Intent via Architecture Description

Dewayne E Perry
ENS 623A
Office Hours: T/Th 11:00-12:00
perry@ece.utexas.edu
www.ece.utexas.edu/~perry/education/382v-s06/

Models of SW Architecture

- Perry & Wolf 89/92 model of SWA
- SWA = (Elements, Form, Rationale)
- Elements: process, data and connecting
- Form is the set of properties of, and relationships among, the elements
- Rationale is the justification for the elements and form

Styles

- An incomplete architectural prescription
- Focuses on certain aspects of the architecture
 - architectural elements
 - formal characteristics
 - constraints on architectural elements
 - constraints on formal characteristics
- Problem: Restrict the architectural structure
 - for example, strict layering of the architecture
- Solution: layered architecture style
 - constrain the interactions
 - any interaction at elements on the same level
 - no interactions at more than one level away
 - level below: initiate interactions only
 - level above: react interactions only

- Useful rule of thumb: a style for a domain
- Problem: multiple domains in any significant architecture
- Challenge: integrating the styles consistently
Current State

- State of Current Work
 - Pretty much agree about process, data and connecting elements as first class entities
 - Models differ primarily with respect to Form
 - Few models pay attention to rationale
 - Styles tend to focus on element and form restrictions

- Approaches to Form
 - Configurations
 - Types
 - Patterns
 - Properties

Current State

- Configuration as Form
 - Characterization
 - Basic box and lines approach
 - Components may be processes, subsystems, etc
 - Connections are defined by Provides/Requires clauses
 - Approach to Style
 - Tend not to be interested in styles
 - Except in the context of dynamic arch's

- Types as Form
 - Characterization
 - Typically, an historical approach
 - Look for types and classes of architectural objects
 - Often organized hierarchically
 - Approach to Style
 - Emphasis on the basic classes or types of components and connectors
 - Perhaps, a slight more emphasis on connectors
 - Eg, pipes and filters; blackboard architecture

- Patterns as Form
 - Characterization
 - Emphasis on patterns of interactions
 - Tendency to focus on connections with components as endpoints
 - Approach to Style
 - Architectural instances are specializations of styles

- Properties as Form
 - Characterization
 - Properties of (or constraints on) data, process and connecting elements
 - Relationships among data, process and connecting elements
 - Approach to Style
 - Selection of some critical elements
 - Selection of some properties and relationships
 - Constraints on properties and relationships

Product Line - Overview

- Product Line
 - Reference Architecture
 - Processes

- Product Architecture
 - Asset Base

Product

- Asset Base
Product Lines

- **Basic Aspects**
 - Begin with product instances
 - legacy based
 - use architecture recovery processes
 - Focus on appropriate business domain
 - use domain specific architectural processes
 - map from recovered to domain architecture
 - Abstract/Generalize to Product Line Architecture

- **Issues**
 - Product Line Reference Architecture
 - Product Line Processes
 - Asset Base
 - Supporting Technology
 - Organizational Issues

PLA Description Issues

- **What generic features do you need**
- **Relationships between PLA and PIA**
 - Derivation
 - Conformity
 - Analysis
 - Planning
- **How is evolution of PLA supported**
 - Claim:
 - Generic descriptions are necessary for product line architectural descriptions

Generic PLD Approaches

- **Style description**
- **Under-constrained description**
- **Variance-free description**
- **Parametric description**
- **Service/provision oriented description**

Styles

- **Summary**
 - Intuitive appeal
 - Captures essential characteristics
 - basic components
 - minimum interactions
 - basic constraints
 - Ignores variation

- **Advantages**
 - Minimalist approach
 - Add new products easily
 - As long as they conform to style
 - Some project planning for the PLA applies to the product instance architecture (PIA)
Styles

- Disadvantages
 - Not easy to refine PLA into PIA
 - by extension, addition
 - PLA conformity analysis required
 - When PLA evolves, must revalidate PIA conformance
- Evaluation
 - Possible, but not adequate
 - better uses of styles than for PLA

Under-Constrained

- Summary
 - Difference in completeness
 - style focus: critical features, eliminate non-essential, non-stylistic
 - Capture PL as completely as possible
 - With variations not ruled out by overly constraining the architecture
 - Variance within constraints, not within the aspects not defined
- Advantages
 - Easier to create PIA from PLA than Styles
 - Analysis at PLA level applies to PIA level
 - Planning at PLA level applies to PIA level
 - Evolution via constraint relaxation easy

Variance-Free

- Summary
 - Architecture is not under-constrained
 - Variance is not considered architecturally important
 - product difference a design or implementation issue not an architectural one
 - eg, platform or distribution independence
 - There are implications for the PLA
- Advantages
 - Analysis and planning at the PLA level
 - Product variance depends on implementation and not on architecture
 - PLA is the PIA
 - Evolution of the PLA means evolution of the PIAs
Variance-Free

- **Disadvantages**
 - Standard specification problem of talking about what is not there
 - May not be able to isolate all variance this way
- **Evaluation**
 - Useful for range of options for a particular aspect (e.g., fault tolerance, distribution ...)
 - But may not be able to account for variance in functionality

Parametric

- **Summary**
 - Standard approach: parametric abstraction
 - Limits depend on the constraints on the arguments
 - Defines a family of possible instantiations
- **Advantages**
 - Variations well-defined and well-known
 - Instantiation of PIA from PLA is well-understood (possibly automatic)
 - Analysis at PLA level
 - Planning at PLA level
 - Evolution by relaxing constraints or by upward compatible extensions OK

Service-Oriented

- **Summary**
 - In large complicated systems often need to provision individual products with different features
 - Not doable with parameters or variation independence
 - Architectural features selectable
- **Advantages**
 - Instantiation is by selection
 - Possibilities are explicit
 - If done properly, architectural dependencies among services are explicit
 - Analysis at PLA level
 - Planning derived from PLA via selection
 - Evolution via addition OK
Service Oriented -

- Disadvantages
 - Evolution via change/deletion causes conformity problems
 - May not know all the services needed in advance
- Evaluation
 - Simple/effective way of managing product line
 - Likely to be insufficient for complete PLA

Putting It Together

- Comprehensive approach would require all these forms of generic description
- Styles useful for aspects distributed across sets of architectural components
- Under-constrain where flexibility is needed such as changes in technology
- Variations independence for delayed binding
- Parameters where the ranges of solutions are well understood
- Provisioning where the possibilities are enumerable