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Why Consolidate Knowledge?

Design evolution and maintenance is the dominant 
activity.
Industry data suggests that design evolution accounts 
form 70% to 90% of the cost of a software system.
The lack of understanding of the existing 
implementations account for most of the risks involved in 
software development.
The authors observed that one to two thirds of the 
evolution costs can be traced back to designer’s and 
maintainers lack of understanding of the consequences 
of incremental change.

Applicability
The projects in which consolidation may be used:

Systems inherently difficult to understand
Long-lived systems
Systems customized for different applications
Products with strict organizational constraints

The Projects of this paper:
Design cycles of 6 to 12 months
The designs are highly constrained
Embedded software
Lifespan of 20 years
High cost of maintenance

Strategy

Domain Analysis

Technology books

Tools

Strategy (Cont.)

Domain Analysis
Techniques to consolidate critical analysis and design 
decisions for product families; the knowledge is not really 
product specific.

Technology Books
Representation of reusable information in structured form.

Tools
Devices for facilitating information reuse.

The authors benefited from the strategy
with minimal computer support.
They observed that reuse of analysis and designs is 
more useful than reuse of software.
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Technology Books
They are analogous to engineering handbooks.
They consolidate the best knowledge.
Their information is narrowly defined.
Solutions to a complex design problem draw from different domains.
Technology books support domains specific to a certain generation 
of a product family.
An embedded system of 32K lines of code

may produce 10 technology books.
These are object oriented databases
Relations with well-defined semantics are present

They make the book navigable so that the information it contains can be 
reasoned about. 

Product Books

They consolidate knowledge specific to 
individual system instances.
They include specialized versions of 
analyses drawn from technology books.
They also include histories of 
deliberations.

The process of consolidation

Define a language for the problem description.
Produce formal models of the solutions to the problem.
Demonstrate that the formal model explains our system.
Identify good designs that map solutions to the selected 
implemented technology.
Explicitly specify issues, assumptions, constraints, and 
dependencies in the designs.
Explicitly show how the reusable software modules 
relate to the designs.

Technology books collect and organize the result of this 
process.

Contents of a Technology Book

Technology books contain:
Analytical models of classes of solutions.
Language definitions: more than the usual definition of 
terms.
Computational design models for these analyses.
Implementation of these designs.
Explanations

Justify the implementations in terms of designs, and the designs
in terms of the underlying analytical model.
As formal as mathematical proofs.
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Technology Book Structures
The books use a number of tags.

The tags represent a careful compromise between usability and 
formality.
Semantic tags identify, for example, issues, definitions, and design 
decisions.
Syntactic tags identify, for example, authors, equations, and 
enumerations.

Information is stored in typed nodes and in relation between nodes.
A typical node may include encapsulated documents or other 
information fragments.

The information nodes are organized into taxonomies according to their 
types.

The major hierarchies include project entities, work product, resources, 
and analyses.

The relationships are organized into a taxonomy based on their semantics 
and their use in building blocks.

The general categories of relations include: history, derivation, use, 
justification, and ownership.

Why Recording Analytical Models 
is important?

Recovering a mathematical model 
governing a DSP task from 12K lines of 
assembly code took two scientists months.
Sometimes synthesizing models may 
become as difficult as proving theorems in 
physics and mathematics.

This high cost of recovering critical knowledge 
motivates formalizing it.

Evolution of the Communication 
Medium

Informal documentation
Documentation is paper based.
First technology books were actual books.
The strength of this approach not based on 
technology, but the methodology.

Structured Documentation
Semiformal approach using template 
documents and commercial document 
preparation systems.

Structured Documentation

The engineers stored information in tagged 
documents for easy identification and reuse.
Typical tags include: requirement, analysis, 
issue, and software module.
Encoded dependencies between related 
paragraphs using cross-references.
Paragraphs were also tagged to communicate 
type of information such as OC for output 
constraints, and AS for assumptions.
Proved to be a powerful educational and 
technology transfer mechanism. 
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On-line Repository

The repository is an ObjectStore database.
The paragraphs from the structured 

documentations became objects for the repository.
There were tools to parse the documentation to 

extract information.
Interactive tools navigated relationships which 

included classifications, and IBIS like deliberation 
networks.
Final stage of the evolution is the suite of RADIO 
tools which is discussed later.

Example 1

Example 1(Cont.) Composition of Design Rationales
How do the changes in data representation from floating point binary affect system 
performance?
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Design Rationales

Rationales that are indirect:
Design history
Trace of deliberations and negotiations
Traces of work product developments

Formal Rationales
Basic principles, assumptions, and analytical 

derivations.

Tool Environment

RADIO
An environment to access technology books.

Consists of 
An object oriented database
User interface
A number of auxiliary support tools

75K lines of C++ custom code

The Master Repository

ObjectStore commercial object oriented 
database
Data can be in arbitrarily complex forms
Accessed in a client-server architecture
ObjectStore provides transactions and 
concurrency control
ObjectStore’s version control facility is 
used

Modeling Language

Books contain semiformal information.
The formal portion structures knowledge.
The structured information is stored in objects defined in 
DOLL.
DOLL allows designers to create and modify objects 
interactively.
DOLL can also generate files from the technology books.
Informal information contain text, pictures, tables, and 
equations.

Paragraphs attached to DOLL objects.
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User Interface and Architecture

Helps the user navigate the technology book.
Helps the user add and extract information to 
and from the book.
Designed in Motif.
The interface is Intelligent.
Includes a mail system
The RADIO architecture is open.
Portable Common Tool Environment (PCTE) or 
Common Object Request Broker Architecture 
(CORBA) will eventually be a common 
substrate.

Further Analysis

Why is this system more effective than a 
version management system?

Updating the History Graph Conclusions

Technology books are electronic design 
notebooks.
However, they are domain specific not 
product specific.
They are in effect a history graph.
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Conclusions (Cont.)
The process has been applied to embedded software 
development.
Engineering groups have applied the process for actual 
product development.
Designers have found knowledge consolidation to be 
intellectually challenging.
Reuse of consolidated knowledge has discovered at 
least one product flaw.
The engineering groups have reported a reduction of 
two-thirds the number of design iterations.
Technology books act as an effective means of 
communication between marketing personnel and 
design engineers.

Further Information

1. T. A. Standish. An essay on software reuse. 
IEEE Transactions on Software Engineering.

2. Jahnke, Wadsack, Zundrof.A History Concept 
for Design Recovery Tools. IEEE Computer 
Society Press.

3. R. Prieto-Diaz and G. Arango, editors, Domain 
Analysis and Software Systems Modeling. 
IEEE Computer Society Press.

4. G. Arango and E. Schoen. Using product 
models to compose rationales. In AAAI-92 
Workshop on Design Rationale Capture and 
Use.
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Overview
Conventional software engineering focuses on a 
small part of the software life cycle

the design and implementation of a product.

The bulk of the lifetime cost is in the 
maintenance phase

Very little theory and fewer tools to manage the 
maintenance activity. 
A fundamental cause of the difficulty is the failure to 
preserve design information.
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Overview
An alternative paradigm:

make the design the central focus of the construction 
process 

get code as a byproduct;
make the design the central focus of the maintenance 
process

preserve revised designs and get code as a byproduct.

A transformational scheme for accomplishing 
this, called Design Maintenance System, is 
presented

Outline

Introduction
What’s in a Design?
Transformation Systems
Capturing a Transformational Design
Design Modification
An Example
Reverse Engineering
Supporting Technology
Implementation
Conclusion

Introduction
The average lifetime of software is about 10 years.

Most of the lifecycle costs for software occur during the so-called 
maintenance phase.

Incomplete or nonexistent system documentation was ranked in the
top four problems 

Two major obstacles: 
understanding the program to be modified, 
validating the modification while assuring that the remainder of the 
program is not accidentally affected.

Introduction

Observation: Better processes for producing and 
maintaining system documentation for generated 
programs would reduce maintenance costs.

Recommendation: software development process 
should treat the design as the major product, with the 
implementation (code) being merely a useful byproduct.
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Introduction
Informal designs are subject to wide interpretation. 

Variability limits their value. 
The burden of details to be managed makes this very hard. 

Formal development methodology: Design Maintenance System 
(DMS)

Transformationally constructs and records the design of software. 
Design may be incrementally modified by the DMS to produce revised 
versions of the software.

What’s in a Design?

Most design notations can be 
considered as projections of 
the completed artifact, under 
which some chosen aspect of 
the artifact is displayed. 

call graphs (structure charts), 
data flow diagrams, state 
machines, interface 
specifications, etc.

What’s in a Design?

The design process 
consists of: 

choosing sets of 
projections that are 
believed to be able to 
construct the final artifact 
acquiring construction hints 
from those projections.

Questions about the 
artifact are answered by 
inspecting the 
projections.

What’s in a Design?
The flaw with this notion of design is the absence of 
rationale; 

projections do not explain why the artifact organized the way 
that it is.

Without such rationale, one can hardly hope to explain 
the artifact. 

One way to capture a rationale is to understand how the 
artifact was constructed, and why the construction 
works.
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What’s in a Design?
DMS provides this information. It allows to capture the 
design rationale as:

A specification of the desired task (both functionality and 
performance)
A derivation of the implementation from the specification that 
explains the final program
A justification of the derivation steps.

Transformation Systems
Transformation systems convert abstract program 
specifications into concrete programs by applying 
semantics-preserving transforms to produce new 
specifications.

Each system usually has a large repertoire of available 
transforms, and can choose which ones to use semi-
automatically. 

e.g. Compilers are simply transformation systems with fixed 
specification languages, predefined transform libraries and fully 
automatic choice of transformations.

Transformation Systems

Transforms are functions from specifications to 
specifications (t:S→S) . 

Many transforms are actually optimizations, such as the 
eliminate-additive-identity transform:

x+0→x

Transformation Systems

When a transform is applied at a particular location in a 
specification, we obtain a transformation of the 
specification.

The italicized names are parameters of the transform, 
and are consistently substituted where the transform is 
used.
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Transformation Systems

The place where the transform has been applied is 
called the locator. 

The value of the locator depends on the underlying 
representation of the specification, e.g., a path for a tree. 

Example for paragraph shaped specifications:
@ line number:token number

Transformation Systems
Example: 

eliminate-additive-identity @3:1
1 do j= 1 to10 
2     s=s+0
3     p=p+0
4 end 

Solution: change the specification by binding x to p and rewriting 
p+0 as p.

1 do j= 1 to10 
2     s=s+0
3     p=p
4 end

Transformation Systems
Full specification has two conceptual parts: 

Functional specification (what the desired program should do),
Performance specification (how well it should do it).

Functional specifications may be written as abstract 
programs, as input-output constraints, or in problem 
domain specific notations. 

Performance specifications are often stated in terms of 
desired target languages, speed, complexity. 

Transformation Systems
A program specification may be very abstract or describe 
a very complex system, 

where a large number of transformations may need to be applied 
to implement the specification at the desired level of 
performance. 

Metaprograms are used to control the selection and 
application of the transforms since manual application of 
large numbers of transformations is impractical

If a metaprogram cannot decide locally what to do, then it may 
backtrack to try alternatives.
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Capturing a Transformational 
Design

Theoretically, a specification of the artifact is sufficient to 
provide a rationale. 

It is possible to work forward from the specification to rediscover 
the purpose of each part of the artifact. 

However, we DO NOT want to effectively redesign it 
each time we need an explanation. 

Capturing a Transformational 
Design

The assumption is that either the programmer or the 
transformation system worked hard:

to discover which transforms to apply,
to determine exactly where to apply them,
to achieve the desired level of performance.

To explain a transformationally derived program, we only 
need: 

the derivation history, 
the sequence of transformations applied to the functional 
specification

Capturing a Transformational 
Design

The choice of the individual transformations is explained by the
effect the individual transformation has on achieving the 
performance specification. 

So, if we record how the overall performance specification is broken 
into subspecifications over smaller locales, we obtain a design 
history. 

This includes a derivation history - the complete explanation of how 
the performance and functional specifications are met.

Capturing a Transformational 
Design

Example: an abstract design 
history. 

The initial functional 
specification, fo, was 
transformed by application of 
transformations c1, c2, etc. until 
the final implementation, fG
was obtained. 

The performance specification, 
Grest was recursively 
partitioned by choosing 
methods that achieve 
individual performance levels; 
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Capturing a Transformational 
Design

At the end, low-level 
methods apply particular 
transformations.

Such a design history 
provides a complete 
explanation of the final 
artifact, fG.

Design Modification

It is possible to incrementally 
revise the design history to 
produce a new one. 

Gray boxes represent the 
various kinds of changes ∆type
that can affect the final artifact. 

Some changes affect the 
functionality
Some changes affect the 
performance

Design Modification
Each change can cause 
complex ripples in the structure 
of the design history. 

The key to revising the 
derivation history is to take 
advantage of the ability to 
change the order in which the 
transformations were originally 
applied. 

Design Modification

Essentially, we wish to;
Preserve transformations 
when possible
Remove transformations that 
are no longer useful

Start the process with a 
functionality delta 
applicable to the initial 
specification.
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Design Modification
For each intermediate 
specification (including the initial 
spec), there is a transformation 
leading to the next intermediate 
specification, and a delta 
describing the change required. 

To determine if a transformation t 
can be preserved in the face of a 
delta, determine if

∆(t(spec))=t(∆‘(spec))

Design Modification
If true, then the implementation 
step accomplished by the 
transformation is not affected by 
the change we wish to make. 

If there is no effect, the 
transformation can be preserved 
and is copied to a new derivation 
history.

Design Modification
If the implementation transform 
lowers the abstraction level, the 
delta may also shift levels, to 
express the change at the lower 
level of abstraction.

If we are unable to decide, then 
we banish the transformation. 

Banishment is accomplished by 
commuting the offending 
transformation with its immediate 
follower in the derivation history. 

Design Modification
DMS walks down the derivation 
history, deciding whether it must 
preserve or banish the 
implementation transformation at 
each intermediate specification. 

When a transform is reached 
that cannot be preserved, and 
cannot be banished because the 
rest of the transforms depend on 
it, then no more transforms can 
be preserved, and DMS stops. 
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Design Modification
The already-preserved 
transformations form a legitimate 
prefix of a complete derivation 
for the revised specification. 

DMS then switches over to a 
more conventional 
transformation implementation 
style to complete the new 
derivation.

An Example
Start with an initial program 
that accumulates the total price 
of a set of order records kept in 
a file

Each order record contains an 
item quantity and a price.

Final Result will be a practical 
program in a BASIC-like 
language

An Example
The abstract functional 
specification for the original 
problem is given. 

Each box represents an 
intermediate functional 
specification derived from the 
one above it
Each intermediate step has 
exactly the same functionality 
as the one preceding it.

An Example

Each downward arrow 
connecting boxes represents 
the application of a single 
transformation (t1, t2, ...).

The nature of the 
transformation corresponding 
to the arrow immediately 
above it is shown in italics at 
the top each box. 

The individual transformations 
are justified by the 
performance enhancement 
each makes. 
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An Example An Example

An Example An Example
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An Example An Example

An Example An Example
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An Example
Now, a new need arises: our 
manager wishes to keep order 
quantities in separate files from 
the price per item. 

This is reflected by the revised 
abstract functional specification in 
the upper right box. 

One way to handle such a change 
request is to simply re-implement 
the program.

However, we assumed that the 
discovery of transformations used 
in the original implementation was 
hard; 

An Example
We do not expect the 
discovery to be any easier in a 
new implementation. 

DMS shows how and when 
transformations used in a prior 
implementation can be reused 
in the new implementation, 
avoiding the rediscovery costs.

An Example
The arrows crossing from left 
to right show how formal deltas 
tie the original and new 
derivation histories together. 

Manager provides ∆0;  
order→price@1:17

An Example
The DMS determines that t1
can be reused as t1 ’, because 
t1 does not affect anything 
related to the order@1:17

The delta must change to 
reflect the “movement” of the 
code caused by implementing 
the loop, giving ∆1.
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An Example
Similarly, t2 and t3 can be 
reused, changing the locators 
on the delta, giving ∆2 and ∆3 
respectively. 

Transform t3’ has not really 
changed; 

t3’ is written with the variable 
part bound to the entity @6:7 
(price)

An Example
Now both t4 and t5, and their 
dependent, t7 cannot be 
preserved. 

The DMS effectively 
rearranges the order of the 
original derivation history to 
delay the application of the 
failing transformations until 
last. 

This moves t6 and t8 upward

Reverse Engineering
Imagine we only have 

the system code
some informal, inaccurate documentation
some understanding of the code distributed across the maintainers. 

Consequently, the typical organization could not carry out this 
method for maintenance by design modification directly. 

Reverse Engineering
Reverse engineering is one means to recover lost design 
information. Program understanding methods present one approach 
by which reverse engineering may be accomplished. 

Such methods use a library of program clichés, and match the 
clichés against the code. 

Where matches occur, the cliché abstraction becomes an explanation 
for the code.
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Reverse Engineering
It is assumed that with sufficient clichés, a complete tiling of the 
code can be obtained.

There are a number of flaws to this approach:
1. ?
2. ?
3. ?
4. ?
5. ?
6. ?

Reverse Engineering
It is assumed that with sufficient clichés, a complete tiling of the 
code can be obtained.

There are a number of flaws to this approach:

1. There is an assumption that one can get a complete set of widely
acceptable clichés. 

2. There is the potential of huge computational demands if one attempts 
to tile a large system at once. 

Reverse Engineering

3. A complete tiling of the code only raises the abstraction level 
somewhat. 

For a large system, it would seem that one should tile the tiles
repeatedly to get to the highest level of abstraction possible.

4. The purpose of Reverse Engineering (RE) is generally to aid 
informal understanding of the code. 

RE usually results in the production of informal documents under
the implicit assumption that the code will be constant.

5. Since code maintenance always changes the code, the RE 
activity must be repeated for each maintenance event. 

Reverse Engineering
6. Implemented code has all kinds of optimizations that entangle 

the implementation of abstractions, which disables recognition 
of clichés.

One approach for obtaining a design history is to generalize cliché 
recognition in a way that solves these problems. 

The key observation is that every cliché is a <abstraction, code 
template> pair, 

can be treated as a transformation rule. 

Then use the transformation engine to recognize clichés and 
abstract them. 
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Supporting Technology
There are two challenges to implementing the DMS 
vision. 

One must have sufficient integrated infrastructure to carry out 
the steps. 
It must scale reasonably well. 

Required infrastructure includes:

1. A means for representing the program to be maintained.

2. A graph rewrite engine to apply individual transformations to 
the program representation

Supporting Technology
3. Tools to manage a database of notations, abstractions, and 

transforms that might be used in the application. 

4. Reverse-engineering tools, which use the rewrite engine to 
recognize clichés taken from domains.

5. A domain-notation driven structure editor to allow 
maintainers to inspect and point at portions of partially derived 
applications in the appropriate domain notation. 

Implementation
Scale management for DMS occurs at two levels: 

The size of the application system
The number of engineers who maintain it. 

DMS is more effective for systems with hundreds of thousands of 
lines, but cannot be handled by individual maintainers.

DMS is implemented in a parallel processing language, Parlanse, 
running on Windows NT multiprocessor workstations. 

Implementation

DMS will not generate all 10 million lines of code when a change is 
made, but it might have to inspect a significant fraction of the 10 
million transformations it has stored as the design of that system. 

It is not a requirement that DMS be able to automatically generate 
and apply transformations by itself. However, DMS will have a built-
in implementation of a programmable Transformation Control 
Language to provide some automation.
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Conclusion
This paper shows a scheme for capturing the design of 
transformationally synthesized code. 

Given the design, incremental changes can be installed by use 
of mechanical procedures and some additional transformational 
synthesis. 

Such capabilities should decrease the cost of 
maintenance, and therefore significantly lower the cost 
of software. 

Suggestion: treat the design (rather than code) as the 
primary product of the software process.


