
1

1

EE382V: Software Architecture and Design Intent
Electrical and Computer Engineering

The University of Texas at Austin

Empirical Studies of Designers

Seth Holloway
David DeAngelis

2THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Outline
Questions
High level overview
Elevator design problem
A model of cognitive processes in software design: 
An analysis of breakdowns in early design activities 
by individuals
Designing the Design Process: Exploiting 
Opportunistic Thoughts
Questions and comments

3THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Question #1

What are typical personality traits of gifted 
designers?

4THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Answer #1

The Hacker [Designer] Attitude
• The world is full of fascinating problems waiting to 

be solved.
• No problem should ever have to be solved twice.
• Boredom and drudgery are evil.
• Freedom is good.
• Attitude is no substitute for competence.



2

5THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Answer #1
Bryan Dollery asserts that programmers are 
creative, artistic people who feel the “flow” of 
coding
Possible link to autism (Asperger’s syndrome)
• "I think all tech people are slightly autistic”--

Microserfs novelist Douglas Coupland
• Richard Stellman (founder of GNU) and Bram 

Cohen (creator of BitTorrent) both have self-
diagnosed Asperger’s syndrome

6THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Question #2

What benefits would studying designers 
have?

7THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Answer #2
This motivates an approach in which languages and 
tools are developed based on knowledge gained 
from empirical studies of programmers. 
This knowledge, applied within a tool development 
process, can lead to better support for programmers 
and software engineers. 
It can result in models of programmers and their 
tasks. It can result in data to compare different 
approaches to supporting programmers. 

8THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Question #3

What are some issues in designing 
experiments for programmers?



3

9THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Answer #3
Humans are hard to study without using illegal or 
intrusive means. Many studies have to rely on 
external monitoring or interviews, however these 
threaten validity.
Programmers being studied are students
Not enough programmers are sampled
Programmers are too similar in skill, culture, age, 
experience, background, etc
No standard title for software designers, so it is 
harder to define and thus find “designers”
We have determined what they know rather than 
how they know it

10THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Empirical Studies of Designers

The field seeks to understand designers in an 
effort to improve the programming experience 
(increase productivity, ease development, 
improve accessibility, enforce known-good 
programming practices)

11THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Empirical Studies of Designers

Research in the field includes
• Comparisons of Expert vs. Novice programmers. 
• Models and strategies of program comprehension. 
• Models and strategies used when writing 

programs. 
• The importance of knowledge representation vs. 

strategies. 

12THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

The Elevator Problem

How would you program a system to 
efficiently control 2 elevators covering 10 
floors?



4

13THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Analysis of Breakdowns

“A model of cognitive processes in software 
design: An analysis of breakdowns in early 
design activities by individuals” by Raymonde
Guindon, Bill Curtis, and Herb Krasner, 1987.

14THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Experimental Setup

Elevator control problem
Move n elevators between m floors
2 hours to develop logic “thinking aloud”

15THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Experimental Setup
8 developers narrowed to 3 “best” subjects 

P6
• PhD in Electrical Engineering with more than 10 years 

of professional experience
P8
• MS Software Engineering with 5 years of experience

P3
• PhD candidate in Computer Sciences with 3 years of 

experience

16THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Designers’ Approaches
P6
• Specialized design schemas
• Issue-driven
• Generation of simplifying assumptions

P8
• Less focused, less certain than P6. Uses a meta-schema to explore 

problem space at different level of abstraction. Attempts to apply 
partial solutions universally

P3
• Characterized by chaotic generate-test-debug design
• Has problems doing mental simulations



5

17THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Solutions
P6
• Communicating ring of distributed, independent elevators governed 

by FSMs (one for individual elevator and one for group).

P8
• Star architecture communicating through a central server. Design

includes abstract data types, data flow diagrams and pseudocode.

P3
• Works on a central server system; represents behavior of the system 

by logical assertions

18THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Breakdowns
Knowledge-related breakdowns due to
• lack of specialized knowledge of similar problems 
• lack of experience as a designer 
• lack of domain knowledge

Cognitive limitations breakdowns result from
• not enough working short-term memory (solution is too large)
• unreliable retrieval of information from long-term memory

Combination breakdowns caused by
• Lack of specialized knowledge forces developer to use more 

cognitively-costly designs

19THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Key Ideas
Breakdowns result from a lack of knowledge
The more schemas a designer knows, the quicker 
and more elegant the design
Greater knowledge of possible solutions leads to 
designs with greater rationale

20THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Exploiting Opportunistic Thoughts

“Designing the Design Process: Exploiting 
Opportunistic Thoughts” Raymonde Guindon, 
1990.



6

21THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Design

What is it? 
• Transform Spec to high level (semi) formal 

notation
−Subsystems, info flow, data structures, interfaces
−Most expensive errors

• Everything you can do in advance to make coding 
easier.

22THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Design

Why is it hard?
Ill-Structured Problem
• Incomplete, ambiguous specs of goals
• No predetermined solution path

− a system may require novelty
• Integrate several knowledge domains

− problem domain, architecture, computer science

23THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Top-Down Design

Like breadth first search
Overall system aspects designed first
Progressively decomposed into subsystems 
with greater detail
Fails in real systems
• Designer faces novelty
• Integration of multiple knowledge sources
• Sub-problem is critical, difficult, or has an 

immediately known solution

24THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Opportunistic Design

Data driven rules & associations
Partial solutions
If an opportunity is presented, follow it.
• Worry about the bookkeeping later.



7

25THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Experiment

Same 8 designers were given the lift control 
problem (elevator problem)
2 hours, must produce a design solution with 
enough detail to be implemented by a 
programmer
Thinking aloud reports were recorded, time-
stamped notes, debriefing sessions
Cog. Psychologist reviewed the sessions, 
prompted review session with participant

26THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Results

27THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Summary

Top down decomposition is not as useful in 
practice as once thought
Early stages of design are opportunistic
• Bounce around various levels of abstraction
• Some top-down decomposition when the thread is 

lost
Supports eXtreme Programming

28THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Review
Questions
High level overview
Elevator design problem
A model of cognitive processes in software design: 
An analysis of breakdowns in early design activities 
by individuals
Designing the Design Process: Exploiting 
Opportunistic Thoughts
Questions and comments



8

29THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Questions? Comments.

30THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

http://www.wired.com/wired/archive/9.12/aspergers.html
Autistic people have a hard time multitasking -
particularly when one of the channels is face-to-face 
communication. Replacing the hubbub of the traditional 
office with a screen and an email address inserts a 
controllable interface between a programmer and the 
chaos of everyday life. Flattened workplace hierarchies 
are more comfortable for those who find it hard to read 
social cues. A WYSIWYG world, where respect and 
rewards are based strictly on merit, is an Asperger's
dream. 

31THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

http://www.faifzilla.org/ Richard Stellman’s
Biography
Richard Stellman, famed hacker and the 
creator of GNU Project, suggests that 
hackers have failed at other feats and 
fallen into programming

32THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Analyzing the Usability of a Design Rationale Notation
Semiformal, argumentation-based notations are one of the main classes of formalism 
currently being used to represent design rationale (DR). However, our understanding 
of the demands on designers of using such representations has to date been drawn 
largely from informal and anecdotal evidence. One way to tackle the fundamental 
challenge of reducing DR’s representational overheads, is to understand the 
relationship between designing, and the idea structuring tasks introduced by a 
semiformal DR notation. Empirically based analyses of DR in use can therefore inform 
the design of the notations in order to turn the structuring effort to the designers’ 
advantage. This is the approach taken in this chapter, which examines how designers 
use a DR notation during design problem solving. Two empirical studies of DR-use 
are reported, in which designers used the QOC notation (MacLean et al., this volume) 
to express rationale for their designs. In the first study, a substantial and consistent 
body of evidence was gathered, describing the demands of the core representational 
tasks in using QOC, and the variety of strategies which designers adopt in 
externalising ideas. The second study suggests that an argumentation-based design 
model based around laying out discrete, competing Options is inappropriate during a 
depth-first, ‘evolutionary’ mode of working, centered around developing a single, 
complex Option. In addition, the data provide motivation for several extensions to the 
basic QOC notation. The chapter concludes by comparing the account of the QOC–
design relationship which emerges from these studies, with reports of other DR 
approaches in use.



9

33THE UNIVERSITY OF TEXAS AT AUSTIN© 2006

Supporting Systems Development by Capturing Deliberations During
Requirements Engineering 
Support for various stakeholders involved in software projects 
(designers, maintenance personnel, project managers and 
executives, end users) can be provided by capturing the history 
about design decisions in the early stages of the system's 
development life cycle in a structured manner. Much of this 
knowledge, which is called the process knowledge, involving the 
deliberation on alternative requirements and design decisions, is 
lost in the course of designing and changing such systems. Using
an empirical study of problem-solving behavior of individual and 
groups of information systems professionals, a conceptual model 
called REMAP (representation and maintenance of process 
knowledge) that relates process knowledge to the objects that are 
created during the requirements engineering process has been 
developed. A prototype environment that provides assistance to the 
various stakeholders involved in the design and management of 
large systems has been implemented.


