Intro to Architecture Intent and Rationale

Matthew J. Hawthorne
ENS 509B

Software Architecture Review

Architecture = \{Elements, Form, and Rationale\}
\%
Perry-Wolf ‘89, ‘92

Elements
\%
\{Components, Connectors\}

Form
\%
Structure of: \{Components, Connectors\}

Rationale
\%
Reasons for selecting: \{Elements, Form\}

Elements and Form
\%
The "What" of the Architecture

Rationale
\%
The "Why" of the Architecture

Focus on Elements, Form
\%
Components and Connectors
\%
Architecture Descriptions
\%
ADLs, UML, etc.
\%
IDEs
\%
Implementation Domain Concerns

Rationale
\%
Implicit
\%
Informal
\%
Post-priori

Some effects of "missing" Rationale

Lack of traceability from Requirements to Architecture
\%
Difficult to ensure a given Architectural Design fulfills a given set of Functional Intent as defined in the system Requirements
\%
Impossible to reason about optimality or other qualities of Architectural Design

Lack of traceability from Architectural Elements to Requirements
\%
Difficult to match candidate Architectural Elements to Requirements (e.g., open source or COTS components that could be incorporated into the Architecture)
Rationale-Based Architecture

→ Goal: Use Rationale as the core concept directing Architectural Design
→ Current approaches
 % Architectural Styles and Patterns
 → Generalized (Element, Form) schemes to handle Implementation Domain concerns (e.g., Client-Server, Layered/N-Tier, Service-Oriented Architectures (SOA), etc.)
 % Intermediate Decision-based Models and Views between Requirements and Architecture
 → Create an intermediate model between Requirements and Architecture (e.g., Grunbacher04, Jansen05)
 → Capture Architectural Design Decisions

Rationale as Basis for Architecture

Intuition:
→ Requirements define Functional Intent of system
→ Desired system Functionality (i.e., Functional Intent) should form the basis for system architecture
→ Issues, e.g.:
 % Impedance mismatches between units of FI and AEs
 % 1:N, granularity mismatches, etc.
→ Rationale forms the basis for logically valid mappings/transformations from Functional Intent to Architectural Intent, as expressed by sets of Architectural Entities (AEs, i.e., Components and Connectors)

Theoretical Basis

→ Rationale: Logical reasoning behind mappings from a set of goals and Constraints in the problem domain to a set of Elements and Forms in the Architectural Domain (i.e., the HL system design)
→ Rationale uses
 % Sets of Goals (G), Constraints (C) & their relations (R)
 % Formal Rationale Models (Mr) & domain-specific factors (D)
→ to derive/justify
 % transformations into Arch. Elements (E) and Form (F):
 → Map {G, C, R, M} ➔ {E, F}
Theoretical Basis

→ **Rationale =** \((G, C, R, M, Mr, D, Ia)\)

→ **Where**

 \% \(G\) = set of Goals

 \% \(C\) = set of Constraints

 \% \(R\) = set of Relations

 \% \(M\) = set of Mappings

 \% \(Mr\) = set of Rationale Models

 \% \(D\) = set of Domain-specific conditions

 \% \(Ia\) = set of Architectural Intent (reasons for Mappings)

Rationale Transformations

→ **Direct Functional Mapping (1:1)**

 \% Map a unit of Functional Intent (FI) to a single Architectural Entity (AE)

FI \(\rightarrow\) AE

→ **Reason = Functional Intent**
→ **Constraint =** \(AE.FI = FI\)

→ **Functional Decomposition (1:N)**

 \% Decompose a unit of Functional Intent into N lower-level Architectural Entities

 \% “Vertical” decomposition (e.g., N-Tier architectures)

FI \(\rightarrow\) \(AE_{layer-1}\) \(\rightarrow\) \(AE_{layer-1}\)

→ **Reason = Excessive Func. Intent / Diverse Concerns**
→ **Constraint =** \(AE.FI = \Sigma FI, FI; \ AE.FI = FI\)

→ **Separation of Concerns (1:M+N)**

 \% Separate a unit of Functional Intent into M peer + N lower-level Architectural Entities \((M\geq0, N\geq0)\)

 \% “Vertical” (e.g., N-Tier) and/or “horizontal” (e.g., P2P/SoA) decomposition

FI \(\rightarrow\) AE \(\rightarrow\) \(AE_{peer}\)

→ **Reason = Diversity of Concerns**
→ **Constraint =** \(\Sigma AE.FI = FI;\)
Rationale Transformations

Spatial Mapping (1:M+N)
- Map Functional Intent based on Spatial/Geographical requirements
- E.g.: Client-server, peer-to-peer, web services
- Reason = Geographic distribution of functionality
- Constraint = $\sum_{\text{AE.FI/loc}} = \sum_{\text{FI/loc}}$

Resource Sharing / Data-Layer Integration
- Map Functional Intent based on shared resources (e.g., DB)
- E.g.: Client-(DB)server, peer-to-peer, web services
- Reason = Integration + Separation of Concerns
- Constraint = $\text{AE_{DBuser}.use(AE_{DB})}$

Functional Relation Mapping
- Map logical relations between units of Functional Intent to logically equivalent relations between Architectural Entities
- "Horizontal" or "vertical" division of FI
- Reason = Functional Intent logically related
- Constraint = $\text{AE}_i.\text{Rel}(\text{AE}_j) \equiv \text{FI}_i.\text{Rel}(\text{FI}_j)$

Temporal Relation Mapping
- Map temporal relations between units of Functional Intent to logically equivalent relations between Architectural Entities
- E.g., sequential, concurrent, start/end Time constraints
- Reason = Functional Intent temporally related
- Logical-temporal: AE_j depends on the result of AE_i
- Concurrency: AE_j depends on AE_i being active (i.e., “listening”)
- Constraint = $\text{AE}_j.T - \text{AE}_i.T = \text{FI}_i.T - \text{FI}_j.T$
Rationale Transformations

- **Refactoring (1:M+N)**
 - Refactor one or more units of Functional Intent to match granularity of Architectural Entity Intent
 - Decomposition or Combination

 \[\text{FI} \rightarrow \text{AE} + \text{FI} \rightarrow \text{AE} \]

 - **Reason** = Incorporate existing Architectural Entity
 - **Constraint** = \(\Sigma \text{AE.FI} \geq \Sigma \text{FI} \)

Mapping Functional Intent to AEs

- **Current practice:** Implementation object-based system design
 - AE selection/definition by implementation object instance
 - No relation to Functional Intent

- **A Better Model for System Design**
 1. Common model of Functional Intent between Requirements and System Design
 2. Rationale model to ensure that FI mapping to AEs preserves logical FI relations

Rationale Reification

- **Reification:** To reify, or realize an abstract system design

 - **Rationale Reification:**
 - Rationale-based modeling approach
 - Abstract system design based on Functional Intent (instead of implementation domain objects)
 - Rationale: Mappings/Transformations from Functional Intent to Architectural Entities
 - System Architecture
 - Abstract
 - Rationale-driven
 - Intent-based
Rationale Reification Approach

- **Rationale modeling**: Use emergent requirements to refine & extend rationale model
- **Architecture modeling**: Use emergent rationale to refine & extend architecture model

Intent model: Common ontological model of intent - iteratively refine & extend during other modeling activities

Advantages of Rationale Reification

- **Traceability**
 - Requirements (FI) → Architectural Elements (AEs)
 - Architectural Elements (AEs) → Requirements (FI)
 - Rationale
 - Source Requirements (FI)
 - Target Architectural Elements (AEs), Styles and Patterns
 - Requirements (FI) and Architectural Elements (AEs), Styles and Patterns → Rationale

Rationale Reification

- Iterative, model-based approach
- “Forward” modeling from Requirements (FI) to Architecture (AEs) via Rationale
- “Backwards” modeling from Architectural Entities (AEs) to Functional Intent (FI) of the Requirements
- Iteratively refine model in both directions

Advantages of Rationale Reification

- Reasoning about Architecture, e.g.:
 - Properties of Architecture
 - Rationale
 - Architecture
 - Architectural Features
 - Conformance to Requirements
 - Functional Goals
 - Non-Functional Constraints
Advantages of Rationale Reification

→ Reuse: Can reuse all model entities, e.g.:
 - Functional Intent (FI) → Requirements
 - Goals
 - Constraints
 - Relations

→ Reuse (cont.)
 - Rationale Elements (REs) → Design decisions
 - Reasoning behind architectural design decisions
 - Context for decisions: Links to relevant elements/properties of:
 - Problem domain elements & properties motivating arch design
 - Architectural domain elements & properties motivating arch design
 - Result of decisions
 - Source functional intent element(s), constraint(s)
 - Target AE(s), form, relations, styles, patterns
 - Architectural Entities (AEs) → Architectural designs
 - Elements: Components and connectors
 - Form: Structure of elements
 - Relations
 - Interactions
 - Styles & patterns

Rationale Reification Process

→ Intent Model
 - Model functional intent along multiple dimensions or aspects
 - Map every requirement to one or more of the following:
 - Functional intent (FI) element
 - Functional intent (FI) relation
 - Identify logical relations between requirements/FI elements, map logical relations to:
 - Functional intent (FI) relation
 - Functional intent (FI) region
 - Extent or area of FI covered by region
 - Property or aspect of FI to which region applies
 - Constraint or relation to apply to FI property or aspect in region
Rationale Reification Process

→ Rationale Modeling Process

- Map functional intent (FI) elements to abstract architectural entities (AEs)
 - Define AEs using the same functional intent (FI)
 - Emergent architectural intent (AI)

- Map FI relations & regions to AE relations
 - Define AE relations, regions using same FI
 - FI regions generally map to multiple AE relations

- Derive rationale for architectural transformations from
 - Properties of functional intent (FI)
 - Relations among functional intent Rel(FI)
 - Non-functional constraints (NFC)
 - Constraint regions (R)
 - Emergent architectural intent (AI)

Rationale Model

→ Rationale ID
 - Unique identifier for a given rationale element

→ Rationale classification
 - Semantic classification(s) of rationale, i.e.:
 - What family(ies) of rationale this RE belongs to
 - What kind(s) of rationale this RE is
 - Problem type
 - Solution type

Rationale Model

→ Transformation: Description of transformation

- Sources
 - Functional intent (FI) element(s)
 - Functional intent (FI) relation(s) (Relation(FI))
 - Non-functional constraints (NFC)

- Results
 - Architectural element(s) (AE(s))
 - Architectural element (AE) relations (Relation(AE))
 - Architectural element (AE) form (Form(AE))