
1

Architecture Intent and Evolution

Michael Gilfix & Colin Petersen
April 4th, 2006

Outline

• Introduction: design intent and evolution
• An analysis of design erosion
• Study of the impact of design rationale in predicting

change impact
• A dependency model methodology for managing change
• Conclusion

Evolution and Complexity

• Complexity of software systems increase over the lifetime
of the system as a result of:
– Structural constraints imposed by implementation
– Cascading (rippling) effects of changes
– Changing requirements, both functional and non-functional

• Knowledge management becomes an issue for evolution:
– Knowledge of technology by developers
– Fluctuating knowledge of the system due to staff turn-over
– Partial knowledge at design time and forgotten knowledge
– Human limitations –i.e., the system becomes just too big

• Other factors:
– Ambiguous descriptions of specification and design
– Cost and time pressures

Design Rationale and Evolution

• Design Rationale captures the architect’s original intent –
i.e., why the system is built the way it is

• Hypothesis: design rationale can speed and improve the
quality of the software evolution process
– Many design decision are made everyday at all levels. Are they

compliant with the common goal?
– Independence of decision making
– Shared wisdom – can prevent mistakes that may not be obvious

to the developer who does not have direct knowledge of
customer or domain requirements

– Prevents the circular discussion: decisions made in the heat of
an in-depth design discussion may lose sight of the big picture

– More information is a good thing (or is it?)

2

Different Levels of Architecture

• Discussions of architecture seem to implicitly talk about different
granularities of architecture.

• As system size increases (and thus complexity and cost of evolution),
granularity becomes important

For our discussion:
• Macro-level architecture:

– Interactions between components
– Typically follows a loosely coupled or highly modularized model
– Abstractions or contracts become paramount

• Micro-level architecture:
– Tend to be goal or function driven
– Inherit constraints of larger system (i.e., threading models, availability of

information)
• Architectural aspects or views:

– Deployment architecture
– Management/security architecture (pervasive throughout the system)

Different Kinds of Evolution

• Software engineering process must reconcile different kinds
of evolution:
– Changing requirements
– Translating design to implementation
– Changes resulting from test cycles and performance tuning
– Staff/Organizational changes
– Environmental limitations (frameworks, platforms, deployment

environments, etc.)

• These can each affect the architecture at different levels

• Studies that we’ve seen tend to focus on changing
requirements and code impact

Putting Design Intent and Evolution in Context

What We’ve Seen So Far:
• Tools for describing architecture and capturing design

rationale
• How design rationale can supplement traditional design

specifications to improve the software development
process

• How requirements are translated into designs and the tools
(styles) for describing designs

The next step:
• How the evolution of software systems can be managed

using intent and rationale-based methods

On Empirical Studies of Designers…

“The three chief virtues of a programmer are: Laziness,
Impatience and Hubris.”

- Larry Wall

3

Design Erosion

Design erosion: problems and causes

Jilles van Gurp and Jan Bosch. "Design Erosion:
Problems & Causes". Journal of Systems and
Software, Vol. 61, No. 2, 2002, pp. 105-119.

What is Design Erosion?

• Perry and Wolf (1992)

– Architectural erosion: “the result of ‘violations of the
architecture’”

– Architectural drift: “the result of ‘insensitivity to the
architecture’ (the architecturally implied rules are not
clear to the software engineers who work with it).”

Design Erosion Causes?

1) ?

2) ?

3) ?

4) ?

Design Erosion Causes?

1) Traceability of design decisions

2) Increasing maintenance cost

3) Accumulation of design decisions

4) Iterative methods

4

Design Erosion Causes (1)

• Traceability of design decisions

– Design decisions are difficult to track and reconstruct

Design Erosion Causes (2)

• Increasing maintenance cost

– As the complexity of the system grows, the tasks
become increasingly effort consuming

– This complexity leads to sub-optimal design decisions

Design Erosion Causes (3)

• Accumulation of design decisions

– Design decision dependencies

– When circumstances change, the system may no
longer be ‘optimal’

Design Erosion Causes (4)

• Iterative Methods

– Extreme programming, rapid prototyping, etc.
incorporate new requirements in the development
phase

– A proper design has knowledge of the requirements
in advance

5

Design Strategies

• Minimal effort

• Optimal design

What do these strategies mean in terms of cost ?

Are these strategies feasible?

Design Strategies

In general…

• Minimal effort
– Low cost upfront
– High cost in the future

• Design decisions limit future iterations

• Optimal design
– High cost upfront
– Low cost in the future

• Any conflicts with decisions in the previous version are resolved

The Meat of the Paper

ATM Simulator Example

Goal: Show that Design Erosion is inevitable because of the
way software is developed*

Good methods only contribute by delaying the moment that a
system needs to be retired

* Is this a result of processes or forever partial knowledge of the full set of requirements?

ATM Simulator Example Version 1

Requirements:

Core functionality. Provide a simple implementation of
the ATM Simulator, based on the specification in the FSM.

User Interface. Provide a primitive user interface to allow
users to interact with the simulator.

6

ATM Simulator Example Version 1

Model the ATM with an FSM

ATM Simulator Example Version 2

Flyweight Pattern

Memory Usage. The aim of the changes is to instantiate the state classes only once.

Performance. By reusing the state class instances, initialization time of the simulator is
reduced for subsequent uses after the first initialization.

ATM Simulator Example Version 3

Multi-user Version

User interface. The user interface in the first two versions uses the command line for
user input. However, when more than one simulator is used, a command line interface
is no longer sufficient.

Parallelism. By making each simulator a thread, it is possible to run them in parallel.

ATM Simulator Example Version 4

A Delegation-based Approach

Configurability. Allow for run-time configuration, we want to be able to add new states
and transitions at run-time.

Separation of concern. In the previous versions, we noticed that the details of the
ATMSimulator get mixed with the typical behavior of finite state machines. Somehow, it
should be possible to keep the two separated.

7

ATM Simulator Example Version 5

New FSM class included

Flexibility. The solution in version 4 puts the entire ATMFSM in a single class. A lot of
this code is made static, which means that it cannot be changed at runtime and is
difficult to maintain. In this version, we increase the flexibility by addressing this issue.

Analysis

• Architectural Drift
– Initial version compact. Design, maintainability and flexibility less than

ideal. End version has added structure and is more flexible but harder to
understand.

• Vaporized design decisions
– Many early decisions are not in v5. Will be even more vaporized

decisions for a larger system.
• Design erosion

– Optimal strategy still leads to design erosion.
• Accumulated design decisions

– Major restructuring of code.
• Limitations of the OO paradigm

– Many of the solutions presented are found to be workarounds for the OO
paradigm.

• Optimal vs. Minimal Strategy:
– Even the optimal strategy does not lead to an optimal design.

Some Questions.. ?

• What does erosion really mean in this context?

• Why is it bad (seems to have negative connotation)?

• How does erosion relate to iterative development/discovery
in this context?
– What if the original intent may have been incorrect?

Impact of Design Rationale

• Overall Hypothesis: Evolutionary changes will be faster
and more correct if design rationale is available during
change impact analysis

• Change impact analysis refers to modifying an existing
system to meet new or modified requirements

• Authors verify hypothesis through a controlled experiment:
– Subjects are asked to make changes to three systems (one was

discarded in the course of the study)
– Changes made by subjects are compared to a recognized expert,

tabulated, and analyzed using statistical methods
– General comment: Studies like this seem very hard to construct

correctly!

Lars Bratthall, Enrico Johansson, and Björn Regnell. "Is a Design Rationale Vital when Predicting Change
Impact? – A Controlled Experiment on Software Architecture Evolution" In Proceedings of the International
Conference on Product Focused Software Process Improvement, 2000, pp. 126-139.

8

Organization of Experiment

• Experiments evaluate three hypotheses:
– There is a difference in the length of time it takes to complete

change tasks when design rationale is available (faster)
– There is a difference in how large a percentage of the required

changes are correctly suggested when a design rationale is
available (better)

– There is a difference in how many superfluous, incorrect, or
unsuitable changes are suggested when design rationale is
available (stronger)

• Structure of the experiment:
– A textual description of a system and its design rationale is given

to the participants
– Participants are introduced to a new system without prior

knowledge of the system and asked to make changes
– 17 participants are from two groups: senior industrial designers

(7) and a group of Ph.D students and faculty members (10) in
software engineering

Experimental Design

1. Before experiment, all participants are asked to document
their knowledge and experience. Information used to
randomize access to design rational (DR)

2. Provided overview of modeling language for the system
(used graphical SDL language for finite state machines)

3. Participants were assigned four change requests in random
order to three systems. author of DR descriptions had no
knowledge of change tasks.

4. Time limits were provided for each participant
5. Participants were asked to fill out a form such as:

Case Study Analysis

System A – PBX Control System

System B – Car Cruise Control System

Note: System A is considered significantly simpler than system B

Statistical Analysis

• Use the Mann-Whitney non-parametric statistical significance test,
with p <= 0.1

• Some terms:
– Non-parametric: the number and structure of the parameters to the

experimental model are not known in advance and are determined from
the data

– Statistical significance: Unlikely to have occurred by chance. P-value
indicates the maximum probability of rejecting a true null hypothesis
(i.e., hypothesis has no effect). Lower values are more significant, but
may introduce false negative (not detecting result when present)

• To note: Authors describe system A as being of considerably less
complexity than system B.

9

Analysis of Interview Data

• “How much faster can you solve the change task
(comfortably well) with access to DR?”

• “To what degree do you think that a DR increases your
correctness in change predictions?”

Critique

• Although the authors claim success, the study seems
inconclusive at close scrutiny:
– System A was considered significantly simpler and was the only

system where DR proved statistically significant, but as complexity
increased, the benefit seemed to disappear. System C in study was
discarded because it was too complex

– The interview strongly indicated that people felt more comfortable
with DR available

• But, is this just a question of feeling comfortable with more information available?
• Did it lure people into a false sense of security (incorrect decisions were still

rejected)

– All models were based on systems that could be described using
finite state machines. This tends to reflect a certain class of system

– Population was just too small
– The randomization of access to DR is worrisome

Dependency Models

• Authors propose a modified Dependency Structure Matrix
(DSM) approach for specifying software architectures

• Core ideas behind DSM:
– Divide and conquer approach to describing software
– Hierarchical decomposition of systems (large systems

decomposed into sub-systems)
– Decomposition should be done such that tightly coupled sub-

systems are closer to each other, while loosely coupled sub-
systems are kept further apart

• Addresses the problem of developers to creating
undesirable couplings over time without an understanding
of the larger system

Neeraj Sangal and Frank Waldman. "Dependency Models to Manage Software Architecture".
CrossTalk - The Journal of Defense Software Engineering, November 2005.

Advantages of the DSM Approach

• Two key elements:
– Precise hierarchical decomposition
– Explicit control over allowed/disallowed dependencies between

sub-systems

• Weakness of current box-and-arrow approach:
– Diagrams become unwieldy as number of classes/entities

increase
– Separated from code –additional round-trip effort required to

keep code and models synchronized

• Must be able to scale to allow visualization of thousands
of modules

10

Basic Idea
• Matrix representation of modules and count of

dependency linkage between modules
• A lower triangular matrix (no dependencies above the

diagonal) is a structure without circular dependencies

• Can group together related modules to compress matrix
view

• Can enforce architectural rules by disallowing
relationships in matrix squares

Extracting Structure From Dependencies

• Climate Control Example
• Suggested the following

high level modular
structure:
– Front end air chunk (green)
– Refrigerant chunk (blue)
– Interior air chunk (gray)

Taken from:
http://www.dsmweb.org/Scrap_book/Climate.htm

Case Study – Apache Ant

• Ant is an open-source, Java-based build utility:
– The ant framework reads XML files and runs a series of tasks
– Ant capabilities are extended through the creation of tasks, that are

intended to be modular and separate from the framework

Ant Package Structure

DSM For Apache Ant 1.4.1

• Initially, Ant framework and set of tasks relatively small

11

DSM For Apache Ant 1.6.1

• Ant framework has grown in complexity and the number
of tasks has increased.

Conclusion

• Software systems acquire complexity as they evolve
• Design erosion and architectural drift is inevitable
• Design rationale may or may not be a useful tool in

steering the evolution process
• The ability to discover architectural patterns from the

software, and enforce those patterns within the solution,
can be a useful tool for managing evolution
– The DSM approach provides one such solution

