Architecture and Design Intent Lecture 10.2

Design Intent in an Agile Context
Part IT

Paul S Grisham
grisham@mail .utexas.edu

Feb. 21, 2006

© 2006, Paul S Grisham EE 382V

Architecture and Design Intent Lecture 10.2

Review (Agile SD)

> Agile Software Development attempts to manage

changing requirements through:
b Increasing communication
> Close, face-to-face collaborations
b Increasing feedback
> Short iterations with measurable progress
% Decreasing bureaucracy
> Self-organizing teams
Y Increasing customer satisfaction
> Quality through innovative craftsmanship

> But what about project scalability?

© 2006, Paul S Grisham EE 382V 2

Architecture and Design Intent Lecture 10.2

Review (XP)

> Extreme Programming (XP) is an approach to agility

% Test-Driven Development
> Write test cases before design or code
» Continual regression testing

Y, Design Improvement
> Refactor to improve design
L Simple Design
> Do the simplest thing that would possibly work

L, System Metaphor
> Create a shared story of how the system works

> Core techniques are technical and collaborative
% Not process- or management-oriented

> Techniques provide isolated benefit if adopted
independently

Y Research on synergistic benefits weak

© 2006, Paul S Grisham EE 382V 3

Architecture and Design Intent Lecture 10.2

Review (TDD)

> Create test cases up-front, then write code that

causes the test case to pass

% Programmer (Unit) Test
> Drives the design and implementation in the solution space

% Customer (Acceptance) Test
» Tests conformance to end-user (black-box) requirements

> Creates a kind of documentation artifact which is:
L Useful for the life of the project
%, Automatable
% Clearly tied to the source code (i.e., the design)

> Choice of test cases impacts design

> Test-Driven Development is:
% non-methodical
G difficult to check for consistency, completeness, etc.

© 2006, Paul S Grisham EE 382V 4

Architecture and Design Intent Lecture 10.2

Lecture Outline

3 Quick Review

> Agile Software Development

> Extreme Programming (XP)

> Test-Driven Development

> Communication and Documentation
> Iterative and Adaptive Design

> Agile Maintenance

> Concepts for Intent-Driven Development in an Agile
context

© 2006, Paul S Grisham EE 382V 5

Architecture and Design Intent Lecture 10.2

Knowledge and Communication

2 Organizational Memory:
Y The sum of the knowledge of members of the organization

Y Primary location is the individual, but also
> Textual information (manuals, databases, etc.)
> Culture, Process, Structure

> The success of a project depends on

% Knowing what you know
> Does someone within the organization have the information?

% Knowing where to find it
» Who within the organization has the information?

> Communication is the means by which knowledge in
the organization is transmitted to those who need it

> Documentation is the process of preserving knowledge
in an external record

© 2006, Paul S Grisham EE 382V 6

Architecture and Design Intent

Lecture 10.2

Communication in a Project

> Communication provides the basis of team
organization

Y Team size is determined by communication complexity

LXP Team: 1 customer, 1 manager, up to 10 developers
% Brooks's Surgical Team: 10 members
% Communication Complexity (12]

= 66

> A small group of like-minded individuals can share a

mental model of the organizational memory
Le.g., UNIX development team

> A larger project requires hierarchical organization
Y How do we coordinate communication between 100 people?

© 2006, Paul S Grisham

EE 382V

Architecture and Design Intent Lecture 10.2

Other Problems with Individual Memory

> Knowledge Loss
Y The sole holder of some knowledge leaves the organization

> Cognitive Dissonance
Y Disagreements or conflicts between independent knowledge

> Persistence of Memory
Y Knowledge fades or changes over time

> Knowledge Dissemination
A holder of knowledge must respond promptly to requests

> Knowledge Organization
L A seeker of knowledge must know where to find it

> Knowledge Maintenance
% Changes to facts must be distributed to all who need it

> Knowledge Abstraction
Y Complex knowledge is reduced for comprehensibility

© 2006, Paul S Grisham EE 382V 8

Architecture and Design Intent Lecture 10.2

Documentation

> By creating an external representation for

organizational memory:
Y Knowledge is preserved
Y A copy of knowledge can be distributed to each member
Y Knowledge is structured to make finding and querying easy

> Problems:

% Cost of adding knowledge increases over time
> Consistency checking
> Removing invalidated facts
Y Comprehensibility is not positively related to length
> More is not better
> Proper scope must be maintained
> Re-organization may be necessary
Y Very hard to get it right the first time
> Documentation is a software project in its own right

© 2006, Paul S Grisham EE 382V 9

Architecture and Design Intent Lecture 10.2

The Traditional Approach

> Make documentation a deliverable
% Documentation is a separate side-project

> Have dedicated documentation specialists

% Harlan Mills's Surgical Team has 2 documentarians (20%)
» Compared to 30% development team and 10% test team

> Documentation provides an interface between phases
Y Requirements -> Documentation -> Design
% Design -> Documentation -> Implementation

> Documentation provides an interface between teams
% APT or Module Interface descriptions
% Design intent

> Documentation preserves history
% Design rationale
% Change logs

© 2006, Paul S Grisham EE 382V 10

Architecture and Design Intent Lecture 10.2

Mountains of Paper!

> Brooks:
% 0S5/360 project

% Six months into the project:
» Project workbook was five feet thick
> Daily change updates were 2 inches thick (150 pages)
» Workbook maintenance costs were significant

> New solution: Electronic distribution

Y Change the PDF on the server and update the whole project

% Problem: who reads all this stuff?
> Doesn't address the problem of getting the right information to
the right people at the right time

Y, Addresses accidental complexity of paper distribution
Y Does nothing to address cost of consistency maintenance

© 2006, Paul S Grisham EE 382V 1

Architecture and Design Intent Lecture 10.2

The Agile Approach

> Prefer working software to comprehensive
documentation

> XP says very little about documentation
Y, Omission does not imply elimination
Y Developers responsible for maintaining documentation

> In practice:
Y Prefer communication and shared memory to explicit docs
> Pair programming
» Customer collaboration
% Code should be readable for design and intent
» Ask the Code!
> No code ownership means the whole team sees all the code
Y Plans and designs are intended to be temporary, then
discarded
» Cheap to produce
> No maintenance costs

© 2006, Paul S Grisham EE 382V 12

Architecture and Design Intent Lecture 10.2

Cognitive Impact of XP's Organization

> Customer and Developer share mental model
% Traditional development:
> Doc. provides an interface between customer and developer
» Customer unburdened by solution space
> Developer receives filtered version of problem description
L XP development:
» Customer and Developer share mental picture of solution and
problem space
> Customer can appreciate solution challenges and costs
> Face-to-face conversations are more efficient in transferring
information

2 Planning happens interactively
> Design happens iteratively (and sometimes implicitly)

> Intent modeling is an additive process of recording
design choices and compromises

© 2006, Paul S Grisham EE 382V 13

Architecture and Design Intent Lecture 10.2

Process Artifacts

> The costs of process artifacts:
% The cost of producing them initially
Y The cost of keeping them up to date
% The cost of not keeping them up to date

> Benefits of process artifacts:
Y Support planning activities
Y Reduce detail complexity
% Aiding comprehension (functional and design intent)

© 2006, Paul S Grisham EE 382V 14

Architecture and Design Intent Lecture 10.2

Example: Source Comments

void Resource::readTableCompResource() {

——E d if (_resourceFile->readUint32BE() != 'QTBL')

asy 1-0 pr'o uce error ("Invalid table header"):;
_resourceFile->read(_versionString, 6);

T Anno.'-a?e Sour'ce COde _resourceFile->readByte();

_resourceFile->readByte();

1 Cap.'.ur.e many kinds Of _compression = _resourceFile->readByte();

readTableEntries (_resourceFile);

information)

static int compareBobDrawOrder
(const void *a, const void *Db)

{

- Can be hard to interpret Sonst BobSIot *bob =

* (const BobSlot * const *)a;
const BobSlot *bob2 =

- No Correc"'ness' * (const BobSlot * const *)b;
o . int 4 = bobl->y - bob2->y;
consistency checking

- No scoping information

- Incorrect, out of date [/ e s e
comments can be } d = bobl - bob2;
dangerlous return 4;

}

© 2006, Paul S Grisham EE 382V 15

Architecture and Design Intent Lecture 10.2

Artifacts in Project Org. Memory

> Source Code
& Executable Specification

L, System can be automatically generated from sources
> Sources + Compiler + Execution Platform = System

% Changes to sources -> Changes in system

Y Not expressive enough to express intent or rationale
> "Dessicated”

> Tests
% Constrain source code
% Can be automatically executed to determine conformance

L If a test no longer represents the intent of the system:
> The test may fail

v'Either fix source code or repair or remove test
» The test may not fail

v'Cost of executing an unnecessary test repeatedly

© 2006, Paul S Grisham EE 382V

16

Architecture and Design Intent Lecture 10.2

Other Artifacts

> Version Management System and Change Logs
Y, Record of Design History

» WHAT changes stored as source code delta
» WHY recorded as natural language comments
& Difficult to reconstruct context of changes
> Are multiple check-ins related?
> What is the scenario affected by the changes?
> Use as an impact of change analysis tool is limited

2> Naming Conventions
Y More likely to be used to determine intent than code itself
%, A bad name can reduce program comprehension

© 2006, Paul S Grisham EE 382V 17

Architecture and Design Intent Lecture 10.2

User-Story Cards

Customer Story and Task Card _ _ Biw Devele nmme st \5 et
T - . i : T X
DATE: .ﬁf%‘iﬁﬁ TYPEOF ACTIVITY: NEW: X FIX: __ ENHANCE: ___ FUNC. TEST

STORY NUMBER: PRIORITY: USER: _ TECH:

PRIOR REFERENCE:
: RISK : TECH ESTIMATE:

n g pddle of

;
Coyhun IR iew g0 dho,

et oy

TASK DESCRIPTION:

Wi | o b

: £

s g ot ;
e ;;\f ol {r OBy a {(:,.c/ Awmopld RO E T

&

¥
e ¥ H & q
{4 P Vs we %”‘ e

3 g gyl B ~‘J..,n
fd R R

et PTITIRIES ar #e
2P LA

it pp Pl vt Dunge DR

TASK TRACKING: Do s

Date Status ; E¥re;

© 2006, Paul S Grisham EE 382V

18

Architecture and Design Intent Lecture 10.2

Task Cards

Engineering Task Card Nk]

5 | NN

STORY NUMBER: _ J&ﬁ J

TASK DESCRIPTION:

S e UGy

SOFTWARE ENGINEER:

it Dom

i i B
Dudleig s b

i3

i 4 i i

F o H
hit ke

| SOFTWARE ENGINEER'S NOT

TASK TRACKING:

Date Done To Do ' ' Comments

© 2006, Paul S Grisham EE 382V 19

Architecture and Design Intent Lecture 10.2

Using Iteration Context for Intent

> Idea: Use iteration story + test cases as design

intent and rationale

Y A user story represents a cross-cutting description of a
functionality

Y The development environment should be aware of the
iteration context (user story)

L Within an iteration, new tests are user-story bound

Y New tests fail: new code satisfies the test

Y Change rationale captured as the set of previously failing
tests satisfied by the new code

% Profiler determines scope for feature aspects

Y Refactoring micro-iterations identified explicitly by user
input or as iterations with no new tests satisfied

© 2006, Paul S Grisham EE 382V 20

Architecture and Design Intent Lecture 10.2

Using Test Cases as Intent Model

> Any source element can be queried with respect to:
L User stories it participates in
L Test cases it participates in
% Classes/Methods that call it
% Classes/Method it calls

> Test cases can be queried with respect to:
Y Various levels of code and data flow coverage
L User stories it participates in
Y Former test cases it supercedes
L Stubbed portions of the implementation (completeness)

© 2006, Paul S Grisham EE 382V 21

Architecture and Design Intent Lecture 10.2

Characteristics of Agile Documentation

> Cost of initial production must be low
& Should be able to be done by developers
% Non-interfering

> Prefer monotonic representations of knowledge
L Low cost/risk of dissonance
Y New information replaces old automatically

> Prefer documentation that drives or is derived from

the executable specification
Y Minimal amount of manual traceability management
% Single underlying representation for active artifacts

© 2006, Paul S Grisham EE 382V 22

Architecture and Design Intent Lecture 10.2

Characteristics of Agile Documentation

> Lifespan should be definable

& (Utility over time function)
> Information is relatively static (information long-lasting),
> Cost of updating is cheap (information continually useful), or
> Planned retirement (limited lifespan)

> Think about who will use it and how
“No documentation for documentation’'s sake
% Developers know what they need

L Similar to agile design, if you don't know how something will
be used, don't bother

© 2006, Paul S Grisham EE 382V 23

Architecture and Design Intent Lecture 10.2

Lecture Outline

> Quick Review

> Agile Software Development

> Extreme Programming (XP)

> Test-Driven Development

> Communication and Documentation
> Iterative and Adaptive Design

> Agile Maintenance

> Concepts for Intent-Driven Development in an Agile
context

© 2006, Paul S Grisham EE 382V 24

Architecture and Design Intent Lecture 10.2

What Is Design?

> Design Process
Y Requirements are partitioned into elements
% Design specifies relationships on those elements
Y Requirements are be decomposed into sub-requirements
Y Implementation is the process of refining reqs. and design

> Design can take place at various levels
& Instruction, Statement, Function, Object, Component, etc.

> Hierarchical designs are easier to comprehend
Y An architectural diagram can make sense of 100+ classes

> Detailed designs drive cost estimation
% Predictive model?

> Traditional design:
Y Top-down design
% Bottom-up implementation
% Tight internal cohesion
Y Loose external coupling

© 2006, Paul S Grisham EE 382V 25

Architecture and Design Intent Lecture 10.2

Big Up-Front Design (BUFD)

> If requirements are static
% Designs can be definitive
% Can optimize the design for desired qualities
Y Complex inter-dependencies are tolerable
Y No risk of spending up-front time building bottom-up

> If requirements are volatile
Y Designs will have to evolve to accommodate changes
% Evolved designs may not preserve original design qualities

> If requirements are poorly understood
Y, Bottom-up development may not help clarify requirements
Y Requirements faults not found until late

© 2006, Paul S Grisham EE 382V 26

Architecture and Design Intent Lecture 10.2

Agile Design: Simple and Iterative

> In XP, a given user story is selected for development
% A story must fit in an iteration or be subdivided into new
stories
L Stories are decomposed into Engineering Tasks
Y, Acceptance Tests are written (customer-owned)
> Using TDD and Simple Design, a solution is created

until all acceptance tests pass

> The customer gets rapid feedback on the
implementation, and can make corrections to
requirements

> When design elements need to be merged, conduct a

refactoring full iteration to improve design
Y, Refactored design should reflect real need
Y Use regression tests to maintain correctness

© 2006, Paul S Grisham EE 382V 27

Architecture and Design Intent Lecture 10.2

XP Design Planning

> XP Projects use design planning
L e.g., Between teams within an iteration
% Try a pilot implementation before refactoring
% During refactoring, if you can see the need, implement flexibility
for future enhancement

> Don't invent new tasks!
> Would it be better to increase the priority of that story?

> YAGNI vs. DOGBITE
% Ya Ain't Gonna Need It
> Might be nice to have, but odds are YAGNI
> Wait until you have a user story to support it
v’ Complex character encoding support for a small business system
v'User-customizable reports
v DBMS brand independence
% Do it Or it's Gonna Bite you In The End
> You have a real fork in the road between incompatible options
> You need to attend to some pervasive quality requirement
v' Security, Multi-Threaded
v Scalability (?)

© 2006, Paul S Grisham EE 382V 28

Architecture and Design Intent Lecture 10.2

Example

> First iteration:
L, Some data must be stored to disk
% Simplest solution is a text file

> Second iteration:
% Simplest solution is to store to disk in another file
Y However code already exists to write a file to disk
L Refactor to reuse the file interface

> Third iteration:
Y Requires coordination between data in 1s* and 2" iteration
Y Marked-up data seems reasonable -> XML

> Fourth iteration:
Y We need multi-user and transaction support
% Consider a relational DBMS
Y Now we know what are data requirements are
L We can write scripts to import our XML

© 2006, Paul S Grisham EE 382V 29

Architecture and Design Intent Lecture 10.2

Spike Solution

> Sometimes we need to try a solution without knowing
what the requirements are

> Spike Solution is an end-to-end experimental solution
% Depth-first, top-down
Y Independent of existing solutions
% Close the Loop

Bottom-up solution
Spike solution

© 2006, Paul S Grisham EE 382V 30

Architecture and Design Intent Lecture 10.2

XP and Prototyping

> Prototyping - an experimental implementation
designed to get rapid feedback

> Although XP uses small iterations and incremental

development of functionality, it differs from
prototyping in critical ways:

% Designed to be functional

> No mockups

% Code is production quality

Y New features are integrated into the system immediately

L Even spike solutions are meant to be refactored into the

system eventually

Y Tests drive development and serve as quality and regression
control

© 2006, Paul S Grisham EE 382V 31

Architecture and Design Intent Lecture 10.2

Deferred Decisions

> Sometimes the best solution isn't known or the
requirements are uncertain

> Use a Design Shield to defer decisions
Y May be implemented as a fagade or abstract interface
% Change is anticipated behind the shield
Y Refactoring firewall
L"It gives you room to change your mind”
Y The more protective it is, the more complex the design
becomes

> Use placeholders or stubs to make explicit where

future code will go

Y Sometimes mock functions or data will make a unit compile
and pass a test

© 2006, Paul S Grisham EE 382V 32

Architecture and Design Intent Lecture 10.2

Role of Rationale and Intent

> Design Rationale can mark where design alternatives

exist
% Decision might have been deferred or
Y The best solution was temporarily rejected until later
Y, Deferred decisions can be queried to identify

> Design Rationale bounds refactoring
Y, Two or more qualities are driving refactoring -> Code churn
Y Refactor -> Refactor back -> Refactor, etc.
L, Can more easily identify the competing strategies
Y May facilitate arbitration and conclusion

> A stub is an expression of design intent
Y Marks the location where new code can plug in
% Doesn't break the existing code
L It's in the code, so changes to code change the design

© 2006, Paul S Grisham EE 382V 33

Architecture and Design Intent Lecture 10.2

Design as a Quality

Requirements \

Requirements
l Tests
Design Annotated Code ”/

'
Code Cvo{ \

l l Design Visualization
System

System

© 2006, Paul S Grisham EE 382V 34

Architecture and Design Intent Lecture 10.2

Lecture Outline

> Quick Review

> Agile Software Development

> Extreme Programming (XP)

> Test-Driven Development

> Communication and Documentation
> Iterative and Adaptive Design

> Agile Maintenance

> Concepts for Intent-Driven Development in an Agile
context

© 2006, Paul S Grisham EE 382V 35

Architecture and Design Intent Lecture 10.2

Maintenance of Test Cases

2 Maintenance of Test Cases is very hard
Y Perhaps harder than code maintenance

Y Relationships between Test Cases are unclear
> Designed to be independent, isolated

> Most work on test maintenance is on test suite

reduction
L Tests take a long time to run
b Searching for the smallest set of tests to get “adequate”
coverage
Y The basic test is a call to a code unit on a variety of inputs

and compare outputs
> Treat state and side effects as inputs

% Problem: Small changes in the code can make test set
“inadequate” -> need new test set

© 2006, Paul S Grisham EE 382V 36

Architecture and Design Intent Lecture 10.2

Test Case Generation

> Alternate approach: generate tests from
specifications
Y For a given definition of coverage, generate “"adequate” test
L If code changes, new inputs can be generated automatically
L, OIld tests can be stored for regression
L Writing an oracle can be very hard

> Neither approach addresses:
Y Adequately testing error or out-of-bounds conditions
Y How to work with partial knowledge of specifications
Y How to update tests when requirements change
Y How to test interaction effects, such as with use cases

> These approaches to test selection provide no

contextual information
L We want to treat a test case as a model of intent
Y Path coverage may test interactions outside of design intent

© 2006, Paul S Grisham EE 382V 37

Architecture and Design Intent Lecture 10.2

Shortcomings in TDD

2> Non-methodical
% How do we know when we have enough tests?

> Difficult to maintain
L Simple changes to code design can break lots of useful tests

> Test semantics are informal
Y Rely on idiomatic usages to express intent
Y Hard to analyze what the test is doing

> Systematically create new tests
> Generalize into super-tests
> Relationship between tests and other contracts is

unclear
L Assertions
& Contracts (e.g., pre- and post-conditions)
> Selection and prioritization of test cases influences
design

© 2006, Paul S Grisham EE 382V 38

Architecture and Design Intent Lecture 10.2

Possible Approaches

> Use a lightweight specification model to guide test
creation
Y Makes test creation methodical
Y Changes to requirements can propagate easily to tests
Y Requires additional spec language
> Use a specialized test representation and framework

to generalize specifications from tests

> Create explicit intent bindings from test points to
unit parameters

> Bind code assets to tests (reverse traceability) in
order to facilitate propagation of changes to tests

© 2006, Paul S Grisham EE 382V 39

Architecture and Design Intent Lecture 10.2

Lecture Outline

> Quick Review

> Agile Software Development

3> Extreme Programming (XP)

> Test-Driven Development

> Communication and Documentation
> Iterative and Adaptive Design

> Agile Maintenance

> Concepts for Intent-Driven Development in an Agile
context

© 2006, Paul S Grisham EE 382V 40

Architecture and Design Intent

Lecture 10.2

IDE Design Philosophy

> Total integration through views
% Source editing
% Version management
% Test automation and reporting
Y, Semantic interconnection visualization
Y Intent and rationale modeling
% Design visualization
% Progress status visualization

% Planning

2> Modeling and documentation should be as unobtrusive

as possible

> Use context where possible

> Use programmer’s apprentice when necessary

© 2006, Paul S Grisham

EE 382V

41

Architecture and Design Intent Lecture 10.2

Vision of Agile Artifact Repository

Architecture Project Status
View View
Test
Source Vi
Editor lew
|
|

Annotated Sources

Annotated Tests

Version History

Intent Models, Etc.

-

> Central, managed database of system assets

> All traceability managed by development environment through
semantic intent models
% Changes easily propagated

> Some traditional planning views (e.g. architecture) are
generated views rather than design drivers

© 2006, Paul S Grisham EE 382V 42

Architecture and Design Intent Lecture 10.2

Intent- Aware Development Environments

> Inscape
> SEURAT

Y Integrated approach to capturing design rationale

> Evolutionary Annotation Prototype
Y Use change log information to assist program comprehension

> Intentional Programming

© 2006, Paul S Grisham EE 382V 43

Architecture and Design Intent Lecture 10.2

Inscape

> Lightweight semantic interconnection model with
specification language
% Pre-conditions

U Post-conditions
%, Obligations

> Built on old technology (Gandalf)

> Due for an update in the color, window, language-
aware editor world

> How do programmers respond to Inscape’s design
process?

© 2006, Paul S Grisham EE 382V 44

Architecture and Design Intent

Lecture 10.2

SEURAT

> Software Engineering Using
RATionale

> Ontology of design rationale
behind an IDE

L, Supports management of
alternative design choices

> Designed to support software

maintenance
Y Not necessarily initial design

> Binds requirements to code
elements through rationale

> Integrated into Eclipse

£ RationaleE zplorer

E|<:c';= doezn't protect pazswords
E||:| eazy bo break into the syster

. + MNOT {provides | support
—]c:C';: easzy to add uzers
E||:| eazy bo add new uzers bo g

- 15 {allows | supports} ad
|'_—'|<:c';= eazy bo code up

=[] easier to code

. + 15 Reduces Developme

Eﬁ zenalize uzer infarmation

Elc:i';: zafequards user data
E||:| zafeguards uzer data

fl- hiow/when to load meetings

fl- length of month when browsing
El..

El..

Il

51 I51-. %1

loc:ation of conference raom on main dig)

(|

4 lacation of conversion from T ableE lemer ~r1
4 3

© 2006, Paul S Grisham EE 382V

45

Architecture and Design Intent Lecture 10.2

SEURAT Tool

> Allows input of information about:
U Decisions
% Alternatives
% Evaluation Criteria

+ Decision Information =] E3

M ame: [huw to ztore wzer infarmation

How do we ztore uger information - names, pazswords, etc.,

=]
Drezcription: ;I

Type: singleChoice j Status Urrezalved j
DevelopmentPhase: Deszign j [T Sub-Decisions Required
[Ewaluation] Altermatives:

[-6.5] zave in a text file
[10.0] zerialize user information

Save Cancel

© 2006, Paul S Grisham EE 382V 46

Architecture and Design Intent Lecture 10.2

SEURAT Tool

Ontolagy Entry |T|:|tal |F|:|r | Against «

iReduces Development Time 12
minimizes keystrokes]
intuitiveness 3
{alloves | suppoartzt additional users 2
reduces caupling 2
{provides | supparts} code readability 2
]
1
1
1
1
1

Increaszes Scalability

provides reazonable default values
minimizes connections ta be zet up
{iz a | uses a} efficient algorithm

provides user guidance
{provides | supports} effective use of ... _ILI
4| | »

Edit | Close |

el bl e s B SRl R SRR R ey R]
[Y s e BEl E c S

> Tool can help evaluate alternatives based on the
arguments for and against a particular design choice

© 2006, Paul S Grisham EE 382V 47

Architecture and Design Intent Lecture 10.2

Evolutionary Annotations

Mail messages and
newsgroup postings

> Submitted for

pUb/icar/.O” Rﬁ :Z]zi:.zllljs:j;'::ﬁre]atﬂl to
MSR2006

> Use change logs N

o o
and version | | |
management ' | |
comments to micommns | Change s | Change || | o
e mum < P e

code views : : | | e

Desgibe Describe

9 An aTTempt To 1"L‘t‘.~iiunj-] Change Version i Change Version i+1
maximize use of —
unstructured. pescive J L —

Change VC log

natu r'al da.'-a Bugzilla Eﬁzild

Entry

© 2006, Paul S Grisham EE 382V 48

Architecture and Design Intent Lecture 10.2

EA Prototype Tool

It~ g & -0 |dF e [ED G o s B
BRI C/C++ Projects 53 Navigatcr| = O[O buff.c | [E Makefile.tmpl =0d
B &Y |Structun=_ Compare
B fap = ||| [2 Text Compare [e | L 4
» [helpers
. ginc::tde Workspace file: http_core.c Repository file: http_core.c
> &m‘ﬁlib - * But then again - you should use AuthDigestRealmSeed in your c * But then again - you should use AuthDigestRealmSeed in yo[™
= . | * file if you care. So the adhoc value should do. * file if you care. So the adhoc value should do.
¥ (Epmain v Y. m_
|54 Makefile.tmpl 106443 11 return ap_psprintf(r-=pool, "¥plXpp¥ppXpp¥pp", return ap_psprintf(r->pool, "EppppXppkpo¥pp",
5 NWGNUmakefile 106443 &r—?-cunnecti.on—:-loca'l._addr"si.n_addr', (vo?d *)&({r->connection->local _addr).sin_addr),
= NWGNUmakefile.mak 329 {woid *)ap_user_nama, 1 {vold *Jap_user_name,
|:r_-| s {void *)op_listeners, {void *Jap_listeners,
|_EPdal|0C_C 106443 11/24/04 {void *)ap_server_argvd, {void *Jop_server_argvd,
|_(PE, buff.c 106443 11/24/04 {wvoid *lap_pid_fname); (void *Jap_pid_fname);
[} gen_test_char.c 106443 } 1
Ed gen_test_char.dep 10644 API_EXPORT(const char *) op_default_type(reguest_rec *r) APT_EXPORT(const char *) ap_default_type(reguest_rec *r) a
gen_test_char.dsp 10644 % I iy 23
|3 gen_test_char.mak 10644 — — ialr = —3 ialnl
|7 gen_uri_delims.c 106443 —
Ei gen_uri_delims.dep 10644 Pmblems|ConsoIe| Propenies| Prcgress| SVN Resource Historv|5earch [' Evolutionary Annotations &3 =
|5 gen_uri_delims.dsp 105‘4‘|.L Type Scope TimeStamp : Author Version Other
|5 gen_uri_delims.mak 1064 email global 2004-11-21 15: jorton 103824 still some reg exp problems
[@ hitp_config.c 106443 11| svn commit log glabal 2004-11-2003: nd 103824 Fix a bunch of cases where the return code of the regex ¢ m
[hitp_core.c 105350 9/30 bug 28218 local 2004-11-17 04: Kevin) Walters <| 103824 errors in regular expressions for LocationMatch cause sile i
@hﬁp_?og.c 106443 11/24 email (code revie global 2004-11-18 10: Jeff Trawick, Joe { 103824 Votes +1, +1 v
[7) http_main.c 160164 4/5,
| http_protocol.c 230826 & -
[5 The problem turned out to be the |- I had a ick glance through the code and
. ikt it 3 ds like th 1 ion lib gu ‘t like thi d ds it
ey it reads like & regular expressicn library deesn ike is and regards i
|_E?§,hr(p_\.rhost,c 105443111/ as an error (i note solaris egrep errors, perl thinks its ck). The problem is
|f.}|rk]-4]-3-c 106443 11/24 that this error is not reported to the user so the configuration appears to be
@,util,c 356278 12/12/05 ck when the process is started. I think this is both confused to the naive
[@ util_date.c 106443 11/2¢ configuration creator and potentially dangerous if the Location block contains
lf%uﬁl_mds € 106443 11,2 some critical (say, security-related) directives.
5 A 5 .
& util_scripr.c 106443 11/2 It loocks like the (handful of) ap _pregcomp calls in http core.c do not check
[@ util_uri.c 106443 11/24 for a NULL return code that would indicate a failed compilation. Se this
| weil_ [24) P
> Eﬁmodules affects Location -, LocationMatch, Directory -, DirectoryMatch, Files -, m
7";'_; FilesMatch.
b Epos
b (Eregex] Perhaps this problem exists in apache 2.0 as well? And maybe other areas of
» (5 support X apache 1.3 (not mod alias, just had a look there!).
B [tast §4 -
Al PR B S L i - i - A T T r L B X

| C | r

© 2006, Paul S Grisham EE 382V 49

Architecture and Design Intent Lecture 10.2

EA Comments

> Similar to our approach of using user-story context
and test cases

> This approach relies on:
Y The availability of comprehensive version control comments

Y The ability to associate project communication to changes
after the fact

2> Advantages:

L, Uses existing process artifacts
% Unobtrusive

> Disadvantages:
% Informal model (vs. semi-formal)
Y Navigable through source organization, not usage patterns
% No specific notion of design intent

© 2006, Paul S Grisham EE 382V 50

Architecture and Design Intent Lecture 10.2

Intentional Programming

> Developed by Charles Simonyi (formerly of Microsoft)

> Treat source code as an tree of Active Source
elements

> Active sources may use:
% Traditional programming languages
L, Domain specific abstractions
% Graphical notations

> Language extensions provide:
Y, Rendering Methods
& Input Methods

U Reduction Methods
> Convert one format to another

Y, Debugging Methods
% Editing and Refactoring Methods

% Version Control Methods
> For resolving conflicts

© 2006, Paul S Grisham EE 382V 51

Architecture and Design Intent

Lecture 10.2

IP System Design

> Treat Code as a 6Graph, not as files

> Use parsers and reduction to treat functionality in a
language -independent manner

5\2&&@ and

Editor

Browsing
Tools

Debugger

ih

‘r,M-‘le I:..\W

g: ,x};,hmﬂ

T

.exe (or .dll)

Import
Parsers <::|

VY

Reduction Backends

Engine
I_"—% HTML
@ Backend

F<| e | <=

Legacy
Source

Version
Control
System

Code

| Generation
Backend

<= aria
System

Other

3

© 2006, Paul S Grisham

EE 382V

52

Architecture and Design Intent

Lecture 10.2

Bessel
gxeonly double Bessel(double x)

{

int n:

return z tin, x);
n=iu

i
t

__private double t{int n, double x)
ifn==10
return

X |
tin- 1, %) (=% otherwise
220

j

IP Screenshots

Circuits Example
void Circuits Example(FLAG fOne, FLAG fAnother)
I

False
fOne
[
True False
N
fOne -

}

> Functional Intent very clear
> Useful for implementing domain-specific languages

© 2006, Paul S Grisham

EE 382V

Architecture and Design Intent Lecture 10.2

Intentional Programming Comments

> Right idea on treating source code as a view into a
functional intent model

> Development system is proprietary and secretive
% Not much has been seen since Simonyi left Microsoft

> Emphasizes the importance of using the right
abstractions to capture intent

> Most developers already know their favorite language

Y Otherwise we would be using better languages than C++ and
Java

> Not clear how the idea generalizes to real systems

© 2006, Paul S Grisham EE 382V 54

	Design Intent in an Agile ContextPart II
	Review (Agile SD)
	Review (XP)
	Review (TDD)
	Lecture Outline
	Knowledge and Communication
	Communication in a Project
	Other Problems with Individual Memory
	Documentation
	The Traditional Approach
	Mountains of Paper!
	The Agile Approach
	Cognitive Impact of XP’s Organization
	Process Artifacts
	Example: Source Comments
	Artifacts in Project Org. Memory
	Other Artifacts
	User-Story Cards
	Task Cards
	Using Iteration Context for Intent
	Using Test Cases as Intent Model
	Characteristics of Agile Documentation
	Characteristics of Agile Documentation
	Lecture Outline
	What Is Design?
	Big Up-Front Design (BUFD)
	Agile Design: Simple and Iterative
	XP Design Planning
	Example
	Spike Solution
	XP and Prototyping
	Deferred Decisions
	Role of Rationale and Intent
	Design as a Quality
	Lecture Outline
	Maintenance of Test Cases
	Test Case Generation
	Shortcomings in TDD
	Possible Approaches
	Lecture Outline
	IDE Design Philosophy
	Vision of Agile Artifact Repository
	Intent-Aware Development Environments
	Inscape
	SEURAT
	SEURAT Tool
	SEURAT Tool
	Evolutionary Annotations
	EA Prototype Tool
	EA Comments
	Intentional Programming
	IP System Design
	IP Screenshots
	Intentional Programming Comments

