
1

Architecture and Design Intent

© 2006, Paul S Grisham

Lecture 10.2

EE 382V

Design Intent in an Agile Context
Part II

Paul S Grisham
grisham@mail.utexas.edu

Feb. 21, 2006



2

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Review (Agile SD)
Agile Software Development attempts to manage 
changing requirements through:

Increasing communication
Close, face-to-face collaborations

Increasing feedback 
Short iterations with measurable progress

Decreasing bureaucracy 
Self-organizing teams

Increasing customer satisfaction
Quality through innovative craftsmanship

But what about project scalability?



3

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Review (XP)
Extreme Programming (XP) is an approach to agility

Test-Driven Development
Write test cases before design or code
Continual regression testing

Design Improvement
Refactor to improve design

Simple Design
Do the simplest thing that would possibly work

System Metaphor
Create a shared story of how the system works

Core techniques are technical and collaborative
Not process- or management-oriented

Techniques provide isolated benefit if adopted 
independently

Research on synergistic benefits weak



4

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Review (TDD)
Create test cases up-front, then write code that 
causes the test case to pass

Programmer (Unit) Test
Drives the design and implementation in the solution space

Customer (Acceptance) Test
Tests conformance to end-user (black-box) requirements

Creates a kind of documentation artifact which is:
Useful for the life of the project
Automatable
Clearly tied to the source code (i.e., the design)

Choice of test cases impacts design
Test-Driven Development is:

non-methodical
difficult to check for consistency, completeness, etc.



5

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Lecture Outline
Quick Review
Agile Software Development
Extreme Programming (XP)
Test-Driven Development
Communication and Documentation
Iterative and Adaptive Design
Agile Maintenance
Concepts for Intent-Driven Development in an Agile 
context



6

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Knowledge and Communication
Organizational Memory:

The sum of the knowledge of members of the organization
Primary location is the individual, but also

Textual information (manuals, databases, etc.)
Culture, Process, Structure

The success of a project depends on
Knowing what you know

Does someone within the organization have the information?
Knowing where to find it

Who within the organization has the information?

Communication is the means by which knowledge in 
the organization is transmitted to those who need it
Documentation is the process of preserving knowledge 
in an external record



7

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Communication in a Project
Communication provides the basis of team 
organization

Team size is determined by communication complexity
XP Team: 1 customer, 1 manager, up to 10 developers
Brooks’s Surgical Team: 10 members
Communication Complexity

A small group of like-minded individuals can share a 
mental model of the organizational memory

e.g., UNIX development team
A larger project requires hierarchical organization

How do we coordinate communication between 100 people?

12
66

2
⎛ ⎞

=⎜ ⎟
⎝ ⎠



8

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Other Problems with Individual Memory
Knowledge Loss

The sole holder of some knowledge leaves the organization
Cognitive Dissonance

Disagreements or conflicts between independent knowledge
Persistence of Memory

Knowledge fades or changes over time
Knowledge Dissemination

A holder of knowledge must respond promptly to requests
Knowledge Organization

A seeker of knowledge must know where to find it
Knowledge Maintenance

Changes to facts must be distributed to all who need it
Knowledge Abstraction

Complex knowledge is reduced for comprehensibility



9

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Documentation
By creating an external representation for 
organizational memory:

Knowledge is preserved
A copy of knowledge can be distributed to each member
Knowledge is structured to make finding and querying easy

Problems:
Cost of adding knowledge increases over time

Consistency checking
Removing invalidated facts

Comprehensibility is not positively related to length
More is not better
Proper scope must be maintained
Re-organization may be necessary

Very hard to get it right the first time
Documentation is a software project in its own right



10

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

The Traditional Approach
Make documentation a deliverable

Documentation is a separate side-project
Have dedicated documentation specialists

Harlan Mills’s Surgical Team has 2 documentarians (20%)
Compared to 30% development team and 10% test team

Documentation provides an interface between phases
Requirements -> Documentation -> Design
Design -> Documentation -> Implementation

Documentation provides an interface between teams
API or Module Interface descriptions
Design intent

Documentation preserves history
Design rationale
Change logs



11

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Mountains of Paper!
Brooks:

OS/360 project
Six months into the project:

Project workbook was five feet thick
Daily change updates were 2 inches thick (150 pages)
Workbook maintenance costs were significant

New solution: Electronic distribution
Change the PDF on the server and update the whole project
Problem: who reads all this stuff?

Doesn’t address the problem of getting the right information to 
the right people at the right time

Addresses accidental complexity of paper distribution
Does nothing to address cost of consistency maintenance



12

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

The Agile Approach
Prefer working software to comprehensive 
documentation
XP says very little about documentation

Omission does not imply elimination
Developers responsible for maintaining documentation

In practice:
Prefer communication and shared memory to explicit docs

Pair programming
Customer collaboration

Code should be readable for design and intent
Ask the Code!
No code ownership means the whole team sees all the code

Plans and designs are intended to be temporary, then 
discarded

Cheap to produce
No maintenance costs



13

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Cognitive Impact of XP’s Organization
Customer and Developer share mental model

Traditional development:
Doc. provides an interface between customer and developer
Customer unburdened by solution space
Developer receives filtered version of problem description

XP development:
Customer and Developer share mental picture of solution and 
problem space
Customer can appreciate solution challenges and costs
Face-to-face conversations are more efficient in transferring 
information

Planning happens interactively
Design happens iteratively (and sometimes implicitly)
Intent modeling is an additive process of recording 
design choices and compromises



14

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Process Artifacts
The costs of process artifacts:

The cost of producing them initially
The cost of keeping them up to date
The cost of not keeping them up to date

Benefits of process artifacts:
Support planning activities
Reduce detail complexity
Aiding comprehension (functional and design intent)



15

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Example: Source Comments
+Easy to produce
+Annotate source code
+Capture many kinds of 

information

- Can be hard to interpret
- No correctness, 

consistency checking
- No scoping information
- Incorrect, out of date 

comments can be 
dangerous

void Resource::readTableCompResource() {
if (_resourceFile->readUint32BE() != 'QTBL')

error("Invalid table header");

_resourceFile->read(_versionString, 6);
_resourceFile->readByte(); // obsolete
_resourceFile->readByte(); // obsolete
_compression = _resourceFile->readByte();

readTableEntries(_resourceFile);

}

static int compareBobDrawOrder
(const void *a, const void *b)

{
const BobSlot *bob1 = 

*(const BobSlot * const *)a;
const BobSlot *bob2 =

*(const BobSlot * const *)b;

int d = bob1->y - bob2->y;

// As the qsort() function may
// reorder "equal" elements,
// we use the bob slot number
// when needed. This is required
// during the introduction, to
// hide a crate behind the clock.

if (d == 0) {
d = bob1 - bob2;

}
return d;

}



16

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Artifacts in Project Org. Memory
Source Code

Executable Specification
System can be automatically generated from sources

Sources + Compiler + Execution Platform = System
Changes to sources -> Changes in system
Not expressive enough to express intent or rationale

“Dessicated”

Tests
Constrain source code
Can be automatically executed to determine conformance
If a test no longer represents the intent of the system:

The test may fail
Either fix source code or repair or remove test

The test may not fail
Cost of executing an unnecessary test repeatedly



17

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Other Artifacts
Version Management System and Change Logs

Record of Design History
WHAT changes stored as source code delta
WHY recorded as natural language comments

Difficult to reconstruct context of changes
Are multiple check-ins related?
What is the scenario affected by the changes?
Use as an impact of change analysis tool is limited

Naming Conventions
More likely to be used to determine intent than code itself
A bad name can reduce program comprehension



18

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

User-Story Cards



19

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Task Cards



20

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Using Iteration Context for Intent
Idea: Use iteration story + test cases as design 
intent and rationale

A user story represents a cross-cutting description of a 
functionality
The development environment should be aware of the 
iteration context (user story)
Within an iteration, new tests are user-story bound
New tests fail; new code satisfies the test
Change rationale captured as the set of previously failing 
tests satisfied by the new code
Profiler determines scope for feature aspects
Refactoring micro-iterations identified explicitly by user 
input or as iterations with no new tests satisfied



21

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Using Test Cases as Intent Model
Any source element can be queried with respect to:

User stories it participates in
Test cases it participates in
Classes/Methods that call it
Classes/Method it calls

Test cases can be queried with respect to:
Various levels of code and data flow coverage
User stories it participates in
Former test cases it supercedes
Stubbed portions of the implementation (completeness)



22

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Characteristics of Agile Documentation
Cost of initial production must be low

Should be able to be done by developers
Non-interfering

Prefer monotonic representations of knowledge
Low cost/risk of dissonance
New information replaces old automatically

Prefer documentation that drives or is derived from 
the executable specification

Minimal amount of manual traceability management
Single underlying representation for active artifacts



23

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Characteristics of Agile Documentation
Lifespan should be definable

(Utility over time function)
Information is relatively static (information long-lasting),
Cost of updating is cheap (information continually useful), or
Planned retirement (limited lifespan)

Think about who will use it and how
No documentation for documentation’s sake
Developers know what they need
Similar to agile design, if you don’t know how something will 
be used, don’t bother



24

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Lecture Outline
Quick Review
Agile Software Development
Extreme Programming (XP)
Test-Driven Development
Communication and Documentation
Iterative and Adaptive Design
Agile Maintenance
Concepts for Intent-Driven Development in an Agile 
context



25

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

What Is Design?
Design Process

Requirements are partitioned into elements
Design specifies relationships on those elements
Requirements are be decomposed into sub-requirements
Implementation is the process of refining reqs. and design

Design can take place at various levels
Instruction, Statement, Function, Object, Component, etc.

Hierarchical designs are easier to comprehend
An architectural diagram can make sense of 100+ classes

Detailed designs drive cost estimation
Predictive model?

Traditional design:
Top-down design
Bottom-up implementation
Tight internal cohesion
Loose external coupling



26

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Big Up-Front Design (BUFD)
If requirements are static

Designs can be definitive
Can optimize the design for desired qualities
Complex inter-dependencies are tolerable
No risk of spending up-front time building bottom-up

If requirements are volatile
Designs will have to evolve to accommodate changes
Evolved designs may not preserve original design qualities

If requirements are poorly understood
Bottom-up development may not help clarify requirements
Requirements faults not found until late



27

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Agile Design: Simple and Iterative
In XP, a given user story is selected for development

A story must fit in an iteration or be subdivided into new 
stories
Stories are decomposed into Engineering Tasks
Acceptance Tests are written (customer-owned)

Using TDD and Simple Design, a solution is created 
until all acceptance tests pass
The customer gets rapid feedback on the 
implementation, and can make corrections to 
requirements
When design elements need to be merged, conduct a 
refactoring full iteration to improve design

Refactored design should reflect real need
Use regression tests to maintain correctness



28

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

XP Design Planning
XP Projects use design planning

e.g., Between teams within an iteration
Try a pilot implementation before refactoring
During refactoring, if you can see the need, implement flexibility 
for future enhancement

Don’t invent new tasks!
Would it be better to increase the priority of that story?

YAGNI vs. DOGBITE
Ya Ain’t Gonna Need It

Might be nice to have, but odds are YAGNI
Wait until you have a user story to support it

Complex character encoding support for a small business system
User-customizable reports
DBMS brand independence

Do it Or it’s Gonna Bite you In The End
You have a real fork in the road between incompatible options
You need to attend to some pervasive quality requirement

Security, Multi-Threaded
Scalability (?)



29

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Example
First iteration:

Some data must be stored to disk
Simplest solution is a text file

Second iteration:
Simplest solution is to store to disk in another file
However code already exists to write a file to disk
Refactor to reuse the file interface

Third iteration:
Requires coordination between data in 1st and 2nd iteration
Marked-up data seems reasonable -> XML

Fourth iteration:
We need multi-user and transaction support
Consider a relational DBMS
Now we know what are data requirements are
We can write scripts to import our XML



30

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Spike Solution
Sometimes we need to try a solution without knowing 
what the requirements are
Spike Solution is an end-to-end experimental solution

Depth-first, top-down
Independent of existing solutions
Close the Loop

1

2

3

4

6

5

1

2

3

4

7
5

6 8

B
ot

to
m

-u
p 

so
lu

tio
n

Sp
ik

e 
so

lu
tio

n



31

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

XP and Prototyping
Prototyping – an experimental implementation 
designed to get rapid feedback
Although XP uses small iterations and incremental 
development of functionality, it differs from 
prototyping in critical ways:

Designed to be functional
No mockups

Code is production quality
New features are integrated into the system immediately
Even spike solutions are meant to be refactored into the 
system eventually
Tests drive development and serve as quality and regression 
control



32

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Deferred Decisions
Sometimes the best solution isn’t known or the 
requirements are uncertain
Use a Design Shield to defer decisions

May be implemented as a façade or abstract interface
Change is anticipated behind the shield
Refactoring firewall
“It gives you room to change your mind”
The more protective it is, the more complex the design 
becomes

Use placeholders or stubs to make explicit where 
future code will go

Sometimes mock functions or data will make a unit compile 
and pass a test



33

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Role of Rationale and Intent
Design Rationale can mark where design alternatives 
exist

Decision might have been deferred or
The best solution was temporarily rejected until later
Deferred decisions can be queried to identify 

Design Rationale bounds refactoring
Two or more qualities are driving refactoring -> Code churn
Refactor -> Refactor back -> Refactor, etc.
Can more easily identify the competing strategies
May facilitate arbitration and conclusion

A stub is an expression of design intent
Marks the location where new code can plug in
Doesn’t break the existing code
It’s in the code, so changes to code change the design



34

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Design as a Quality

Requirements

Design Visualization
Code

System

Annotated Code

Tests
Requirements

Design

Code

System



35

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Lecture Outline
Quick Review
Agile Software Development
Extreme Programming (XP)
Test-Driven Development
Communication and Documentation
Iterative and Adaptive Design
Agile Maintenance
Concepts for Intent-Driven Development in an Agile 
context



36

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Maintenance of Test Cases
Maintenance of Test Cases is very hard

Perhaps harder than code maintenance
Relationships between Test Cases are unclear

Designed to be independent, isolated

Most work on test maintenance is on test suite 
reduction

Tests take a long time to run
Searching for the smallest set of tests to get “adequate” 
coverage
The basic test is a call to a code unit on a variety of inputs 
and compare outputs

Treat state and side effects as inputs
Problem: Small changes in the code can make test set 
“inadequate” -> need new test set



37

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Test Case Generation
Alternate approach: generate tests from 
specifications

For a given definition of coverage, generate “adequate” test
If code changes, new inputs can be generated automatically
Old tests can be stored for regression
Writing an oracle can be very hard

Neither approach addresses:
Adequately testing error or out-of-bounds conditions
How to work with partial knowledge of specifications
How to update tests when requirements change
How to test interaction effects, such as with use cases

These approaches to test selection provide no 
contextual information

We want to treat a test case as a model of intent
Path coverage may test interactions outside of design intent



38

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Shortcomings in TDD
Non-methodical

How do we know when we have enough tests?
Difficult to maintain

Simple changes to code design can break lots of useful tests
Test semantics are informal

Rely on idiomatic usages to express intent
Hard to analyze what the test is doing

Systematically create new tests
Generalize into super-tests

Relationship between tests and other contracts is 
unclear

Assertions
Contracts (e.g., pre- and post-conditions)

Selection and prioritization of test cases influences 
design



39

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Possible Approaches
Use a lightweight specification model to guide test 
creation

Makes test creation methodical
Changes to requirements can propagate easily to tests
Requires additional spec language

Use a specialized test representation and framework 
to generalize specifications from tests
Create explicit intent bindings from test points to 
unit parameters
Bind code assets to tests (reverse traceability) in 
order to facilitate propagation of changes to tests



40

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Lecture Outline
Quick Review
Agile Software Development
Extreme Programming (XP)
Test-Driven Development
Communication and Documentation
Iterative and Adaptive Design
Agile Maintenance
Concepts for Intent-Driven Development in an Agile 
context



41

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

IDE Design Philosophy
Total integration through views

Source editing
Version management
Test automation and reporting
Semantic interconnection visualization
Intent and rationale modeling
Design visualization
Progress status visualization
Planning

Modeling and documentation should be as unobtrusive 
as possible
Use context where possible
Use programmer’s apprentice when necessary



42

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Vision of Agile Artifact Repository

Annotated Sources

Annotated Tests

Version History

Intent Models, Etc.

Source 
Editor

Architecture

View

Project Status

View

Test

View

Central, managed database of system assets
All traceability managed by development environment through 
semantic intent models

Changes easily propagated
Some traditional planning views (e.g. architecture) are 
generated views rather than design drivers



43

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Intent-Aware Development Environments
Inscape
SEURAT

Integrated approach to capturing design rationale
Evolutionary Annotation Prototype

Use change log information to assist program comprehension
Intentional Programming



44

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Inscape
Lightweight semantic interconnection model with 
specification language

Pre-conditions
Post-conditions
Obligations

Built on old technology (Gandalf)
Due for an update in the color, window, language-
aware editor world
How do programmers respond to Inscape’s design 
process?



45

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

SEURAT
Software Engineering Using 
RATionale
Ontology of design rationale 
behind an IDE

Supports management of 
alternative design choices

Designed to support software 
maintenance

Not necessarily initial design
Binds requirements to code 
elements through rationale
Integrated into Eclipse



46

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

SEURAT Tool
Allows input of information about:

Decisions
Alternatives
Evaluation Criteria



47

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

SEURAT Tool

Tool can help evaluate alternatives based on the 
arguments for and against a particular design choice



48

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Evolutionary Annotations
Submitted for 
publication 
MSR2006
Use change logs 
and version 
management 
comments to 
annotate source 
code views
An attempt to 
maximize use of 
unstructured, 
natural data



49

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

EA Prototype Tool



50

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

EA Comments
Similar to our approach of using user-story context 
and test cases
This approach relies on:

The availability of comprehensive version control comments
The ability to associate project communication to changes 
after the fact

Advantages:
Uses existing process artifacts
Unobtrusive

Disadvantages:
Informal model (vs. semi-formal)
Navigable through source organization, not usage patterns
No specific notion of design intent



51

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Intentional Programming
Developed by Charles Simonyi (formerly of Microsoft)
Treat source code as an tree of Active Source
elements
Active sources may use:

Traditional programming languages
Domain specific abstractions
Graphical notations

Language extensions provide:
Rendering Methods
Input Methods
Reduction Methods

Convert one format to another
Debugging Methods
Editing and Refactoring Methods
Version Control Methods

For resolving conflicts



52

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

IP System Design
Treat Code as a Graph, not as files
Use parsers and reduction to treat functionality in a 
language-independent manner



53

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

IP Screenshots

Functional Intent very clear
Useful for implementing domain-specific languages



54

Architecture and Design Intent Lecture 10.2

© 2006, Paul S Grisham EE 382V

Intentional Programming Comments
Right idea on treating source code as a view into a 
functional intent model
Development system is proprietary and secretive

Not much has been seen since Simonyi left Microsoft
Emphasizes the importance of using the right 
abstractions to capture intent
Most developers already know their favorite language

Otherwise we would be using better languages than C++ and 
Java

Not clear how the idea generalizes to real systems


	Design Intent in an Agile ContextPart II
	Review (Agile SD)
	Review (XP)
	Review (TDD)
	Lecture Outline
	Knowledge and Communication
	Communication in a Project
	Other Problems with Individual Memory
	Documentation
	The Traditional Approach
	Mountains of Paper!
	The Agile Approach
	Cognitive Impact of XP’s Organization
	Process Artifacts
	Example: Source Comments
	Artifacts in Project Org. Memory
	Other Artifacts
	User-Story Cards
	Task Cards
	Using Iteration Context for Intent
	Using Test Cases as Intent Model
	Characteristics of Agile Documentation
	Characteristics of Agile Documentation
	Lecture Outline
	What Is Design?
	Big Up-Front Design (BUFD)
	Agile Design: Simple and Iterative
	XP Design Planning
	Example
	Spike Solution
	XP and Prototyping
	Deferred Decisions
	Role of Rationale and Intent
	Design as a Quality
	Lecture Outline
	Maintenance of Test Cases
	Test Case Generation
	Shortcomings in TDD
	Possible Approaches
	Lecture Outline
	IDE Design Philosophy
	Vision of Agile Artifact Repository
	Intent-Aware Development Environments
	Inscape
	SEURAT
	SEURAT Tool
	SEURAT Tool
	Evolutionary Annotations
	EA Prototype Tool
	EA Comments
	Intentional Programming
	IP System Design
	IP Screenshots
	Intentional Programming Comments

