions
parallel versions: environmentally determinable to the extent
of different behavior
composed versions: similar to strongly-typed

Issues in Invariant
Version identity — similar to strongly-typed
Version equivalence — determinable from the interface
specifications
Version compatibility

strict
upward
implementation
system

Version consistency
syntactic: guaranteed (in a looser sense)
semantic: guaranteed (within the limits of consistency checking)

10

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Inscape’s Invariant
Identity and Equivalence

Interface Identity
I2 is identical with I1 iff

PRE(I1) = PRE(I2) and
POST(I1) = POST(I2) and
OBL(I1) = OBL(I2)

Version Identity
V2 is identical with V1 iff

the interface of V2 is identical with V1 and
their implementations are identical

Version Equivalence
V2 is equivalent to V1 iff

their interfaces are identical

11

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Inscape’s Invariant
Upward Compatibility

V2 is a strictly compatible version of V1 iff
PRE(V1) ⊇ PRE(V2) and
POST(V1) ⊇ POST(V2) and
OBL(V1) = OBL(V2).

i.e., V2 requires no more than, guarantees no less than, and
obligates equally to V1 — captures substitutability
V2 is an upwardly compatible version of V1 iff

PRE(V1) ⊆ PRE(V2) and
POST(V1) ⊆ POST(V2) and
OBL(V1) ⊆ OBL(V2)

i.e., V2 preserves the functionality of V1 while extending it

12

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Inscape’s Invariant
Implementation Compatibility

Exact implementation compatibility
V2 is exactly implementation compatible with V1 if and only if
PI{..., V1, ...} = PI{..., V2, ...}

i.e., there is no effect on the propagated interface (PI) of
the implementation
Strong implementation compatibility

V2 is strongly implementation compatible with V1 if and only if
PI{...,V2,...} is a strictly compatible version of PI{...,V1,...}

i.e., there is an effect on the propagated interface, but it
is an acceptable one
Weak implementation compatibility

V2 is weakly implementation compatible with V1 if and only if
the effect of V2 is eventually acceptable

i.e., eventually the ripples subside

4

13

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Inscape’s Invariant
System Compatibility

A version V2 is α system compatible with V1 if and only if
V2 is an α implementation compatible version of V1
for all occurrences of V1 in the system.
where α is either ‘‘exactly’’, ‘‘strongly’’, or ‘‘weakly’’.

Summary of Invariant
A better understanding about the nature of parallel versions
A more liberal, flexible method of composition
Static determination of syntactic and semantic consistency
of composed versions
An intuitive definition of version equivalence
Intuitive notions of version and system compatibility
A unique notion of plug-compatibility

14

Architecture and Design Intent

© 2006, Dewayne E Perry

Lecture 5

EE 382V

Inquire

Predicate Based Use and Reuse

15

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Introduction
Fundamental aspects of use and reuse:

Conceptualization
Retrieval
Selection
Use

Compounding considerations:
Multiple levels
Various granularities

16

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Inscape — a Specification Based SDE
Purpose of Specifications

Express intent of designer
Basis of semantic interconnections
Basis of conceptualization and retrieval

Use of Semantic Interconnections
Capture intent of implementer
Detect semantic errors
Synthesize interfaces
Determine implications of change
Basis for selection and use

5

17

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Current State of the Art: Browsing
Browsing — Basic Discovery

Follow syntactic dependencies
Use analogical clues for use/reuse
Static: Masterscope, Cscope, CIA
Dynamic: Eureka, SDA
Both: Mview

Browsing — Drawbacks
Get what, not why of dependencies
The larger the system, the more random the probing

Useful primarily for building an understanding; Little
to offer for retrieval, selection, use.

18

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Current State of the Art: Retrieval
Various Approaches:

Semantic clues in names
Keyword schemes:

depend on appropriateness
keywords = basic concepts
BUT, no relationships among concepts

Prieto-Diaz’ faceted classification
conceptual graph
weighted terms

LaSSIE
KR for conceptual relationships
tractable structure
navigation — clarification
BUT, handcrafted

General Problem: independent of system and subject
to update problems and conceptual drift

19

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Current State of the Art: Retrieval
Source-Code Based Retrieval:

Rittri; Runciman and Toyn; Zarernski and Wing
based on polymorphic type systems
provide relaxation of matching conditions for functional types
differ in ordering relation

Rollins and Wing
lambda-prolog
extend signature matching to a restricted form of specification
matching

20

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

The Shape of Inquire
Different Approach to Conceptualization and Naming

Concepts represented by predicates
Relationships expressed by logical definitions of predicates

strength — formal
weakness — undecidable

SDE-managed connection between concepts and source
propagate changes in conceptualization to appropriate place
changes in behavior are reflected as changes in
conceptualization

Formal Interface Specifications
Medium for conceptualization
Basis for selection, retrieval and correct use

6

21

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Inquire — Syntactic Browsing
Merely the traversal of the underlying extended
symbol tables and inter/intra module links
Standard syntactic objects and predicates

data flow
function flow
behavior flow

4 basic syntactic browsing commands
FIND-DEFS
FIND-USES
SHOW
VISIT

Basic support for ‘‘coarse grained’’ discovery
Advantage: added predicate dimension

22

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Inquire — Predicate Based Retrieval
Context:

objects — properties
operations — preconditions, postconditions, obligations
impementations — state and propagated interfaces

Challenge:
find arbitrary behavior or properties
satisfy precondition ceilings and obligation floors

Usable by both programmer and SDE
Both single and multiple object retrieval
Advantages:

deductive retrieval
direct connection between concepts and objects
concepts and objects evolve together

23

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Retrieval — Operations
Query and Retreival Commands

OPERATION-QUERY-START
SHOW-OPERATIONS
SHOW_OPERATION-SETS

Ordering Results for Selection
MIN-OPERATIONS
MIN-PREDICATES
MIN-IMPORTS
MIN-EXTRANEOUS
MIN-CHANGES

24

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Simplified View of Deductive Retrieval

7

25

Architecture and Design Intent Lecture 5

© 2006, Dewayne E Perry EE 382V

Summary
Current Use/Reuse Emphasis:

Efficient retrieval at the expense of conceptualization
Independent of system structure — update problem

Inquire/Inscape — A Different Approach
Specifications are the medium for conceptualization
Direct connection that is managed by the SDE
Co-Evolution
Retrieval, selection, correct use dependent on
conceptualization
Coarse grained discovery in browsing via predicates

