
1

1

Architecture and Design Intent

© 2006, Dewayne E Perry

Lecture 6

EE 382V

Experience & Impact

Dewayne E Perry
ENS 623A

Office Hours: T/Th 11:00-12:00
perry @ ece.utexas.edu

www.ece.utexas.edu/~perry/education/382v-s06/

2

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Prototype Syntax
system :: <modspec> <impl>
modspec :: modname <preddef> <typename>

<opspec>
preddef :: predname <predpar> [wff + primitive]
predpar :: type predparname
opspec :: opname <oppar> <pre: wff> <post: wff>

<obl: wff>
oppar :: modetype opparname
impl :: opname <oppar> <localdef> <opcall>

<proppre> <proppost> <propobl>
localdef :: type varname
opcall :: op <oparg> <pre> <post> <obl> <known>

<floor <ceiling> <labelname>
Linkedwff :: wff <label>

3

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Views
Implemented 7 views for the prototype:

system overview
specification overview
detailed specification view
implementation overview
basic completeness view
full completeness view
interconnection view

4

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Specification Semantics
Symbol Table

<name, nametype> must be unique
delete definition, uses remain -> warning
delete all uses, def remains -> warning

Type Checking of Arguments
argument undefined -> warning
parameter undefined -> warning
arg type different from par type -> error

Specification Consistency
wff inconsistent wrt list -> error

Specification Completeness
check for metas
IN par has at least on precondition
OUT par has at least one postcondition

2

5

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Implementation Semantics
Symbol Table

Op name must be defined - ie, the operation must have a
specification in order to be called

Type Checking of Arguments
Arg type must match par type

Propagated Specification Consistency
Guaranteed by the construction semantics

Propagated Specification Completeness
The same as for specs

6

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Propagation Preliminaries
Preconditions

satisfied
reaches ceiling
propagated

Postconditions
unknown until known
known until contradicted
while known, satisfies pre/obl
known after last call is propagated

Obligations
satisfied
reaches floor
propagated

7

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Comments on Implementation
Syntax got much bigger than originally thought
because of slight differences in semantics.
Unparsing not too much of a problem; but could not
do formatting as would have liked.
Symbol Table structure is not quite right.

local tables for parameter def and usage
better access for larger symbol tables

Prototype is SLOW.
template build and arg fill
especially propagation
clip and attendant processing
still not sure what underlying processing is entailed by the
system

8

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Comments on Attributes
Need more boolean attributes in order to remember
the current state of affairs and reduce the amount
of reprocessing.
Would like to be able to display an attribute
grammar in a separate window.

could then treat the interconnection and propagation
information as an attribute, not as part of the
implementation language.
would get a clean separation of the specification,
implementation, and program construction languages.

3

9

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Comments on ARL
No Enumerations

many cases where boolean is not sufficient
use of integers too archaic

No User Defined Data Structures
only trees
excess baggage (eg, a stack as a grammar)
problems with non-connected subtrees and references

Daemons: No Collapsing of Cases
eg, create and insert often identical

No Debugging Facilities
trace (pause for each arl routine)
selectable trace
inspection (ie, be able to use debug)

10

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Needs for "Real" Implementation
Specialized Clip facility
Appropriate Symbol Table organization
Interconnection information as attributes
Multiple windowing and multiple fonts
Module Specifications in separate files
Module Implementations in separate files
General data base for browsing (for predicates,
types and operations)

11

Architecture and Design Intent

© 2006, Dewayne E Perry

Lecture 6

EE 382V

Software Evolution and ‘Light’ Semantics

ICSE 1999 Most Influential Paper Award from ICSE 1989
The Inscape Environment

12

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Motivation for Inscape
Came from building systems
Pieces often did not fit together

informal interface descriptions
incomplete interface descriptions
often dependent on folklore

Changes resulted in surprises/faults
complexity
inability to foresee consequences

Three intertwined and essential problems
complexity

‘light’ semantics
composition

interface specifications - designer intent
evolution

establish semantic dependencies - user intent
implications of interface and implementation changes

4

13

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Complexity
Complexity

Intricacy of detail
analogies: long logical proofs, 4-voice fugues
difficult to understand
change is difficult and error prone
difficult for creator, compounded for others

Wealth of detail
analogies: toccata, Strauss symphonic poem

details obscure ‘real’ patterns
individual detail of minor importance

sw: often incomprehensible by single person
complexity and scale interact
growth by multiple distinct components, not replication of a
small set

intricacy may be buried in the midst of wealth

14

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Complexity
Invisibility

semantic intricacy and wealth mostly implicit
code is the desiccated product of a long intellectual process
cope by attaching meaning to syntactic details

comments
suggestive names
abstraction and encapsulation

Claim
‘Wealth’ is dominant in almost all software systems we build

support for this in fault studies
~80% faults fixed quickly
prevention of problems via knowledge

‘Wealth’ requires different strategy
manage small details vs automate deep insights
many small theorems vs few large theorems

15

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

‘Light’ Semantics
Beyond type checking
Short of full-scale theorem proving
Possible forms

partial semantic information
partial/simple use of semantic information
approximations

Inscape explored aspects of the first two

16

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Inscape - Contributions
Specifications

obligations
multiple results

Construction and evolution
constructive use of specifications
structured exception handling
propagation logic
‘light’ semantic dependencies

5

17

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Inscape - Construction
Basic rule: preconditions and obligations must be
satisfied or propagated to the interface
Logical barriers: precondition ceilings and obligations
floors
Propagation rules for language structures:
assignment, sequence, selection, iteration, and
encapsulation
Completeness of implementation:

empty precondition ceilings
empty obligation floors
no iteration errors

Correctness of implementation
propagated interface ‘matches’ the specified interface

18

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Inscape - Exceptions
Precluded - precondition
satisfied
Pruned - validated ->
assumed
Reported - propagated to
the interface
Recovered - retry (possibly
repair)

Repaired - fixed and merged
Ignored - results are
satisfactory, merged
Coalesced - merged and
propagated
Introduced - some result
propagated as exception

19

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Inscape - Evolution
Interface evolution

kinds of changes: predicates, interfaces, exception
conditions

Effect on implementations
dependency re-analysis: no effect, code no longer needed,
new code needed
exception analysis: removal, handling, preclusion, new
handlings

Implementation evolution
add/remove satisfaction/dependence
add/remove logical barriers
add/remove propagated predicates
add/remove/alter exception handling
effect interface

20

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Related Work
Some influence on industrial software engineering

Lockheed
Anderson Consulting

Some related research
Daniel Jackson’s Aspect
Don Batory’s GenVoca
Borgida/Devanbu ICSE99 paper

Descriptive Logics (DL) and
Intermediate Definition Languages (IDL)

6

21

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Related - Anderson
Software Interface Specification and Analysis

language to specify behavior of modules
prototype to support plug&play analysis/testing

Component based SW Engineering
visually specify component based distributed systems
semantically analyzed
transformed to executable code (Corba/OLE)

Eagle
internal component framework
deployed through Anderson and client companies

David Curtis, one of the authors for the Corba
Component Model

22

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Related - Aspect
‘Aspect is an attempt to find some middle ground
between program verification and type checking’

annotations which assert dependencies between procedure
inputs and outputs
dependency analyses to check code against the annotations

Aspect is necessary but not sufficient
if an error determined, there is an error

Important characteristics
specification is partial
checking is straightforward
analysis is non-local (will miss bugs)
more akin to liveness than safety assertions, ie good at
catching errors of omission

23

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Related - GenVoca
Problem space: generate system compositions

not all syntactically correct compositions are semantically correct
use design rules (domain specific constraints) to check automatically

Model state of the design, not execution state
primitive predicates
pre, post, obl in terms of primitives
use pattern matching and simple deduction

Analysis
constraints satisfied at a distance (non-adjacent)
propagation rules for checking

Rationale
shallow consistency checking goes a long way
granularity: Inscape - function; GenVoca - subsystem (fewer of
them and fewer predicates)
leverage of standardization - limits problems space

24

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Related - DL and IDL
Rationale in IDL context

stronger guarantees about intended semantics
benefits even from partially characterization

Descriptive logic features
effective reasoning
middle ground between signature and specification matching
designed for modeling real-world domains

Illustrates relevance for
data invariants
pre/post needed for methods
conditions leading to exceptions
aspects of event dynamics.

With these, you can do
compatibility testing of specifications
local consistency checking
more thorough treatment of exceptions
variability in services provided

7

25

Architecture and Design Intent Lecture 6

© 2006, Dewayne E Perry EE 382V

Summary
Inscape

managing the connection between design and implementation
rich project - rich set of problems
frustrating -

found little interest internally in doing specifications
hence, external, not internal, influence

‘Light’ semantics a rich area for research
sufficient for a large part of system evolution
especially at design/architecture level

domain specific leverage
benefits of larger granularity

Special thanks to those who worked with me for
their significant contributions
Many thanks to the ICSE99 PC!

