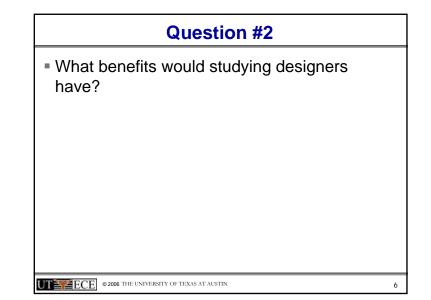

Que	stions	
High	level overview	
Elev	ator design problem	
An a	odel of cognitive processes in softwa nalysis of breakdowns in early design dividuals	
	gning the Design Process: Exploitin prtunistic Thoughts	g
Que	stions and comments	
F	2006 THE UNIVERSITY OF TEXAS AT AUSTIN	
	E © 2006 THE UNIVERSITY OF TEXAS AT AUSTIN	



Answer #1

- The Hacker [Designer] Attitude
 - The world is full of fascinating problems waiting to be solved.
 - No problem should ever have to be solved twice.
 - Boredom and drudgery are evil.
 - Freedom is good.
 - Attitude is no substitute for competence.

UTTEECE © 2006 THE UNIVERSITY OF TEXAS AT AUSTIN

Answer #2

- This motivates an approach in which languages and tools are developed based on knowledge gained from empirical studies of programmers.
- This knowledge, applied within a tool development process, can lead to better support for programmers and software engineers.
- It can result in models of programmers and their tasks. It can result in data to compare different approaches to supporting programmers.

UTERECE © 2006 THE UNIVERSITY OF TEXAS AT AUSTIN

7

Question #3 What are some issues in designing experiments for programmers?

UTEECE © 2006 THE UNIVERSITY OF TEXAS AT AUSTIN

<section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Empirical Studies of Designers

 The field seeks to understand designers in an effort to improve the programming experience (increase productivity, ease development, improve accessibility, enforce known-good programming practices)

© 2006 THE UNIVERSITY OF TEXAS AT AUSTIN

Empirical Studies of Designers

- Research in the field includes
 - Comparisons of Expert vs. Novice programmers.
 - Models and strategies of program comprehension.
 - Models and strategies used when writing programs.
 - The importance of knowledge representation vs. strategies.

UTEECE © 2006 THE UNIVERSITY OF TEXAS AT AUSTIN

11

The Elevator Problem

How would you program a system to efficiently control 2 elevators covering 10 floors?

UTECE © 2006 THE UNIVERSITY OF TEXAS AT AUSTIN

10

Analysis of Breakdowns

 "A model of cognitive processes in software design: An analysis of breakdowns in early design activities by individuals" by Raymonde Guindon, Bill Curtis, and Herb Krasner, 1987.

© 2006 THE UNIVERSITY OF TEXAS AT AUSTIN

Experimental Setup

8 developers narrowed to 3 "best" subjects

- P6
 - PhD in Electrical Engineering with more than 10 years of professional experience
- P8
 - MS Software Engineering with 5 years of experience
- P3
 - PhD candidate in Computer Sciences with 3 years of experience
- © 2006 THE UNIVERSITY OF TEXAS AT AUSTIN

15

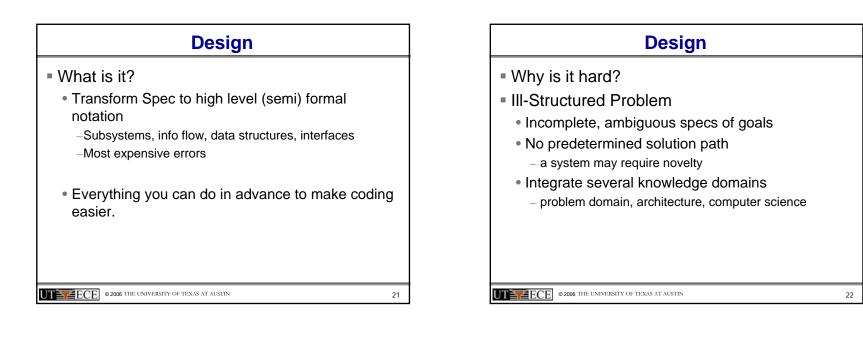
13

Experimental Setup Elevator control problem

- Move *n* elevators between *m* floors
- 2 hours to develop logic "thinking aloud"

UT ECE © 2006 THE UNIVERSITY OF TEXAS AT AUSTIN

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-container>


 P6 Communicating ring of distributed, independent elevators governed by FSMs (one for individual elevator and one for group). P8 Star architecture communicating through a central server. Design includes abstract data types, data flow diagrams and pseudocode. P3 Works on a central server system; represents behavior of the system 	 Knowledge-related breakdowns due to lack of specialized knowledge of similar problems lack of experience as a designer lack of domain knowledge Cognitive limitations breakdowns result from not enough working short-term memory (solution is too large unreliable retrieval of information from long-term memory Combination breakdowns caused by Lack of specialized knowledge forces developer to use more
by logical assertions	cognitively-costly designs

Key Ideas	
 Breakdowns result from a lack of knowledge The more schemas a designer knows, the quicker and more elegant the design Greater knowledge of possible solutions leads to designs with greater rationale 	
© 2006 THE UNIVERSITY OF TEXAS AT AUSTIN	19

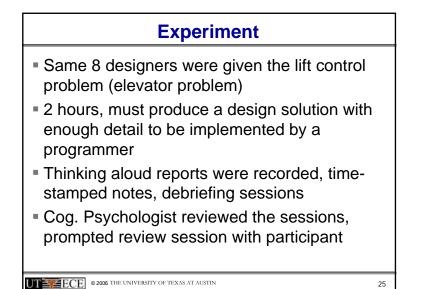
Exploiting Opportunistic Thoughts

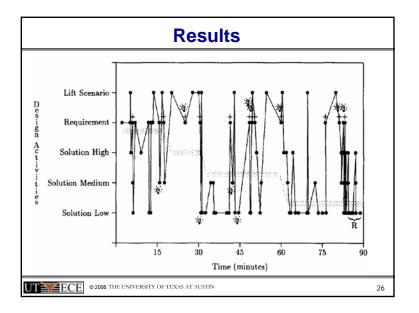
 "Designing the Design Process: Exploiting Opportunistic Thoughts" Raymonde Guindon, 1990.

© 2006 THE UNIVERSITY OF TEXAS AT AUSTIN

Top-Down Design

- Like breadth first search
- Overall system aspects designed first
- Progressively decomposed into subsystems with greater detail
- Fails in real systems
 - Designer faces novelty
 - Integration of multiple knowledge sources
 - Sub-problem is critical, difficult, or has an immediately known solution


© 2006 THE UNIVERSITY OF TEXAS AT AUSTIN

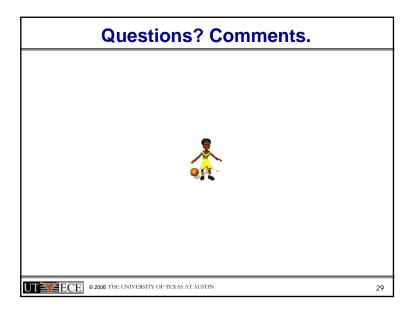

23

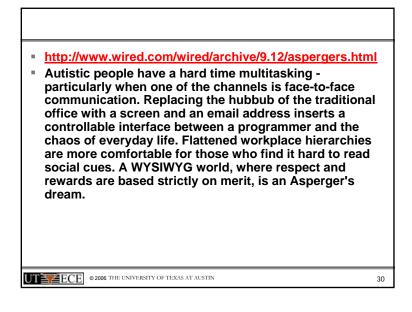
Opportunistic Design

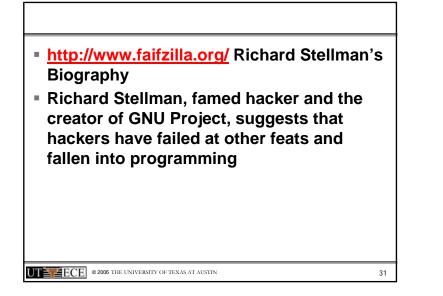
- Data driven rules & associations
- Partial solutions
- If an opportunity is presented, follow it.
 - Worry about the bookkeeping later.

UT ECE © 2006 THE UNIVERSITY OF TEXAS AT AUSTIN

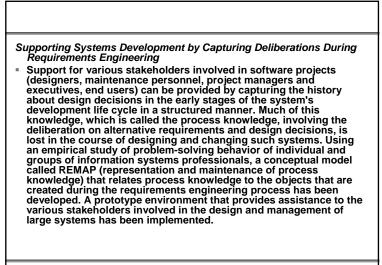
Summary	
 Top down decomposition is not as useful in practice as once thought 	٦
 Early stages of design are opportunistic Bounce around various levels of abstraction Some top-down decomposition when the threat lost 	ıd is
Supports eXtreme Programming	


27


Review


- Questions
- High level overview
- Elevator design problem
- A model of cognitive processes in software design: An analysis of breakdowns in early design activities by individuals
- Designing the Design Process: Exploiting Opportunistic Thoughts
- Questions and comments

UTEECE © 2006 THE UNIVERSITY OF TEXAS AT AUSTIN


7

UT ECE © 2006 THE UNIVERSITY OF TEXAS AT AUSTIN