
1

Architectural Design Drivers
Presented by:

Sahil Thaker
Shounak Roychowdhury

Outline

Motivation
Paper: Using Non-Functional Requirements
to Systematically Select Among Alternatives
in Architectural Designs
Paper: From System Goals to Software
Architecture
Quality Drivers
Paper: Understanding Architectural
Influences and Decisions in large System
Projects
Flight Simulator Case Study Example

Motivation

• Architecture Design has an impact on
NFR
– Security, fault tolerance, performance,

maintainability, interoperability, etc.
• How do we map Functional and Non

Functional Requirements to
characteristics of Architecture?

Motivation for This Research

• What we have:
– ADLs

• Components, Connectors, Rules for Interactions
– Rationale Documentation
– Verification

• Goal similar to:
– On the Criteria To Be Used in Decomposing

Systems into Modules - D.L. Parnas
• Heuristic to guide design of Architectures
• Understand rationale behind architectural

decisions
• Predictability

2

Design Decision: Data Structures

• Analysis based on established
algorithmic theory

• Requirements
– Operations
– Optimize for performance, space
– Distribution of operations

• Analysis
– Space/time complexity
– Amortized analysis

Using NFR to Select Among Alternatives in
Architectural Designs

Using NFR to Select Among Alternatives in Architectural
Designs

• NFR-Framework
– NFRs are represented as goals
– “Methods” are used to organize NFR-

related knowledge
• Decomposition
• Satisficing
• Argumentation

– Uses correlation rules to evaluate
architectural alternatives

– Evaluate effects of each design decision

Goals

• Very modifiable system
• Good system performance

• Modifiability[system; critical]
– Type(of goal) [parameter list; importance]

3

Methods

• Decomposition methods

• Satisficing methods
– Use correlation rules and architectural patterns to

satisfy goals
• Argumentation methods

– Codify Rationale
– Technique not mentioned

Correlation Rules

Goal Graph

4

From System Goals to Software
Architecture

From System Goals to Software Architecture

• Requirements elicitation
– Derive goals to be achieved by the system
– WHY issues

• Operationalization of goals into specifications
– WHAT issues

• Assignment of responsibilities for spec to
agents (human, devices, software)
– WHO issues

• Architectural Design
– Structural Issues

Goal-Oriented Architectural Derivation

• Requirements on the GO Process
– Systematic (traceable)
– Incremental, allow reasoning on partial

models
– At least “arguable” or at best “provably”

correct and good architectures
– Allow different views to be highlighted

• Security, fault tolerance view, etc.

Steps

1. Derive Goal Graph through
Refinement

2. Goal -> Requirements
3. Requirements -> Specs
4. Specs -> Abstract Dataflow

Architecture
5. Style-based Architectural Refinement
6. Pattern-based Architectural

Refinement

5

Background: Terminology

• Goal: Prescriptive statement of intent
• Agent: active components

– Human, device, software components, etc.
– Software vs. Environment

• Domain Properties: Descriptive statements about
Environment
– Physical laws, organizational norms

• Functional Goals: Services to be provided
• Non Functional Goals

– QOS: safety, security, usability, performance
– Development goals: maintainability, reusability, etc.
– Architectural Constraints: constraints on environment

• distribution of human agents, physical devices

Background..

• Requirement: A goal under
responsibility of an agent in the
software

• Expectation: A goal under responsibility
of an agent in the environment

• Softgoals: prescribe preferred behavior

From System Goals to Software
Requirements

• Derivation process
– Goal modeling

• Goal refinement graph
• Refined into AND/OR structured sub-goals

– Object modeling
• e.g. UML

– Agent modeling
• Identify and attach to goals

– Operationalization
• Identify operations, pre/post conditions and

trigger conditions (obligations)

Portion of Goal Refinement Graph for a
Meeting Schedule System

6

Refinement and Operationalization

Goal ParticipantsConstraintsKnown
was refined using Refine-by-Milestone
pattern

Goal ConstraintsRequested was
operationalized into an operation
RequestConstraintsToParticipants
using Bounded-achieve pattern.

The operation specification prescribes
that ¬T becomes T as soon as
C /\ ¬T holds for d−1 time units

Intertwining Between Requirements and
Architecture

From Requirements to Specification From Specs to Abstract Dataflow
Architectures

7

Derived Dataflow Architecture Style-based Architectural Refinement to meet
Architectural Constraints

• Refine dataflow architecture by imposing
suitable architectural styles
– Styles whose underlying softgoals match

architectural constraints
• Refinements must preserve the properties

of more abstract connectors and
components

Event-based Architectural Style Pattern-based Refinement to Achieve Non-
Functional Requirements

• EventBroker should be split into several
brokers handling different kinds of
events if
Maximize[Cohesion(EventBroker)] is to
be achieved

• Security goals restrict information flows
along (secure) channels

• Accuracy goals impose interactions to
maintain consistent state between
objects

8

Architectural refinement patterns for quality-
of-service goals

Architectural refinement patterns for quality-
of-service goals

Architectural refinement patterns for
development goals

Architectural refinement patterns for
development goals

9

Outline for Second Half

• Study of Architectural Drivers (influences)
– System requirements
– Quality
– Goals
– Designers’ experience
– Organization’s culture

• Paper Discussion
– Paul Clements, “Understanding Architectural Influences

and Decisions in large System Projects,” In Proceedings of
ICSE 17, Workshop on Software Architecture, 1995

• Case Study
– Integrability as an architectural driver for flight simulator

design

Quality Attributes in Architecture

• Achievement of quality attributes is critical for
the success of any system

• Architecture by itself cannot achieve qualities

• Qualities act as guide for architectural design

• Types of qualities
– Business attributes
– Architectural attributes
– System attributes

Business Quality Attributes

• Business issues
– Competitive pressures
– Functionality differentiators
– Targeted releases

• Cost/Benefit
– Technology
– Expertise

» In-house
» outsource

• Scalability
– Users
– Graceful degradation

Architectural Quality Attributes

• Availability
– System’s available time

• Usability
– Usage criterion

• Modifiability
– Modification criterion

• Performance
– Runtime measure

• Security
– Prevention of unauthorized usage

• Testability
– Testing criterion

• Integrability
– Seamless integration of large systems

10

Integrability

• Arises as a driving concern in large systems
– In Database system designs
– In Large Enterprise Resource Planning (ERP) applications

• Loose coupling or minimal dependencies
between elements

– Easier to coordinate, evaluate, independent testing

• Especially those developed by distributed teams
or separate organizations

– Across countries, continents

• Using componentization
– Assimilation of components and deliverables

System Quality Attributes

• Measures system’s characteristics

• Enables system designers to make reasonable
assumptions for better system prediction

• Failure to address can lead to dire
consequences

• Allow to develop systematic way to relate
system architecture’s objective decision &
design trade-offs

Paper Synopsis

• Architectural influences in large projects
– Architecture as summary of architectural decisions

» Rationale for component selection, interconnection mechanism,
architectural styles, real-time, etc.

• Hypothesis
– Architecture as function of influencing factors
– Set of influences is at least partially enumerable
– The architecture is the summary result of a set of component

decisions made by an architect
– Set of decisions is at least partially enumerable
– Possible correlation between drivers and architectural

decisions

Study of Large System Architectures

• Study of engineering practices of successful
architectures

• Examples
• Initial Sector Suite System (ISSS)

– 106 lines of code for air traffic control to process radar and flight
plan data in real time

• CelsiusTech
– Shipboard fire control system (common architecture & reusable

components)
• Prism

– Generic architecture for US military
• GenVoca

– Product-line high performance database systems
• Structural Modeling at SEI

– Common patterns in various application domains (flight simulator)

11

Architectural Influences (1/3)

• Project-related Influences
– Time-independent functional requirements

» Measurable in some form, verified against some standards
– Performance requirements
– Functional quality requirements
– Afunctional requirements

» that cannot be measured – openness, maintainability, portability
– Driving requirements (difficult to satisfy)

• Axioms:
– P1: The driving afunctional requirements are a major influence in

the architecture chosen
– P2: The driving functional quality requirements are a major

influence in the architecture chosen
– P3: The driving performance requirements are a major influence

in the architecture chosen
– P4: Driving functional requirements, other than those relating to

functional quality attributes, are not usually a major influence in a
system’s architecture

(quality attributes)

Driving Requirements

Architectural Influences (2/3)

• Organization-related influences
– Goals & background of developing organization
– Organization policies

• Axioms
– O1: The existence of tools and/or capital infrastructure tailored to

particular architectures will exert a bias towards those
architectures

» .NET or Java shop?

– O2: Organizational goals, such as mandate to reuse existing
products or a desire to evolve the developing systems into a
product line, will exert a major influence on the chosen
architecture

– O3: Organization’s development history, as evidenced by
architectures of systems developed previously by that
organization, will exert a secondary influence on the chosen
architecture.

Architectural Influences (3/3)

• Architecture related influences
– If an architect has solved the problem in a particular

approach, it is likely to be used again

• Axiom
– A1: Architectures previously used by the project’s

architecture will exert a major influence on the chosen
architecture. The influence (positive or negative) will be
directly proportional to the perceived success or failure of
the prior efforts

12

Cataloging Influences Correlation Influences & Decisions

• Axioms
– C1: Static architectural decisions tend to affect

afunctional properties; hence, driving afunctional
requirements tend to motivate the static architectural
decisions. There will be an observable correlation
between driving afunctional requirements and static
architectural decisions

– C2: Dynamic architectural decisions tend to affect
performance properties; hence, driving performance
requirements tend to motivate the dynamic
architectural decisions. There will be an observable
correlation between driving performance
requirements and dynamic architectural decisions

Flight Simulator*

• Integrability as an architectural driver
• Modern flight Simulators

– are complex software system
• With stringent functional concerns

– Real time performance
– Must be amenable to frequent update

• With hard quality concerns
– Modifiability

» accommodate changes in requirements in simulated aircrafts and their
environments

– Scalability of function
» Able to extend the system to simulate more of real-world

• Careful attention is given to the software architecture in a
complex domain to enable the construction of this system

– could be understood by a variety of software engineers
– were easy to integrate
– Amenable to downstream modifications

* L. Bass, P. Clements, R. Kazman, “Software Architecture in Practice,” CMU SEI Series, Pearson Education Inc., 2003

Flight Simulators

• Structural Model for Integrability

• Relationship to the Architecture Business Cycle

• Requirements and Qualities

• Architectural Solution

13

Structural Model for Integrability

• Structural model
– Simplicity and similarity

• Decoupling of data- and control-passing
strategies from computation

– Allows easy integration among components
– Adds scalability

• Minimizing number of modules
• A small number of system-wide coordination

strategies
• Transparency of designs
• Other quality attributes are necessary for flight

simulation

Relationship to Business Process

Requirements and Qualities (1/3)
• Role of the crew being trained

– The purpose of a flight simulator is to instruct the pilot and crew
– how to operate a particular aircraft
– how to perform maneuvers such as mid-air refueling
– how to respond to situations such as an attack on the aircraft

• Role of the environment
– Typically the environment is a computer model

– with multi-aircraft training exercises it can include individuals other than
the pilot and crew

– Other models like during simulating refueling, the (simulated) refueling
aircraft introduces turbulence into the (modeled) atmosphere

• Role of simulation instructor
– The instructor is responsible for monitoring the pilot’s performance

– initiating training situations.
– Typical situations like malfunctions of equipment, attacks on the aircraft

from foes, and weather conditions
– Use a separate console to monitor the activities of the crew, to inject

malfunctions into the aircraft, and to control the environment.

Requirements & Qualities (2/3)

• Models
– The models used in the aircraft and the environment

are capable of being simulated to almost arbitrary
fidelity.

– Consequence: desire to want more fidelity makes performance
become one of the important quality requirements for a flight
simulator

• States of Execution
» (A flight simulator can execute in several states.)

– Operate corresponds to the normal functioning of the simulator
as a training tool.

– Configure is used when modifications must be made to a current
training session. For example,from a single-aircraft exercise to
mid-air refueling

– Halt is used to stop the current simulation.
– Replay uses a journal to move through the simulation without

crew interaction.”Record/playback”tactic used here

14

Requirements & Qualities (3/3)

• Real-time performance constraints
– Flight simulators must execute at fixed frame rates that are high

enough to ensure fidelity.

• Continuous development and modification
– To provide a realistic training experience, a flight simulator must

be faithful to the actual air vehicles, which are continually being
modified and updated.

• Large size and high complexity
– The size can be millions of lines of code the complexity shows

exponential growth trend

• Developed in geographically distributed areas
– In either case, the Integrability is made more difficult because the

paths of communication are long.

(Original v/s New) Strategies
• “New Strategy”

– The architectural pattern,
Structural Modeling, is an
object-oriented design

– Results from the
reconsideration of the
problems of earlier flight
simulators

– Models the subsystems and
controller children of the air
vehicle.

– Add real-time scheduling to
control the execution order
of the simulation's
subsystems to guaranteed
fidelity.

• “New Strategy”
– The architectural pattern,

Structural Modeling, is an
object-oriented design

– Results from the
reconsideration of the
problems of earlier flight
simulators

– Models the subsystems and
controller children of the air
vehicle.

– Add real-time scheduling to
control the execution order
of the simulation's
subsystems to guaranteed
fidelity.

• “Original Strategy”
– Model based on task
– 2 problems caused the U.S.

Air Force to investigate new
simulator designs

– Very expensive debugging,
testing, and modification.

• Consequence:
Integrability and
modifiability emerged as a
driving architectural
concern.

– Unclear mapping between
software structure and
aircraft structure.

• Consequence: cause
problems with both
modifiability and integration.

• “Original Strategy”
– Model based on task
– 2 problems caused the U.S.

Air Force to investigate new
simulator designs

– Very expensive debugging,
testing, and modification.

• Consequence:
Integrability and
modifiability emerged as a
driving architectural
concern.

– Unclear mapping between
software structure and
aircraft structure.

• Consequence: cause
problems with both
modifiability and integration.

Architectural Solution Time Management

• Periodic time management to maintain real-time
– A periodic time-management scheme has a fixed (simulated) time

quantum based on the frame rate, that is the basis of scheduling
the system processes

– A simulation based on it will be able to keep simulated time and
real time in synchronization

– managed by adjusting the responsibilities of the individual
processes small enough to be computed in the allocated quantum

• Event-based time management is used where
real-time performance is not critical

– such as the instructor station
– An event-based time-management scheme similar to the

interrupt-based scheduling used in many operating systems.
– In this case, simulated time advances by the invoked processes

placing events on the event queue and the scheduler choosing
the next event to process.

15

Scheduling

– The scheduling of the three models (portions) of the
flight simulator

– The instructor station model is typically scheduled on an event
basis. Those events come from the instructor's interactions

– The air vehicle model is scheduled on a periodic basis
– The environment model can be scheduled using either way. A

simple policy for managing events within a periodically scheduled
processor is that -- after a synchronization step, periodic
processing occur first and complete before any a-periodic
processing

– Communication from the portions of the system
managed on an event basis to the portions managed
using periodic scheduling appears as a-periodic

– Communication from the instructor station model to the
air vehicle model appears as a-periodic

Architectural Pattern

• Structural Model
– Coarsest level
– Developed at CMU’s SEI

• Executive
– Handles coordination & Synchronization
– Real-time scheduling

• Application
– Modeling the air vehicle

Model Executive Timeline Synchronizer

– Base scheduling mechanism

– Maintains the simulation's internal
notion of time

– Maintains the current state of the
simulation

– Implements a scheduling policy for
coordinating both periodic and a-
periodic processing

– Coordinates time with other portions
of the simulator

16

Periodic Sequencer

– Used to conduct all periodic processing
performed by the simulator's subsystems

– This involves invoking the subsystems to
perform periodic operations according to
fixed schedules.

– Two operations to the timeline
synchronizer

– The import operation : invoke
subsystems’ import operation.

– The update operation : invoke
subsystems' update operations

Event Handler
– Used to conduct all a-periodic processing

performed by the simulation's subsystems.

– The event handler provides four operations
to the timeline synchronizer:

– configure : start a new training mission
– constituent_ event : used when an event

is targeted for a particular instance of a
module

– get_outbound_msg : used by the timeline
synchronizer to conduct a-periodic
processing while in system operating
states

– Send : used by subsystem controllers to
send events to other subsystem
controllers and messages to other
systems

Surrogate
– Is an application that uses "use an

intermediary" tactic

– Are responsible for system-to-system
communication between the air vehicle
model and the environment model or the
instructor station model.

– Surrogates are aware of the physical
details of the system with which they
communicate

– Responsible for representation,
communication protocol, and so forth

Air Vehicle Application
– Subsystem Controller
– Controller Child

– Data:
– Subsystem controllers pass data to

and from other subsystem
controller instances and to their
children.

– Controller children pass data only
to and from their parents, not to any
other controller children.

– Control:
– Controller children receive control

only from their parents and return it
only to their parents.

17

Subsystem Controller
– Used to interconnect a set of

functionally related children to do the
following:

– Achieve the simulation of a subsystem as
a whole

– Mediate control and a-periodic
communication between the system &
subsystems

– Initialize themselves & their children
– Route requests for malfunctions and the

setting of simulation parameters to their
children

– Subsystem controllers may support the
reconfiguration of mission parameters

– Subsystem controllers realize these
capabilities through periodic and a-
periodic operations made available to the
periodic sequencer and event handler,
respectively

Controller Child

– In general, controller child support the
simulation of an individual part, or
object, within some functional
assembly.

– Each child provides a simulation
algorithm that determines its own state
based on the following:

– Its former state
– Inputs that represent its connections with

logically adjacent children
– Some elapsed time interval
– A child makes this determination when it is

requested by its subsystem controller. This
capability is called updating

Skeletal System

• The structural frame work above is the basis for
a skeletal system for a flight simulator.

– Jet fighter
– Commercial aeroplane
– Helicopter

• This is a general simulation framework that can
be used for other simulator.

– Nuclear reactor

• Modeling the flight simulator, a complex system
by only six module types

– makes the architecture (comparatively) simple to build,
understand, integrate, grow, and modify.

• None of the details about functionality in it.
– The process of making an actual simulation will be dictated by

the functional partitioning process.

Allocating Functionality to Controller
Children (1/4)

• How operational functionality is allocated to
instances of the modules in that pattern.

• A functional partitioning process by
defining instances of the subsystem
controllers.

• This sample partitioning based on the
underlying physical aircraft.

18

Allocating Functionality to Controller
Children (2/3)

• Use an object-oriented decomposition
approach
– It maintains a close correspondence between the

aircraft partitions and the simulator
– provides us with a set of conceptual models that

map closely to the real world.
– A change in the aircraft is easily identifiable with

aircraft functional partitions.

Allocating Functionality to Controller
Children (3/4)

• The number and size of the simulator
interfaces are reduced.

– This derives from a strong semantic cohesion within
partitions, placing the largest interfaces within partitions
instead of across them

• Localization of malfunctions easy
– they are associated with specific pieces of aircraft

equipment.
– It is easier to analyze the effects of malfunctions when

dealing with this physical mapping.

Allocating Functionality to Controller
Children (4/4)

• The airframe becomes the focal point

• Groups exist for the airframe can be
specified by�

– Kinetics: elements that deal with forces exerted on
the airframe

– Aircraft systems: parts within the airframe provide
the aircraft with power

– Avionics: things that provide some ancillary support
to the aircraft within the airframe

– Environment: things associated with the
environment in which the air vehicle model operates

Group Decomposition (1/2)

• The coarsest decomposition of the air vehicle
model is the group

– Groups decompose into systems, which in turn decompose into
subsystems

– Subsystems provide the instances of the subsystem controllers

• Groups and systems are not directly reflected in
the architecture.

– They are useful to organize the functionality assigned to the
various instances of subsystem controllers.

19

Group Decomposition (2/2)

– n-Square Charts
– One method of

presenting information
about the interfaces in a
system

– Easy to illustrate how
the partitions relate to
each other with this
method.

– A good method for
capturing the input and
output of a module and
can illustrate the
abstractions used in
various parts of the
design

Realizing Goals

Conclusions

• Qualities as architectural drivers
• Discussion regarding the paper
• Integrability as an architectural driver: a

case study

