Architecture and Design Intent

Lecture 6

Experience & Impact

Dewayne E Perry
ENS 623A
Office Hours: T/Th 11:00-12:00
perry @ ece.utexas.edu
www.ece.utexas.edu/~perry/education/382v-s06/

Architecture and Design Intent

Lecture 6

Prototype Syntax

> system : <modspec> <impl>

2 modspec : modname <preddef> <typename>
<opspec>

> preddef :: predname <predpar> [wff + primitive]

> predpar :: type predparname

> opspec :: opname <oppar> <pre: wff> <post: wff>
<obl: wff>

> oppar :: modetype opparname

> impl :: opname <oppar> <localdef> <opcall>
<proppre> <proppost> <propobl>

> localdef it type varname

> opcall :: op <oparg> <pre> <post> <obl> <known>
<floor <ceiling> <labelname>

> Linkedwff :: wff <label>

© 2006, Dewayne E Perry EE 382V

© 2006, Dewayne E Perry EE 382V

Architecture and Design Intent

Lecture 6

Views

Implemented 7 views for the prototype:
> system overview

> specification overview

> detailed specification view

> implementation overview

> basic completeness view

> full completeness view

> interconnection view

© 2006, Dewayne E Perry EE 382V

Architecture and Design Intent

Lecture 6

Specification Semantics

2 Symbol Table
% <name, nametype> must be unique
YL delete definition, uses remain -> warning
YLdelete all uses, def remains -> warning

2> Type Checking of Arguments
%argument undefined -> warning
% parameter undefined -> warning
Larg type different from par type -> error

> Specification Consistency
L wff inconsistent wrt list -> error

> Specification Completeness
Ycheck for metas
%IN par has at least on precondition
%OUT par has at least one postcondition

© 2006, Dewayne E Perry EE 382V




Architecture and Design Intent Lecture 6

Implementation Semantics

> Symbol Table
%Op name must be defined - ie, the operation must have a
specification in order to be called

> Type Checking of Arguments
% Arg type must match par type

> Propagated Specification Consistency
% Guaranteed by the construction semantics

> Propagated Specification Completeness
%The same as for specs

© 2006, Dewayne E Perry EE 382V 5

Architecture and Design Intent Lecture 6

Propagation Preliminaries

> Preconditions
Y satisfied
Y reaches ceiling
% propagated

2 Postconditions
Lunknown until known
% known until contradicted
Lwhile known, satisfies pre/obl
Lknown after last call is propagated

2 Obligations
Y satisfied
Y% reaches floor
% propagated

© 2006, Dewayne E Perry EE 382V 6

Architecture and Design Intent Lecture 6

Comments on Implementation

> Syntax got much bigger than originally thought
because of slight differences in semantics.

2 Unparsing not too much of a problem; but could not
do formatting as would have liked.

2 Symbol Table structure is not quite right.
%local tables for parameter def and usage
Lbetter access for larger symbol tables

> Prototype is SLOW.
% template build and arg fill
% especially propagation
Yclip and attendant processing
Y still not sure what underlying processing is entailed by the
system

© 2006, Dewayne E Perry EE 382V 7

Architecture and Design Intent Lecture 6

Comments on Attributes

> Need more boolean attributes in order to remember
the current state of affairs and reduce the amount
of reprocessing.

> Would like to be able to display an attribute
grammar in a separate window.

%could then treat the interconnection and propagation
information as an attribute, not as part of the
implementation language.

L would get a clean separation of the specification,
implementation, and program construction languages.

© 2006, Dewayne E Perry EE 382V 8




Architecture and Design Intent Lecture 6

Comments on ARL

2> No Enumerations
%many cases where boolean is not sufficient
YLuse of integers too archaic

> No User Defined Data Structures
Lonly trees
YL excess baggage (eg, a stack as a grammar)
% problems with non-connected subtrees and references

2 Daemons: No Collapsing of Cases
“eg, create and insert often identical

> No Debugging Facilities
L trace (pause for each arl routine)
Y selectable trace
%inspection (ie, be able to use debug)

© 2006, Dewayne E Perry EE 382V 9

Architecture and Design Intent

Lecture 6

Needs for "Real" Implementation

> Specialized Clip facility

> Appropriate Symbol Table organization

2 Interconnection information as attributes
2 Multiple windowing and multiple fonts

2 Module Specifications in separate files

> Module Implementations in separate files

2 General data base for browsing (for predicates,
types and operations)

© 2006, Dewayne E Perry EE 382V

Architecture and Design Intent Lecture 6

Software Evolution and ‘Light’ Semantics

ICSE 1999 Most Influential Paper Award from ICSE 1989
The Inscape Environment

© 2006, Dewayne E Perry EE 382V 1

Architecture and Design Intent

Lecture 6

Motivation for Inscape

> Came from building systems

> Pieces often did not fit together
% informal interface descriptions
% incomplete interface descriptions
% often dependent on folklore

= Changes resulted in surprises/faults
% complexity
% inability to foresee consequences

> Three intertwined and essential problems

% complexity
» light’ semantics

% composition
> Interface specifications - designer intent

% evolution
> establish semantic dependencies - user intent
> implications of interface and implementation changes

© 2006, Dewayne E Perry EE 382V




Architecture and Design Intent Lecture 6

Complexity

> Complexity
% Intricacy of detail
> analogies: long logical proofs, 4-voice fugues
» difficult to understand
> change is difficult and error prone
» difficult for creator, compounded for others

> Wealth of detail

% analogies: toccata, Strauss symphonic poem
» details obscure ‘real’ patterns
> individual detail of minor importance

% sw: often incomprehensible by single person
» complexity and scale interact
> growth by multiple distinct components, not replication of a

small set
% intricacy may be buried in the midst of wealth

© 2006, Dewayne E Perry EE 382V

Architecture and Design Intent Lecture 6

Complexity

> Invisibility
% semantic intricacy and wealth mostly implicit
% code is the desiccated product of a long intellectual process
% cope by attaching meaning to syntactic details
» comments
> suggestive names
> abstraction and encapsulation

> Claim
& 'Wealth'is dominant in almost all software systems we build
> support for this in fault studies
v ~80% faults fixed quickly
v prevention of problems via knowledge
% ‘Wealth' requires different strategy
> manage small details vs automate deep insights
> many small theorems vs few large theorems

© 2006, Dewayne E Perry EE 382V 14

Architecture and Design Intent Lecture 6

‘Light’ Semantics

> Beyond type checking
> Short of full-scale theorem proving

> Possible forms
% partial semantic information
% partial/simple use of semantic information
% approximations

9 Inscape explored aspects of the first two

© 2006, Dewayne E Perry EE 382V

Architecture and Design Intent Lecture 6

Inscape - Contributions

> Specifications
% obligations
% multiple results

= Construction and evolution
% constructive use of specifications
% structured exception handling
% propagation logic
% ‘light' semantic dependencies

© 2006, Dewayne E Perry EE 382V 16




Architecture and Design Intent Lecture 6

Inscape - Construction

> Basic rule: preconditions and obligations must be
satisfied or propagated to the interface

> Logical barriers: precondition ceilings and obligations
floors

> Propagation rules for language structures:
assignment, sequence, selection, iteration, and
encapsulation

= Completeness of implementation:
% empty precondition ceilings

% empty obligation floors
% no iteration errors

> Correctness of implementation
% propagated interface ‘matches’ the specified interface

© 2006, Dewayne E Perry EE 382V

Architecture and Design Intent Lecture 6

Inscape - Exceptions

> Precluded - precondition > Repaired - fixed and merged
satisfied > Ignored - results are

> Pruned - validated -> satisfactory, merged
assumed > Coalesced - merged and

> Reported - propagated to propagated
the interface > Introduced - some result

> Recovered - retry (possibly propagated as exception
repair)

© 2006, Dewayne E Perry EE 382V 18

Architecture and Design Intent Lecture 6

Inscape - Evolution

> Interface evolution
% kinds of changes: predicates, interfaces, exception
conditions

= Effect on implementations
% dependency re-analysis: no effect, code no longer needed,
new code needed
% exception analysis: removal, handling, preclusion, new
handlings

= Implementation evolution
% add/remove satisfaction/dependence
% add/remove logical barriers
% add/remove propagated predicates
% add/remove/alter exception handling
% effect interface

© 2006, Dewayne E Perry EE 382V

Architecture and Design Intent Lecture 6

Related Work

= Some influence on industrial software engineering
% Lockheed
% Anderson Consulting

> Some related research
% Daniel Jackson's Aspect
% Don Batory's GenVoca
% Borgida/Devanbu ICSE99 paper
> Descriptive Logics (DL) and
» Intermediate Definition Languages (IDL)

© 2006, Dewayne E Perry EE 382V 20




Architecture and Design Intent Lecture 6

Related - Anderson

> Software Interface Specification and Analysis
% language to specify behavior of modules
% prototype to support plugéplay analysis/testing

= Component based SW Engineering
% visually specify component based distributed systems
% semantically analyzed
% transformed to executable code (Corba/OLE)

> Eagle
% internal component framework
% deployed through Anderson and client companies

> David Curtis, one of the authors for the Corba
Component Model

© 2006, Dewayne E Perry EE 382V 21

Architecture and Design Intent Lecture 6

Related - Aspect

> ‘Aspect is an attempt to find some middle ground
between program verification and type checking’
% annotations which assert dependencies between procedure
inputs and outputs
% dependency analyses to check code against the annotations

> Aspect is necessary but not sufficient
% if an error determined, there is an error

2 Important characteristics
% specification is partial
% checking is straightforward
% analysis is non-local (will miss bugs)
% more akin to liveness than safety assertions, ie good at
catching errors of omission

© 2006, Dewayne E Perry EE 382V

22

Architecture and Design Intent Lecture 6

Related - GenVoca

> Problem space: generate system compositions
% not all syntactically correct compositions are semantically correct
% use design rules (domain specific constraints) to check automatically

> Model state of the design, not execution state
% primitive predicates
% pre, post, obl in terms of primitives
% use pattern matching and simple deduction

2 Analysis

% constraints satisfied at a distance (non-adjacent)
% propagation rules for checking

> Rationale
% shallow consistency checking goes a long way
% granularity: Inscape - function; GenVoca - subsystem (fewer of
them and fewer predicates)
% leverage of standardization - limits problems space

© 2006, Dewayne E Perry EE 382V 23

Architecture and Design Intent Lecture 6

Related - DL and IDL

= Rationale in IDL context
% stronger guarantees about /intended semantics
% benefits even from partially characterization

> Descriptive logic features
& effective reasoning
% middle ground between signature and specification matching
% designed for modeling real-world domains

> Illustrates relevance for
% data invariants
% pre/post needed for methods
% conditions leading to exceptions
% aspects of event dynamics.

> With these, you can do
% compatibility testing of specifications
% local consistency checking
% more thorough treatment of exceptions
% variability in services provided

© 2006, Dewayne E Perry EE 382V

24




Architecture and Design Intent Lecture 6

Summary

> Inscape
% managing the connection between design and implementation
% rich project - rich set of problems
% frustrating -
» found little interest internally in doing specifications
> hence, external, not internal, influence

2 'Light' semantics a rich area for research
% sufficient for a large part of system evolution
% especially at design/architecture level
» domain specific leverage
> benefits of larger granularity
= Special thanks to those who worked with me for
their significant contributions

> Many thanks to the ICSE99 PC!

© 2006, Dewayne E Perry EE 382V 25




