
1

Architecture and Design Intent

© 2006, Paul S Grisham

Lecture 10.1

EE 382V

Design Intent in an Agile Context
Part I

Paul S Grisham
grisham@mail.utexas.edu

Feb. 16, 2006

2

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Goals of this Lecture
Provide an overview of the Agile software
development philosophy
Provide an overview of Extreme Programming (XP)
Consider the role of process, organization, and
artifacts in software development
Explore opportunities to capture and utilize design
intent and design rationale
Enumerate design intent strategies for Agile
software development
Introduce the context for the lectures for the
remainder of the semester

3

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Definitions of Intent
Functional Intent – WHAT

Functional Requirements
Design Intent – HOW

Scenarios / Use-cases
Contracts
Obligations

Design Rationale – WHY
Criteria
Plans
Alternatives
Non-functional Requirements (?)

4

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

How Do We Use Intent?
Replication

Use existing patterns and processes to build something new
Strategies, Patterns and Idioms

Be sure we are replicating the important things
Cutting off the end of the ham

Reuse
Include legacy modules in new systems

Identify opportunities for reuse
Make sure we use those modules correctly
Identify assumptions about usage

Modification
Perform risk analysis

Explore semantic and operational dependencies

Maintenance
Identify out-of-date or invalidated assumptions

5

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Outline of this Lecture
Quick Review
Agile Software Development
Extreme Programming (XP)
Test-Driven Development
Communication and Documentation
Iterative and Adaptive Design
Agile Maintenance
Concepts for Intent-Driven Development in an Agile
context

6

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

What is Agile Software Development?
A combination of old and new ideas to respond to:

Customer Needs
Changing Requirements (See above)

“Agile Software Development” includes several
techniques that feature:

Close collaboration between technical and business staff
Face-to-face interactions
Frequent demonstration of working functionality
Frequent delivery of business value
Self-organizing teams
Commitment to innovative craftsmanship

7

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

The Agile Manifesto
We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right,
we value the items on the left more.

http://agilemanifesto.org/

8

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Characteristics of Plan-Driven Development

Goal: Make process and product predictable
Detailed planning and predictive models

Do we have reliably predictive models in Software?
Can a customer understand a software system from a
model?

Inspired by engineering methods in other fields
Physical engineering disciplines have well-understood
functional concepts

A bridge is a bridge. What is a software bridge?
Engineering models are generally comprehensible
Environmental requirements change slowly

Assume separation between design and construction
Design is creative and risky
Construction is predictable and repeatable
Treat programming as construction

http://www.martinfowler.com/articles/newMethodology.html

9

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

The Cost of Change
Conventional Wisdom:

The cost of correcting a
requirements fault increases
exponentially over time

What drives these costs?
Inflexible designs?
Antiquated programming
techniques? (No silver bullet!)
Cost to iterate the waterfall?
(Process activities)

How are they measured?
Compared to original cost to
implement?
What counts as a requirements
fault?

10

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

What If?

Cost of adding a feature did not increase
significantly over time?
Requirements could be iterative and feature-driven
We could defer long-range design decisions and focus
on delivering functionality now
Can we separate essential complexity from process
complexity?

11

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Sources of Change
Requirements Uncertainty (Nidumolu, 1996)

Instability – Changes over the life of the project
Environmental changes – business drivers
Technology changes
Scope changes

Diversity – Differences between stakeholders
Analyzability – How requirements can be reduced to objective
specifications

Requirements errors that cause faults (Perry, ESEC93)
Incomplete / Omitted Requirements
Ambiguous Requirements
Lack of Knowledge

Additional Factors
Emergent dependencies
Experimental / Conditional Requirements
Brooks’s “Plan to throw one away”

12

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Assumptions About Uncertainty
Planned Development assumes requirements are:

Correct
Complete
Consistent
Analyzable – For correctness, consistency, completeness
Understood – No ambiguities
Static – Unchanging

None of these things are true…ever
Solutions:

Disallow change – Build the system as contracted, even if it
no longer meets the customer’s needs
Allow change with cost – Iterate lifecycle with impact
analysis and forward and reverse traceability (cost? effort?)
Adopt adaptive techniques which facilitate change through
goal prioritization and communication

13

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Responding to Change
Requirements Instability

Problem: Requirements change before system is deployed
Solution: Deploy system quickly to maximize business value
Solution: Evaluate which dimensions are fluid
Solution: Plan for the unforeseen

Requirements Diversity
Problem: Different users have competing requirements
Solution: Identify users/stakeholders
Solution: Stakeholder/Viewpoint analysis
Solution: Negotiate and explicit documentation

Requirements Analyzability
Problem: Some requirements are hard to quantify
Solution: ???

14

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Responding to Change (2)
Incomplete/Omitted Requirements

Solution: Rigorous interview process
Solution: Use of domain models to identify incompleteness

Ambiguous Requirements
Solution: Formal requirements models and analysis
Solution: Stakeholder sign-off on requirements models

Lack of Knowledge
Solution: ???
How do you ask what you don’t know?

Emergent Dependencies
e.g., Requirements inherited from choice of tech. solutions

Experimental / Conditional Requirements
Requirements which depend on how solutions work in practice
e.g., Cumulative performance measures

15

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Characteristics of Agile Development
Agile Methodologies

Increase adaptability by:
Increasing communication
Increasing feedback
Decreasing bureaucracy
Decreasing iteration length

Recognize the difficulty in separating design and construction
for software
Recognize the extremely high rate of change in software
requirements
Strive for asymptotic cost of late changes

16

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

The Agile Solution
Requirements Instability

Short, feature-driven iterations of partial functionality
Maximized deployed business value

Requirements Diversity
Make ongoing customer interaction part of the process

Requirements Analyzability
De-emphasize formal requirement models
Prefer working understanding and concrete evaluation

Incomplete/Omitted Requirements, Lack of
Knowledge, Ambiguous Requirements

Bring the customer into the development team
Emergent Dependencies, Conditional Requirements

Short iterations for more frequent risk analysis

17

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

The Agile Problem

Scalability

Research Question: How to increase scalability of
agile software development without creating process
burdens

18

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Agility and Discipline
Process Maturity

Ad Hoc -> Repeatable -> Defined -> Managed -> Optimizing
Process advocates equate Agile with Ad Hoc
But Agile is highly disciplined

Requires personal and team discipline
No process-enforced discipline

Process has become ritualized, inward-looking
Process is “process conformance” driven
Agile is “customer satisfaction” driven
Process is “contract” oriented
Agile is “service” oriented

19

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Agility and Discipline (2)
Process is a religion
Agile is a philosophy
E.g., Documentation:

Process:
Everything is documented
Documentation is continuously maintained
Traceability is essential

Agile:
Treat documentation as a tool
Evaluate the cost of creation and maintenance
Discard it when it ceases to be useful
Build systems with clear designs

So agile development efforts don’t use documentation, right?
Actually, many agile projects use documentation

Lightweight
Long-lifespan
Easy to maintain, if necessary to keep

20

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Agile Software Development “Methods”
Agile Database Techniques

Scott Ambler
AM (Agile Modeling)

Scott Ambler
Adaptive Software
Development

Jim Highsmith
Crystal

Alistair Cockburn
FDD (Feature-Driven
Development)

Jeff De Luca, Peter Coad
(Contributor)

DSDM (Dynamic Systems
Development Method)

Industry Consortium (Oracle,
British Airways, AmEx, etc.)

Lean Software Development
Mary Poppendieck, Tom
Poppendieck

Scrum
Ken Schwaber, Jeff
Sutherland, Mike Beedle
(Contributor)

TDD (Test-Driven
Development)

Kent Beck
Xbreed

Mike Beedle
XP (Extreme Programming)

Kent Beck, Ward
Cunningham, Ron Jeffries

21

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Lecture Outline
Quick Review
Agile Software Development
Extreme Programming (XP)
Test-Driven Development
Communication and Documentation
Iterative and Adaptive Design
Agile Maintenance
Concepts for Intent-Aware Tools in an Agile context

22

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Extreme Programming (XP)
XP is the most visible (and most viable?) form of
agile software development
Developed adaptively on the Chrysler C3 project by
Kent Beck, et. al.
Consists of several interacting techniques

Compared to Crystal, which emphasizes adaptable subsets of
techniques

Emphasizes technical and collaborative
Compared to Scrum, which emphasizes team management

Core techniques updated continuously
Most empirical research (and criticism) of agile
software development features XP practices

Pair Programming, On-Site Customer, Refactoring

23

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

What’s So Extreme?
XP takes ideas it as far as they can go
If testing is good, write tests first
If code inspections are good, conduct them
continuously
If requirements documentation helps programmers
understand the customer, put the customer in the
middle of the process
If prototyping is good, build working functionality on
short iterations

24

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

XP Practices Overview
XP was designed and evolved so that the practices
are interdependent
However, they were developed separately and offer
benefits independently

25

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

XP Core Practices

Fine-Scale Feedback
Test-Driven
Development
The Planning Game
The Whole Team
Pair Programming

Continuous Process
Continuous Integration
Design Improvement
Small Releases

SharedUnderstanding
Simple Design
System Metaphor
Collective Code
Ownership
Coding Standard

Programmer Welfare
Sustainable Pace

26

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

XP Feedback Practices
Test-Driven Development*

Write programmer (unit) tests an customer (acceptance)
tests before planning a solution

The Planning Game*
Process of selecting development priorities for an iteration

The Whole Team
Bringing a customer representative into the development
workspace
A single customer unifies requirements diversity but may be
impractical
A team of customer specialists may not integrate with the
development staff

Pair Programming*
Continuous design and development feedback
Argumentative design space exploration

27

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

XP Process Activities
Continuous Integration

The system should pass all tests and compile at all times
Different from “Releases”

Design Improvement*
Refactor
Fix “bad-smelling” code
Eliminate unused code

Small Releases
A Release comes at the end of a set of iterations
Deployable functionality
Short iterations guarantee close progress monitoring
Short release cycles provide additional functionality

28

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

XP Comprehensibility Practices
Simple Design*

Code should be readable without comments
Don’t build for functionality you don’t know about
Functionality should not be repeated

System Metaphor*
Instead of a solution-space architecture
A story of how the system works
Least developed, adopted core technique

Collective Code Ownership
Each developer works on each part of the system
No/Little specialization
Any developer can make a change to any part of the system

Coding Standard*
Formatting, Naming, Idioms, Patterns

29

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

XP 2nd Ed. and Corollary Practices
Sit Together

Common, open development workspace with no partitions
User Stories

Like a use-case or scenario
Incremental Design
Ask the Code

Code should be readable, intent inferable
Spike Solution

Feature oriented development
Neither top-down or bottom-up

Lazy Optimization and Early Profiling
Constant Velocity

Make progress every day
No overtime death marches

30

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Lecture Outline
Quick Review
Agile Software Development
Extreme Programming (XP)
Test-Driven Development
Communication and Documentation
Iterative and Adaptive Design
Agile Maintenance
Concepts for Intent-Aware Tools in an Agile context

31

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Test-Driven Development
Create test cases up-front, then write code that
causes the test case to pass
Two kinds of tests:

Programmer (Unit) Test
Specific test of a module
Drives the design and implementation in the solution space

Customer (Acceptance) Test
Scenario specification
Tests conformance to end-user (black-box) requirements

Relies on developer and team discipline rather than
process discipline

32

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

TDD Process
Think about what and how to test

Yes, there is a plan!
Write a small initial test

Explore the interface
Write enough code to compile and fail
Write enough code to pass (Simplest design possible)

Write the next test
Develop the functional requirements
Write code to pass all tests
Refactor if necessary
Repeat

If you want to add code to an existing module:
Write a test that fails under the current implementation
Write code to pass all the tests

33

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Benefits of TDD
Quality

Up-front testing means that QA is not an afterthought
Using an automated framework leads to continuous testing

Maintenance
Design tests become regression tests across refactorings

Project Management
Acceptance tests provide feedback on progress for iteration

Documentation
A test suite is a kind of “programmer’s intent” model
“The act of writing tests first is an act of discerning
between design decisions” (Robert C. Martin)

Design Quality
Incremental implementation -> incremental conceptual model
Testable code is decoupled, allows for ease of refactoring

34

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

TDD Idioms
Starter Test

Not a realistic test, doesn’t do anything
Where does operation belong?
What is its interface?

Explanation Test
A test that explains how an operation should work
Drives design and development

Learning Test
A test that explores legacy code
A type of integration contract

Regression Test
Facilitates impact of change analysis
Constrain refactoring activities

35

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

TDD Patterns
Small Tests

Making code testable leads to simple, comprehensible designs
Mock Objects

Implement top-down, deferring design until the requirements
are better understood
Create stubs to simulate functionality until then

Self-Shunt
Allow test case to simulate external interactions
Tests read better
Explores interface design

Logging
Forced error conditions
Leave the last test broken

It’s what you were working on when you stopped for the day

36

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Approaches to Testing
Black Box Testing

Input Coverage – All combinations of legal input values
Expensive - exponential growth of input space
Excessive - congruency of groups of inputs
Incomplete – out of bounds/illegal inputs

White Box Testing
Data-flow, control-flow coverage
Attempt to create minimal, adequate test suite
Inflexible – small code changes render test suite inadequate
Undecidable – due to loops and unreachable code

Test-First Testing
Code and data structures are driven by the test cases that
necessitate them
Designed for testability, reachability
The goal is to create code that can be tested, not tests
that can exercise code
Test reflect design intent, not just exhaustive coverage

37

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

Testing and Specifications
Types of specifications

Static
Compiler-enforced language constructs

Isolated Testing
Specialized execution to explore specific concepts
Not complete on inputs, data flow, control flow

Runtime checking
Assertions
Design by Contract
Not necessarily complete

Formal and Semi-formal specification with generation
Define a complete specification
Generate assertions, test cases, etc. to check correctness
May be white-box (control flow, data flow)
Or black-box (input coverage)

38

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

TDD Observations
Test-Driven Development is an example of how Agile
is not Ad Hoc
Creates a kind of documentation artifact which is:

Useful for the life of the project
Automatable
Clearly tied to the source code (i.e., the design)

Choice of test cases impacts design
But no research yet on how test selection impacts iterative
design qualities

Test cases provide a rudimentary intent and change
rationale model

But still desiccated like source code
TDD is non-methodical and tests are difficult to
check for consistency, completeness, etc.

39

Architecture and Design Intent Lecture 10.1

© 2006, Paul S Grisham EE 382V

The Plan for Next Time
Organizational memory and the social patterns of XP
The cost of producing, maintaining documentation
The dramatic tension of agile design

YAGNI vs. DOGBITE
Guiding refactoring through design rationale
Programmatic approaches to specifying design intent
Maintainance of test suites
Ideas for a prototype implementation of an intent-
aware, agile-friendly IDE

	Design Intent in an Agile ContextPart I
	Goals of this Lecture
	Definitions of Intent
	How Do We Use Intent?
	Outline of this Lecture
	What is Agile Software Development?
	The Agile Manifesto
	Characteristics of Plan-Driven Development
	The Cost of Change
	What If?
	Sources of Change
	Assumptions About Uncertainty
	Responding to Change
	Responding to Change (2)
	Characteristics of Agile Development
	The Agile Solution
	The Agile Problem
	Agility and Discipline
	Agility and Discipline (2)
	Agile Software Development “Methods”
	Lecture Outline
	Extreme Programming (XP)
	What’s So Extreme?
	XP Practices Overview
	XP Core Practices
	XP Feedback Practices
	XP Process Activities
	XP Comprehensibility Practices
	XP 2nd Ed. and Corollary Practices
	Lecture Outline
	Test-Driven Development
	TDD Process
	Benefits of TDD
	TDD Idioms
	TDD Patterns
	Approaches to Testing
	Testing and Specifications
	TDD Observations
	The Plan for Next Time

