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Motivation
Paper: Using Non-Functional Requirements 
to Systematically Select Among Alternatives 
in Architectural Designs
Paper: From System Goals to Software 
Architecture
Quality Drivers
Paper: Understanding Architectural 
Influences and Decisions in large System 
Projects
Flight Simulator Case Study Example

Motivation

• Architecture Design has an impact on 
NFR
– Security, fault tolerance, performance, 

maintainability, interoperability, etc.
• How do we map Functional and Non 

Functional Requirements to 
characteristics of Architecture?

Motivation for This Research

• What we have:
– ADLs

• Components, Connectors, Rules for Interactions
– Rationale Documentation
– Verification

• Goal similar to:
– On the Criteria To Be Used in Decomposing 

Systems into Modules - D.L. Parnas
• Heuristic to guide design of Architectures
• Understand rationale behind architectural 

decisions
• Predictability
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Design Decision: Data Structures

• Analysis based on established 
algorithmic theory

• Requirements
– Operations
– Optimize for performance, space
– Distribution of operations

• Analysis
– Space/time complexity
– Amortized analysis

Using NFR to Select Among Alternatives in 
Architectural Designs

Using NFR to Select Among Alternatives in Architectural 
Designs

• NFR-Framework
– NFRs are represented as goals
– “Methods” are used to organize NFR-

related knowledge
• Decomposition
• Satisficing
• Argumentation

– Uses correlation rules to evaluate 
architectural alternatives

– Evaluate effects of each design decision

Goals

• Very modifiable system
• Good system performance

• Modifiability[system; critical]
– Type(of goal) [parameter list; importance]
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Methods

• Decomposition methods

• Satisficing methods
– Use correlation rules and architectural patterns to 

satisfy goals
• Argumentation methods

– Codify Rationale
– Technique not mentioned

Correlation Rules

Goal Graph
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From System Goals to Software 
Architecture

From System Goals to Software Architecture

• Requirements elicitation 
– Derive goals to be achieved by the system
– WHY issues

• Operationalization of goals into specifications
– WHAT issues

• Assignment of responsibilities for spec to 
agents (human, devices, software)
– WHO issues

• Architectural Design
– Structural Issues

Goal-Oriented Architectural Derivation

• Requirements on the GO Process
– Systematic (traceable)
– Incremental, allow reasoning on partial 

models
– At least “arguable” or at best “provably”

correct and good architectures
– Allow different views to be highlighted

• Security, fault tolerance view, etc.

Steps

1. Derive Goal Graph through 
Refinement

2. Goal -> Requirements
3. Requirements -> Specs
4. Specs -> Abstract Dataflow 

Architecture
5. Style-based Architectural Refinement
6. Pattern-based Architectural 

Refinement



5

Background: Terminology

• Goal: Prescriptive statement of intent 
• Agent: active components 

– Human, device, software components, etc.
– Software vs. Environment

• Domain Properties: Descriptive statements about 
Environment
– Physical laws, organizational norms

• Functional Goals: Services to be provided
• Non Functional Goals

– QOS: safety, security, usability, performance
– Development goals: maintainability, reusability, etc.
– Architectural Constraints: constraints on environment

• distribution of human agents, physical devices 

Background..

• Requirement: A goal under 
responsibility of an agent in the 
software

• Expectation: A goal under responsibility 
of an agent in the environment 

• Softgoals: prescribe preferred behavior

From System Goals to Software 
Requirements

• Derivation process
– Goal modeling

• Goal refinement graph
• Refined into AND/OR structured sub-goals

– Object modeling
• e.g. UML

– Agent modeling
• Identify and attach to goals

– Operationalization
• Identify operations, pre/post conditions and 

trigger conditions (obligations)

Portion of Goal Refinement Graph for a 
Meeting Schedule System
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Refinement and Operationalization

Goal ParticipantsConstraintsKnown
was refined using Refine-by-Milestone 
pattern

Goal ConstraintsRequested was 
operationalized into an operation 
RequestConstraintsToParticipants
using Bounded-achieve pattern.

The operation specification prescribes 
that ¬T becomes T as soon as
C /\ ¬T holds for d−1 time units

Intertwining Between Requirements and 
Architecture

From Requirements to Specification From Specs to Abstract Dataflow 
Architectures
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Derived Dataflow Architecture Style-based Architectural Refinement to meet 
Architectural Constraints

• Refine dataflow architecture by imposing 
suitable architectural styles
– Styles whose underlying softgoals match 

architectural constraints
• Refinements must preserve the properties 

of more abstract connectors and 
components

Event-based Architectural Style Pattern-based Refinement to Achieve Non-
Functional Requirements

• EventBroker should be split into several 
brokers handling different kinds of 
events if 
Maximize[Cohesion(EventBroker)] is to 
be achieved

• Security goals restrict information flows 
along (secure) channels

• Accuracy goals impose interactions to 
maintain consistent state between 
objects
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Architectural refinement patterns for quality-
of-service goals 

Architectural refinement patterns for quality-
of-service goals 

Architectural refinement patterns for 
development goals 

Architectural refinement patterns for 
development goals 
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Outline for Second Half

• Study of Architectural Drivers (influences) 
– System requirements
– Quality
– Goals
– Designers’ experience 
– Organization’s culture

• Paper Discussion
– Paul Clements, “Understanding Architectural Influences 

and Decisions in large System Projects,” In Proceedings of 
ICSE 17, Workshop on Software Architecture, 1995

• Case Study
– Integrability as an architectural driver for flight simulator 

design

Quality Attributes in Architecture

• Achievement of quality attributes is critical for 
the success of any system

• Architecture by itself cannot achieve qualities

• Qualities act as guide for architectural design

• Types of qualities
– Business attributes
– Architectural attributes
– System attributes

Business Quality Attributes

• Business issues
– Competitive pressures
– Functionality differentiators
– Targeted releases

• Cost/Benefit
– Technology 
– Expertise

» In-house
» outsource

• Scalability
– Users 
– Graceful degradation

Architectural Quality Attributes

• Availability
– System’s available time

• Usability
– Usage criterion

• Modifiability
– Modification criterion

• Performance
– Runtime measure

• Security
– Prevention of unauthorized usage

• Testability
– Testing criterion

• Integrability
– Seamless integration of large systems
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Integrability

• Arises as a driving concern in large systems
– In Database system designs
– In Large Enterprise Resource Planning (ERP) applications

• Loose coupling or minimal dependencies 
between elements

– Easier to coordinate, evaluate, independent testing

• Especially those developed by distributed teams 
or separate organizations

– Across countries, continents

• Using componentization
– Assimilation of components and deliverables

System Quality Attributes

• Measures system’s characteristics

• Enables system designers to make reasonable 
assumptions for better system prediction 

• Failure to address can lead to dire 
consequences

• Allow to develop systematic way to relate 
system architecture’s objective decision & 
design trade-offs

Paper Synopsis

• Architectural influences in large projects
– Architecture as summary of architectural decisions

» Rationale for component selection, interconnection mechanism, 
architectural styles, real-time, etc.

• Hypothesis
– Architecture as function of influencing factors
– Set of influences is at least partially enumerable
– The architecture is the summary result of a set of component 

decisions made by an architect
– Set of decisions is at least partially enumerable
– Possible correlation between drivers and architectural 

decisions

Study of Large System Architectures

• Study of engineering practices of successful 
architectures 

• Examples
• Initial Sector Suite System (ISSS)

– 106 lines of code for air traffic control to process radar and flight 
plan data in real time

• CelsiusTech
– Shipboard fire control system (common architecture & reusable 

components)
• Prism

– Generic architecture for US military
• GenVoca

– Product-line high performance database systems
• Structural Modeling at SEI

– Common patterns in various application domains (flight simulator)
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Architectural Influences (1/3)

• Project-related Influences
– Time-independent functional requirements 

» Measurable in some form, verified against some standards
– Performance requirements
– Functional quality requirements
– Afunctional requirements 

» that cannot be measured – openness, maintainability, portability
– Driving requirements (difficult to satisfy)

• Axioms:
– P1:  The driving afunctional requirements are a major influence in 

the architecture chosen
– P2:  The driving functional quality requirements are a major 

influence in the architecture chosen
– P3:  The driving performance requirements are a major influence 

in the architecture chosen
– P4:   Driving functional requirements, other than those relating to 

functional quality attributes, are not usually a major influence in a 
system’s architecture

(quality attributes)

Driving Requirements

Architectural Influences (2/3)

• Organization-related influences
– Goals & background of developing organization
– Organization policies

• Axioms
– O1: The existence of tools and/or capital infrastructure tailored to 

particular architectures will exert a bias towards those 
architectures

» .NET or Java shop?

– O2: Organizational goals, such as mandate to reuse existing 
products or a desire to evolve the developing systems into a 
product line, will exert a major influence on the chosen 
architecture

– O3: Organization’s development history, as evidenced by 
architectures of systems developed previously by that 
organization, will exert a secondary influence on the chosen 
architecture.

Architectural Influences (3/3)

• Architecture related influences
– If an architect has solved the problem in a particular 

approach, it is likely to be used again

• Axiom
– A1: Architectures previously used by the project’s 

architecture will exert a major influence on the chosen 
architecture. The influence (positive or negative) will be 
directly proportional to the perceived success or failure of 
the prior efforts
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Cataloging Influences Correlation Influences & Decisions

• Axioms
– C1: Static architectural decisions tend to affect 

afunctional properties; hence, driving afunctional
requirements tend to motivate the static architectural 
decisions. There will be an observable correlation 
between driving afunctional requirements and static 
architectural decisions

– C2: Dynamic architectural decisions tend to affect 
performance properties; hence, driving performance 
requirements tend to motivate the dynamic 
architectural decisions. There will be an observable 
correlation between driving performance 
requirements and dynamic architectural decisions 

Flight Simulator*

• Integrability as an architectural driver
• Modern flight Simulators 

– are complex software system
• With stringent functional concerns

– Real time performance
– Must be amenable to frequent update

• With hard quality concerns
– Modifiability 

» accommodate changes in requirements in simulated aircrafts and their 
environments

– Scalability of function
» Able to extend the system to simulate more of real-world

• Careful attention is given to the software architecture in a 
complex domain to enable the construction of this system

– could be understood by a variety of software engineers
– were easy to integrate
– Amenable to downstream modifications

* L. Bass, P. Clements, R. Kazman, “Software Architecture in Practice,” CMU SEI Series, Pearson Education Inc., 2003

Flight Simulators

• Structural Model for Integrability

• Relationship to the Architecture Business Cycle

• Requirements and Qualities

• Architectural Solution
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Structural Model for Integrability

• Structural model
– Simplicity and similarity

• Decoupling of data- and control-passing 
strategies from computation

– Allows easy integration among components 
– Adds scalability

• Minimizing number of modules
• A small number of system-wide coordination 

strategies
• Transparency of designs
• Other quality attributes are necessary for flight 

simulation

Relationship to Business Process

Requirements and Qualities (1/3)
• Role of the crew being trained

– The purpose of a flight simulator is to instruct the pilot and crew 
– how to operate a particular aircraft
– how to perform maneuvers such as mid-air refueling
– how to respond to situations such as an attack on the aircraft

• Role of the environment
– Typically the environment is a computer model

– with multi-aircraft training exercises it can include individuals other than 
the pilot and crew

– Other models like during simulating refueling, the (simulated) refueling 
aircraft introduces turbulence into the (modeled) atmosphere

• Role of simulation instructor
– The instructor is responsible for monitoring the pilot’s performance

– initiating training situations.
– Typical situations like malfunctions of equipment, attacks on the aircraft 

from foes, and weather conditions
– Use a separate console to monitor the activities of the crew, to inject 

malfunctions into the aircraft, and to control the environment.

Requirements & Qualities (2/3)

• Models
– The models used in the aircraft and the environment 

are capable of being simulated to almost arbitrary 
fidelity.

– Consequence: desire to want more fidelity makes performance 
become one of the important quality requirements for a flight 
simulator

• States of Execution
» (A flight simulator can execute in several states.)

– Operate corresponds to the normal functioning of the simulator 
as a training tool.

– Configure is used when modifications must be made to a current 
training session. For example,from a single-aircraft exercise to 
mid-air refueling

– Halt is used to stop the current simulation.
– Replay uses a journal to move through the simulation without 

crew interaction.”Record/playback”tactic used here
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Requirements & Qualities (3/3)

• Real-time performance constraints
– Flight simulators must execute at fixed frame rates that are high 

enough to ensure fidelity.

• Continuous development and modification 
– To provide a realistic training experience, a flight simulator must 

be faithful to the actual air vehicles, which are continually being 
modified and updated. 

• Large size and high complexity
– The size can be millions of lines of code the complexity shows 

exponential growth trend 

• Developed in geographically distributed areas 
– In either case, the Integrability is made more difficult because the 

paths of communication are long.

(Original v/s New) Strategies
• “New Strategy”

– The architectural pattern, 
Structural Modeling, is an 
object-oriented design

– Results from the 
reconsideration of the 
problems of earlier flight 
simulators

– Models the subsystems and 
controller children of the air 
vehicle.

– Add real-time scheduling to 
control the execution order 
of the simulation's 
subsystems to guaranteed 
fidelity.

• “New Strategy”
– The architectural pattern, 

Structural Modeling, is an 
object-oriented design

– Results from the 
reconsideration of the 
problems of earlier flight 
simulators

– Models the subsystems and 
controller children of the air 
vehicle.

– Add real-time scheduling to 
control the execution order 
of the simulation's 
subsystems to guaranteed 
fidelity.

• “Original Strategy”
– Model based on task
– 2 problems caused the U.S. 

Air Force to investigate new 
simulator designs

– Very expensive debugging, 
testing, and modification.

• Consequence:
Integrability and 
modifiability emerged as a 
driving architectural 
concern.

– Unclear mapping between 
software structure and 
aircraft structure. 

• Consequence: cause 
problems with both 
modifiability and integration.

• “Original Strategy”
– Model based on task
– 2 problems caused the U.S. 

Air Force to investigate new 
simulator designs

– Very expensive debugging, 
testing, and modification.

• Consequence:
Integrability and 
modifiability emerged as a 
driving architectural 
concern.

– Unclear mapping between 
software structure and 
aircraft structure. 

• Consequence: cause 
problems with both 
modifiability and integration.

Architectural Solution Time Management

• Periodic time management to maintain real-time
– A periodic time-management scheme has a fixed (simulated) time 

quantum based on the frame rate, that is the basis of scheduling
the system processes

– A simulation based on it will be able to keep simulated time and
real time in synchronization

– managed by adjusting the responsibilities of the individual 
processes small enough to be computed in the allocated quantum

• Event-based time management is used where 
real-time performance is not critical

– such as the instructor station
– An event-based time-management scheme similar to the 

interrupt-based scheduling used in many operating systems.
– In this case, simulated time advances by the invoked processes 

placing events on the event queue and the scheduler choosing 
the next event to process. 
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Scheduling

– The scheduling of the three models (portions) of the 
flight simulator

– The instructor station model is typically scheduled on an event 
basis. Those events come from the instructor's interactions

– The air vehicle model is scheduled on a periodic basis
– The environment model can be scheduled using either way. A

simple policy for managing events within a periodically scheduled 
processor is that -- after a synchronization step, periodic 
processing occur first and complete before any a-periodic 
processing

– Communication from the portions of the system 
managed on an event basis to the portions managed 
using periodic scheduling appears as a-periodic 

– Communication from the instructor station model  to the 
air vehicle model appears as a-periodic

Architectural Pattern

• Structural Model
– Coarsest level
– Developed at CMU’s SEI

• Executive
– Handles coordination & Synchronization
– Real-time scheduling

• Application
– Modeling the air vehicle

Model Executive Timeline Synchronizer

– Base scheduling mechanism

– Maintains the simulation's internal 
notion of time

– Maintains the current state of the 
simulation

– Implements a scheduling policy for 
coordinating both periodic and a-
periodic processing

– Coordinates time with other portions 
of the simulator
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Periodic Sequencer

– Used to conduct all periodic processing 
performed by the simulator's subsystems

– This involves invoking the subsystems to 
perform periodic operations according to 
fixed schedules.

– Two operations to the timeline 
synchronizer

– The import operation : invoke 
subsystems’ import operation. 

– The update operation : invoke 
subsystems' update operations

Event Handler
– Used to conduct all a-periodic processing 

performed by the simulation's subsystems. 

– The event handler provides four operations 
to the timeline synchronizer: 

– configure : start a new training mission
– constituent_ event : used when an event 

is targeted for a particular instance of a 
module 

– get_outbound_msg : used by the timeline 
synchronizer to conduct a-periodic 
processing while in system operating 
states

– Send : used by subsystem controllers to 
send events to other subsystem 
controllers and messages to other
systems

Surrogate
– Is an application that uses  "use an 

intermediary" tactic 

– Are responsible for system-to-system 
communication between the air vehicle 
model and the environment model or the 
instructor station model. 

– Surrogates are aware of the physical 
details of the system with which they 
communicate 

– Responsible for representation, 
communication protocol, and so forth

Air Vehicle Application
– Subsystem Controller 
– Controller Child 

– Data:
– Subsystem controllers pass data to 

and from other subsystem 
controller instances and to their 
children.

– Controller children pass data only 
to and from their parents, not to any 
other controller children. 

– Control:
– Controller children receive control 

only from their parents and return it 
only to their parents.
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Subsystem Controller
– Used to interconnect a set of 

functionally related children to do the 
following:

– Achieve the simulation of a subsystem as 
a whole

– Mediate control and a-periodic 
communication between the system & 
subsystems

– Initialize themselves & their children
– Route requests for malfunctions and the 

setting of simulation parameters to their 
children 

– Subsystem controllers may support the 
reconfiguration of mission parameters

– Subsystem controllers realize these 
capabilities through periodic and a-
periodic operations made available to the 
periodic sequencer and event handler, 
respectively

Controller Child

– In general, controller child support the 
simulation of an individual part, or 
object, within some functional 
assembly. 

– Each child provides a simulation 
algorithm that determines its own state 
based on the following:

– Its former state
– Inputs that represent its connections with 

logically adjacent children
– Some elapsed time interval
– A child makes this determination when it is 

requested by its subsystem controller. This 
capability is called updating

Skeletal System

• The structural frame work above is the basis for 
a skeletal system for a flight simulator.

– Jet fighter
– Commercial aeroplane
– Helicopter

• This is a general simulation framework that can 
be used for other simulator.

– Nuclear reactor

• Modeling the flight simulator, a complex system 
by only six module types 

– makes the architecture (comparatively) simple to build, 
understand, integrate, grow, and modify.

• None of the details about functionality in it. 
– The process of making an actual simulation will be dictated by 

the functional partitioning process.

Allocating Functionality to Controller 
Children (1/4)

• How operational functionality is allocated to 
instances of the modules in that pattern.

• A functional partitioning process by 
defining instances of the subsystem 
controllers.

• This sample partitioning based on the 
underlying physical aircraft.
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Allocating Functionality to Controller 
Children (2/3)

• Use an object-oriented decomposition 
approach
– It maintains a close correspondence between the 

aircraft partitions and the simulator
– provides us with a set of conceptual models that 

map closely to the real world. 
– A change in the aircraft is easily identifiable with 

aircraft functional partitions. 

Allocating Functionality to Controller 
Children (3/4)

• The number and size of the simulator 
interfaces are reduced.

– This derives from a strong semantic cohesion within 
partitions, placing the largest interfaces within partitions 
instead of across them 

• Localization of malfunctions easy
– they are associated with specific pieces of aircraft 

equipment. 
– It is easier to analyze the effects of malfunctions when 

dealing with this physical mapping.

Allocating Functionality to Controller 
Children (4/4)

• The airframe becomes the focal point 

• Groups exist for the airframe can be 
specified by�

– Kinetics: elements that deal with forces exerted on 
the airframe

– Aircraft systems: parts within the airframe provide 
the aircraft with power

– Avionics: things that provide some ancillary support 
to the aircraft within the airframe 

– Environment:  things associated with the 
environment in which the air vehicle model operates

Group Decomposition (1/2)

• The coarsest decomposition of the air vehicle 
model is the group 

– Groups decompose into systems, which in turn decompose into 
subsystems 

– Subsystems provide the instances of the subsystem controllers 

• Groups and systems are not directly reflected in 
the architecture. 

– They are useful to organize the functionality assigned to the 
various instances of subsystem controllers. 
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Group Decomposition (2/2)

– n-Square Charts
– One method of 

presenting information 
about the interfaces in a 
system

– Easy to illustrate how 
the partitions relate to 
each other with this 
method. 

– A good method for 
capturing the input and 
output of a module and 
can illustrate the 
abstractions used in 
various parts of the 
design

Realizing Goals

Conclusions

• Qualities as architectural drivers
• Discussion regarding the paper
• Integrability as an architectural driver: a 

case study


