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Motivation

 Architecture Design has an impact on
NFR
— Security, fault tolerance, performance,
maintainability, interoperability, etc.
* How do we map Functional and Non
Functional Requirements to
characteristics of Architecture?

Motivation for This Research

e What we have:
— ADLs
« Components, Connectors, Rules for Interactions
— Rationale Documentation
— Verification
e Goal similar to:

— On the Criteria To Be Used in Decomposing
Systems into Modules - D.L. Parnas

» Heuristic to guide design of Architectures

+ Understand rationale behind architectural
decisions

* Predictability




Design Decision: Data Structures

» Analysis based on established
algorithmic theory

» Requirements
— Operations
— Optimize for performance, space
— Distribution of operations
e Analysis
— Space/time complexity
— Amortized analysis

Using NFR to Select Among Alternatives in
Architectural Designs

Using NFR to Select Among Alternatives in Architectural
Designs

* NFR-Framework
— NFRs are represented as goals

—“Methods” are used to organize NFR-
related knowledge
¢ Decomposition
* Satisficing
¢ Argumentation
— Uses correlation rules to evaluate
architectural alternatives

— Evaluate effects of each design decision

Goals

* Very modifiable system
» Good system performance

» Modifiability[system; critical]
— Type(of goal) [parameter list; importance]




Methods

e Decomposition methods
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Satisficing methods

— Use correlation rules and architectural patterns to
satisfy goals

» Argumentation methods
— Codify Rationale
— Technique not mentioned

Correlation Rules
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From System Goals to Software
Architecture

From System Goals to Software Architecture

* Requirements elicitation
— Derive goals to be achieved by the system
— WHY issues

» Operationalization of goals into specifications
— WHAT issues

» Assignment of responsibilities for spec to
agents (human, devices, software)
— WHO issues

» Architectural Design
— Structural Issues

Goal-Oriented Architectural Derivation

* Requirements on the GO Process
— Systematic (traceable)

— Incremental, allow reasoning on partial
models

— At least “arguable” or at best “provably”
correct and good architectures

— Allow different views to be highlighted
e Security, fault tolerance view, etc.

Steps

1. Derive Goal Graph through
Refinement

2. Goal -> Requirements
3. Requirements -> Specs

4. Specs -> Abstract Dataflow
Architecture

5. Style-based Architectural Refinement

6. Pattern-based Architectural
Refinement




Background: Terminology

Background..

Goal: Prescriptive statement of intent

Agent: active components

— Human, device, software components, etc.

— Software vs. Environment

Domain Properties: Descriptive statements about
Environment

— Physical laws, organizational norms

Functional Goals: Services to be provided
Non Functional Goals

— QOS: safety, security, usability, performance

— Development goals: maintainability, reusability, etc.

— Architectural Constraints: constraints on environment
« distribution of human agents, physical devices

* Requirement: A goal under
responsibility of an agent in the
software

» Expectation: A goal under responsibility
of an agent in the environment

» Softgoals: prescribe preferred behavior

From System Goals to Software
Requirements

Portion of Goal Refinement Graph for a
Meeting Schedule System

 Derivation process

— Goal modeling
e Goal refinement graph
¢ Refined into AND/OR structured sub-goals
— Object modeling
« e.g. UML
— Agent modeling
« |dentify and attach to goals
— Operationalization

« ldentify operations, pre/post conditions and
trigger conditions (obligations)

MeetingScheduledEffectively
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Fig. 1 - Partion of a goal refinement graph




Refinement and Operationalization

Goal ParticipantsConstraintsKknown

was refined using Refine-by-Milestone o

pattern

Fig. 2 - Refinement-by-milestone pattern

. o}
Goal ConstraintsRequested was

operationalized into an operation Operation Op
RequestConstraintsToParticipants DomPre — T

using Bounded-achieve pattern. DomPost T
ReqTrig for RootGoal
T84 (CamT)

The operation specification prescribes
that =T becomes T as soon as
C N\ =T holds for d-1 time units

Fig. 3 - Bounded-Achieve operationalization patten

Intertwining Between Requirements and
Architecture

ParticipantsConstraintsknown
ConstraintsKnownBy ConstraintsKnownBy
EmailRequests E-AgendaAccess

Fig. 4 - Alternative goal refinements

ConstraintsRequested
F- Meetinglnitiator’ ConstraintRequestor,

Fig. 5— Alternative agent assignments

From Requirements to Specification

Requirement Achieve [ConstraintsRequested]
FormalSpec Wm: Meeting, p: Participant:
Requested (m) A Invited (p, m) = 0.y ConstrRequested (p)

In this formulation. the associations Requested, Invited and ConstrRequested correspond
to phenomena that are observable m the environment. They need to be mapped to
soffware mput-ouput variables to produce, e.g., the followmng target software
specification

Wm: MeetingClass, p: ParticipantClass

MeetRequest (m) A p in InviteeList (m) = 0.z ConstrReqSent (p)

For our above example, the accuracy goals will be
W¥m: Meeting, m": MeetingClass, p: Participant, p": ParticipantClass
Mapping (m, m') » Mapping (p, p') =
MeetRequest (m) < Requested (m)
pin InviteeList (m’) = Invited (p. m)
ConstrReqSent (p) < ConstrRequested (p)

From Specs to Abstract Dataflow
Architectures

MeetingScheduledEffectively
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Fig. 6 — Assigned agents, their interfaces and data dependencies




Derived Dataflow Architecture

Style-based Architectural Refinement to meet
Architectural Constraints
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Fig. 7 — Derived dataflow architecture

» Refine dataflow architecture by imposing
suitable architectural styles
— Styles whose underlying softgoals match
architectural constraints
» Refinements must preserve the properties
of more abstract connectors and
components

Event-based Architectural Style

Pattern-based Refinement to Achieve Non-
Functional Requirements
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Fig. 9 — Style-based architecture to meet architectural constraints

» EventBroker should be split into several
brokers handling different kinds of
events if
Maximize[Cohesion(EventBroker)] is to
be achieved

» Security goals restrict information flows
along (secure) channels

e Accuracy goals impose interactions to
maintain consistent state between
objects




Architectural refinement patterns for quality-
of-service goals

Maintain [AccurateData (C1, C2)]
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Architectural refinement patterns for quality-
of-service goals
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Outline for Second Half

 Study of Architectural Drivers (influences)
— System requirements

— Quality

— Goals

— Designers’ experience
— Organization’s culture

» Paper Discussion

— Paul Clements, “Understanding Architectural Influences
and Decisions in large System Projects,” In Proceedings of
ICSE 17, Workshop on Software Architecture, 1995

» Case Study

— Integrability as an architectural driver for flight simulator
design

Quality Attributes in Architecture

Achievement of quality attributes is critical for
the success of any system

Architecture by itself cannot achieve qualities
Quialities act as guide for architectural design

Types of qualities

— Business attributes

— Architectural attributes
— System attributes

Business Quality Attributes

» Business issues
— Competitive pressures
— Functionality differentiators
— Targeted releases

» Cost/Benefit
— Technology
— Expertise
» In-house
» outsource
» Scalability
— Users
— Graceful degradation

Architectural Quality Attributes

- Availability

— System’s available time
e Usability

— Usage criterion
» Modifiability

— Modification criterion

e Performance

— Runtime measure
e Security

— Prevention of unauthorized usage
» Testability

— Testing criterion

* Integrability

— Seamless integration of large systems




Integrability

Arises as a driving concern in large systems
— In Database system designs
— In Large Enterprise Resource Planning (ERP) applications

Loose coupling or minimal dependencies
between elements

— Easier to coordinate, evaluate, independent testing

Especially those developed by distributed teams

or separate organizations
— Across countries, continents

Using componentization

— Assimilation of components and deliverables

System Quality Attributes

* Measures system’s characteristics

» Enables system designers to make reasonable
assumptions for better system prediction

» Failure to address can lead to dire
consequences

» Allow to develop systematic way to relate
system architecture’s objective decision &
design trade-offs

Paper Synopsis

Architectural influences in large projects

— Architecture as summary of architectural decisions

» Rationale for component selection, interconnection mechanism,

architectural styles, real-time, etc.

Hypothesis
— Architecture as function of influencing factors
— Set of influences is at least partially enumerable

— The architecture is the summary result of a set of component
decisions made by an architect

— Set of decisions is at least partially enumerable

— Possible correlation between drivers and architectural
decisions

Study of Large System Architectures

» Study of engineering practices of successful
architectures

» Examples

« Initial Sector Suite System (ISSS)

— 106 lines of code for air traffic control to process radar and flight
plan data in real time

¢ CelsiusTech

— Shipboard fire control system (common architecture & reusable
components)

¢ Prism
— Generic architecture for US military
« GenVoca
— Product-line high performance database systems
 Structural Modeling at SEI
— Common patterns in various application domains (flight simulator)
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Architectural Influences (1/3)

Driving Requirements

¢ Project-related Influences
— Time-independent functional requirements
» Measurable in some form, verified against some standards
— Performance requirements
Functional quality requirements } (quality attributes)
— Afunctional requirements
» that cannot be measured — openness, maintainability, portability
— Driving requirements (difficult to satisfy)

e AXxioms:

— P1: The driving afunctional requirements are a major influence in
the architecture chosen

— P2: The driving functional quality requirements are a major
influence in the architecture chosen

— P3: The driving performance requirements are a major influence
in the architecture chosen

— P4: Driving functional requirements, other than those relating to
functional quality attributes, are not usually a major influence in a
system'’s architecture

Table 1: The driving requirements of the case-study set.

Case study Primary requirement Secondary requirements
ISSS (FAA) Ultra-high availability Performance, safety, usability
RCS (NIST) Safety Performance
CelsiusTech Product line development | Performance
GenVoca Short time to market Performance
PRISM Reuse Information security, performance
Structural modeling | Scalability, integrability | Performance

Architectural Influences (2/3)

Architectural Influences (3/3)

» Organization-related influences
— Goals & background of developing organization
— Organization policies

¢ Axioms

— O1: The existence of tools and/or capital infrastructure tailored to
particular architectures will exert a bias towards those
architectures

» .NET or Java shop?

— 02: Organizational goals, such as mandate to reuse existing
products or a desire to evolve the developing systems into a
product line, will exert a major influence on the chosen
architecture

— O3: Organization’s development history, as evidenced by
architectures of systems developed previously by that
organization, will exert a secondary influence on the chosen
architecture.

» Architecture related influences

— If an architect has solved the problem in a particular
approach, it is likely to be used again

¢ AXiom

— Al: Architectures previously used by the project’s
architecture will exert a major influence on the chosen
architecture. The influence (positive or negative) will be
directly proportional to the perceived success or failure of
the prior efforts

11



Cataloging Influences

Table 3 Problem viewpoluts from Shaw [19]

Tabde 4&: Exsraciing hufluences b fest by pathess

Table % Blum's tavonomy of software development methods [2]

I Preblem-oriented Product-ariented

Conceprual

Correlation Influences & Decisions

Fermal

e Axioms

— C1: Static architectural decisions tend to affect
afunctional properties; hence, driving afunctional
requirements tend to motivate the static architectural
decisions. There will be an observable correlation
between driving afunctional requirements and static
architectural decisions

— C2: Dynamic architectural decisions tend to affect
performance properties; hence, driving performance
requirements tend to motivate the dynamic
architectural decisions. There will be an observable
correlation between driving performance
requirements and dynamic architectural decisions

Flight Simulator*

* Integrability as an architectural driver
* Modern flight Simulators

— are complex software system
» With stringent functional concerns

— Real time performance

— Must be amenable to frequent update
< With hard quality concerns

— Modifiability

» accommodate changes in requirements in simulated aircrafts and their
environments

— Scalability of function
» Able to extend the system to simulate more of real-world
« Careful attention is given to the software architecture in a
complex domain to enable the construction of this system
— could be understood by a variety of software engineers
— were easy to integrate

— Amenable to downstream modifications
* L. Bass, P. Clements, R. Kazman, “Software Architecture in Practice,” CMU SEI Series, Pearson Education Inc., 2003

Flight Simulators

Structural Model for Integrability

Relationship to the Architecture Business Cycle

* Requirements and Qualities

e ‘.hhi—-

Architectural Solution

12



Structural Model for Integrability

Relationship to Business Process

Structural model
— Simplicity and similarity

e Decoupling of data- and control-passing
strategies from computation

— Allows easy integration among components
— Adds scalability

¢ Minimizing number of modules

e A small number of system-wide coordination
strategies

e Transparency of designs

» Other quality attributes are necessary for flight
simulation

Architect’s Influences

Stakeholders
USAF Acquisition
and USAF Pilots R 1l
Qualities]
Developing Organization {Qos )

v Architeclure
Various Contractors P.illgi:i':“’g Ciaw i Structural
Gt Modal

Existing Simulator Design Integrability

Architect's Experience Performance

Object-Oriented Dasign
and Hard Real-Time
Design

Requirements and Qualities (1/3)

Requirements & Qualities (2/3)

» Role of the crew being trained
— The purpose of a flight simulator is to instruct the pilot and crew
— how to operate a particular aircraft
— how to perform maneuvers such as mid-air refueling
— how to respond to situations such as an attack on the aircraft

* Role of the environment

— Typically the environment is a computer model
— with multi-aircraft training exercises it can include individuals other than
the pilot and crew
— Other models like during simulating refueling, the (simulated) refueling
aircraft introduces turbulence into the (modeled) atmosphere

* Role of simulation instructor
— The instructor is responsible for monitoring the pilot's performance
— initiating training situations.
— Typical situations like malfunctions of equipment, attacks on the aircraft
from foes, and weather conditions

— Use a separate console to monitor the activities of the crew, to inject
malfunctions into the aircraft, and to control the environment.

* Models

— The models used in the aircraft and the environment
are capable of being simulated to almost arbitrary
fidelity.

— Consequence: desire to want more fidelity makes performance

become one of the important quality requirements for a flight
simulator

 States of Execution
» (A flight simulator can execute in several states.)

— Operate corresponds to the normal functioning of the simulator
as a training tool.

— Configure is used when modifications must be made to a current
training session. For example,from a single-aircraft exercise to
mid-air refueling

— Halt is used to stop the current simulation.

— Replay uses a journal to move through the simulation without
crew interaction.”Record/playback’tactic used here

13



Requirements & Qualities (3/3)

(Original v/s New) Strategies

Real-time performance constraints

— Flight simulators must execute at fixed frame rates that are high
enough to ensure fidelity.

Continuous development and modification

— To provide a realistic training experience, a flight simulator must
be faithful to the actual air vehicles, which are continually being
modified and updated.

Large size and high complexity

— The size can be millions of lines of code the complexity shows
exponential growth trend

Developed in geographically distributed areas

— In either case, the Integrability is made more difficult because the
paths of communication are long.

“Original Strategy” =+ “New Strategy” I
— Model based on task —  The architectural pattern,
— 2 problems caused the U.S. Structural Modeling, is an

Air Force to investigate new object-oriented design
simulator designs
. . — Results from the
—  Very expensive debugging, reconsideration of the
testing, and modification. S
problems of earlier flight
* Consequence: .
> simulators

Integrability and ‘
Models the subsystems and

modifiability emerged as a
driving architectural controller children of the air
vehicle.

concern.

— Unclear mapping between ) )
pping — Add real-time scheduling to

control the execution order

software structure and
of the simulation's

aircraft structure.
* Consequence: cause

subsystems to guaranteed
maodifiability and integration. fidelity.

problems with both

Architectural Solution

Time Management

Cockpit Displays
Visual Cusing
System
Mation Cusing
System
Audio Cueing
System

=" Air Vehicle

—-—{ Environment
Instructor
Station

Key: Data Flow ———»

* Periodic time management to maintain real-time

— A periodic time-management scheme has a fixed (simulated) time
guantum based on the frame rate, that is the basis of scheduling
the system processes

— A simulation based on it will be able to keep simulated time and
real time in synchronization

— managed by adjusting the responsibilities of the individual
processes small enough to be computed in the allocated quantum

» Event-based time management is used where
real-time performance is not critical

— such as the instructor station

— An event-based time-management scheme similar to the
interrupt-based scheduling used in many operating systems.

— In this case, simulated time advances by the invoked processes
placing events on the event queue and the scheduler choosing
the next event to process.

14



Scheduling

Architectural Pattern

— The scheduling of the three models (portions) of the
flight simulator

— The instructor station model is typically scheduled on an event
basis. Those events come from the instructor's interactions

— The air vehicle model is scheduled on a periodic basis
— The environment model can be scheduled using either way. A
simple policy for managing events within a periodically scheduled
processor is that -- after a synchronization step, periodic
processing occur first and complete before any a-periodic
processing
— Communication from the portions of the system
managed on an event basis to the portions managed
using periodic scheduling appears as a-periodic
— Communication from the instructor station model to the
air vehicle model appears as a-periodic

 Structural Model
— Coarsest level
— Developed at CMU'’s SEI

» Executive
— Handles coordination & Synchronization
— Real-time scheduling

» Application

— Modeling the air vehicle

Model Executive

Timeline Synchronizer

Timeline
Synchrenizer

set_sutbouna mes

Periadic
Sequencer

Air Vehicle
Subsystern

Key: UML

— Maintains the current state of the

— Implements a scheduling policy for

— Base scheduling mechanism

— Maintains the simulation's internal

notion of time

simulation

coordinating both periodic and a-
periodic processing

— Coordinates time with other portions

of the simulator

15



Periodic Sequencer

Event Handler

— Used to conduct all periodic processing
performed by the simulator's subsystems

— This involves invoking the subsystems to
perform periodic operations according to
fixed schedules.

— Two operations to the timeline
synchronizer
— The import operation : invoke
subsystems’ import operation.

— The update operation : invoke
subsystems' update operations

o L

— Used to conduct all a-periodic processing
performed by the simulation's subsystems.

— The event handler provides four operations
to the timeline synchronizer:

— configure : start a new training mission
— constituent _event : used when an event
is targeted for a particular instance of a

module

— get_outbound_msg : used by the timeline
synchronizer to conduct a-periodic
processing while in system operating
states

— Send : used by subsystem controllers to
send events to other subsystem
controllers and messages to other
systems

Surrogate

Air Vehicle Application

— Is an application that uses "use an
intermediary" tactic

— Are responsible for system-to-system
communication between the air vehicle

model and the environment model or the ] =
instructor station model. —

— Surrogates are aware of the physical = —=—
details of the system with which they -
communicate

— Responsible for representation,
communication protocol, and so forth

— Subsystem Controller
— Controller Child

— Data:

— Subsystem controllers pass data to
and from other subsystem
controller instances and to their
children.

— Controller children pass data only
to and from their parents, not to any
other controller children.

— Control:
— Controller children receive control
only from their parents and return it
only to their parents.

16



Subsystem Controller

Controller Child

— Used to interconnect a set of
functionally related children to do the
following:

— Achieve the simulation of a subsystem as
a whole

— Mediate control and a-periodic "
communication between the system & g~
subsystems

— Initialize themselves & their children

— Route requests for malfunctions and the 5
setting of simulation parameters to their
children

— Subsystem controllers may support the
reconfiguration of mission parameters

— Subsystem controllers realize these
capabilities through periodic and a-
periodic operations made available to the
periodic sequencer and event handler,
respectively

L

— In general, controller child support the
simulation of an individual part, or
object, within some functional
assembly.

— Each child provides a simulation
algorithm that determines its own state [hm =
based on the following: '
— Its former state
— Inputs that represent its connections with
logically adjacent children
— Some elapsed time interval
— A child makes this determination when it is
requested by its subsystem controller. This
capability is called updating

Skeletal System

Allocating Functionality to Controller
Children (1/4)

¢ The structural frame work above is the basis for

a skeletal system for a flight simulator.
— Jet fighter
— Commercial aeroplane
— Helicopter

e This is a general simulation framework that can
be used for other simulator.
— Nuclear reactor
¢ Modeling the flight simulator, a complex system
by only six module types

— makes the architecture (comparatively) simple to build,
understand, integrate, grow, and modify.
* None of the details about functionality in it.

— The process of making an actual simulation will be dictated by
the functional partitioning process.

* How operational functionality is allocated to
instances of the modules in that pattern.

A functional partitioning process by
defining instances of the subsystem
controllers.

* This sample partitioning based on the
underlying physical aircraft.

17



Allocating Functionality to Controller
Children (2/3)

» Use an object-oriented decomposition
approach

— It maintains a close correspondence between the
aircraft partitions and the simulator

— provides us with a set of conceptual models that
map closely to the real world.

— A change in the aircraft is easily identifiable with
aircraft functional partitions.

Allocating Functionality to Controller
Children (3/4)

* The number and size of the simulator
interfaces are reduced.

— This derives from a strong semantic cohesion within
partitions, placing the largest interfaces within partitions
instead of across them

» Localization of malfunctions easy

— they are associated with specific pieces of aircraft
equipment.

— Itis easier to analyze the effects of malfunctions when
dealing with this physical mapping.

Allocating Functionality to Controller
Children (4/4)

* The airframe becomes the focal point

» Groups exist for the airframe can be
specified by[]

— Kinetics: elements that deal with forces exerted on
the airframe

— Aircraft systems: parts within the airframe provide
the aircraft with power

— Avionics: things that provide some ancillary support
to the aircraft within the airframe

— Environment: things associated with the
environment in which the air vehicle model operates

Group Decomposition (1/2)

e The coarsest decomposition of the air vehicle
model is the group

— Groups decompose into systems, which in turn decompose into
subsystems

— Subsystems provide the instances of the subsystem controllers

» Groups and systems are not directly reflected in
the architecture.

— They are useful to organize the functionality assigned to the
various instances of subsystem controllers.
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Group Decomposition (2/2)

— n-Square Charts
— One method of
presenting information
about the interfaces in a

Realizing Goals

Table 8.1. How the Structural Modeling Pattern Achieves Its Goals

Goal How Achieved Tactics Used
Performance Perindic scheduling strategy using time budgets Static scheduling
Integrability Separation of computation from coordination Restrict communication
Indirect data and cantrol connections Use intermediary
Wadifiability Few module types Restrict communication
Physically based decomposition Semantic coherence

Interface stability

system
Kinetics Loaxds Wehiclke Stale Vehicke Posilon
Group Voctor
— Easy to illustrate how | Puwer Alrcraft Pawer
the partitions relate to o
each other with this Inertial Seate Loads Avionics. Ownship
method. Group Emissions
Asmcsphens, Emwiranman Environment
Teerain, and Emasar Data Group
— A good method for Weather Data
capturing the input and
output of a module and
can illustrate the
abstractions used in
various parts of the
design
Conclusions

» Qualities as architectural drivers
 Discussion regarding the paper
* Integrability as an architectural driver: a

case study
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