
1

USING DESIGN
HISTORY

Baykal Cakici, Imranul Islam

Outline

A Process for Consolidating and Reusing
Design Knowledge

Software Change Through Design
Maintenance

A Process for
Consolidating and
Reusing Design
Knowledge

Guillermo Arango, Eric Schoen, and
Robert Pettengill

Presenter: Imranul Islam

Overview

Motivation
Applications
Strategy
Books
Contents of Books
Evolution of Books
Technology Book
Structures
Example 1

Composition of Design
Rationale
Example 2
Tool Environment
Conclusions

2

Why Consolidate Knowledge?

Design evolution and maintenance is the dominant
activity.
Industry data suggests that design evolution accounts
form 70% to 90% of the cost of a software system.
The lack of understanding of the existing
implementations account for most of the risks involved in
software development.
The authors observed that one to two thirds of the
evolution costs can be traced back to designer’s and
maintainers lack of understanding of the consequences
of incremental change.

Applicability
The projects in which consolidation may be used:

Systems inherently difficult to understand
Long-lived systems
Systems customized for different applications
Products with strict organizational constraints

The Projects of this paper:
Design cycles of 6 to 12 months
The designs are highly constrained
Embedded software
Lifespan of 20 years
High cost of maintenance

Strategy

Domain Analysis

Technology books

Tools

Strategy (Cont.)

Domain Analysis
Techniques to consolidate critical analysis and design
decisions for product families; the knowledge is not really
product specific.

Technology Books
Representation of reusable information in structured form.

Tools
Devices for facilitating information reuse.

The authors benefited from the strategy
with minimal computer support.
They observed that reuse of analysis and designs is
more useful than reuse of software.

3

Technology Books
They are analogous to engineering handbooks.
They consolidate the best knowledge.
Their information is narrowly defined.
Solutions to a complex design problem draw from different domains.
Technology books support domains specific to a certain generation
of a product family.
An embedded system of 32K lines of code

may produce 10 technology books.
These are object oriented databases
Relations with well-defined semantics are present

They make the book navigable so that the information it contains can be
reasoned about.

Product Books

They consolidate knowledge specific to
individual system instances.
They include specialized versions of
analyses drawn from technology books.
They also include histories of
deliberations.

The process of consolidation

Define a language for the problem description.
Produce formal models of the solutions to the problem.
Demonstrate that the formal model explains our system.
Identify good designs that map solutions to the selected
implemented technology.
Explicitly specify issues, assumptions, constraints, and
dependencies in the designs.
Explicitly show how the reusable software modules
relate to the designs.

Technology books collect and organize the result of this
process.

Contents of a Technology Book

Technology books contain:
Analytical models of classes of solutions.
Language definitions: more than the usual definition of
terms.
Computational design models for these analyses.
Implementation of these designs.
Explanations

Justify the implementations in terms of designs, and the designs
in terms of the underlying analytical model.
As formal as mathematical proofs.

4

Technology Book Structures
The books use a number of tags.

The tags represent a careful compromise between usability and
formality.
Semantic tags identify, for example, issues, definitions, and design
decisions.
Syntactic tags identify, for example, authors, equations, and
enumerations.

Information is stored in typed nodes and in relation between nodes.
A typical node may include encapsulated documents or other
information fragments.

The information nodes are organized into taxonomies according to their
types.

The major hierarchies include project entities, work product, resources,
and analyses.

The relationships are organized into a taxonomy based on their semantics
and their use in building blocks.

The general categories of relations include: history, derivation, use,
justification, and ownership.

Why Recording Analytical Models
is important?

Recovering a mathematical model
governing a DSP task from 12K lines of
assembly code took two scientists months.
Sometimes synthesizing models may
become as difficult as proving theorems in
physics and mathematics.

This high cost of recovering critical knowledge
motivates formalizing it.

Evolution of the Communication
Medium

Informal documentation
Documentation is paper based.
First technology books were actual books.
The strength of this approach not based on
technology, but the methodology.

Structured Documentation
Semiformal approach using template
documents and commercial document
preparation systems.

Structured Documentation

The engineers stored information in tagged
documents for easy identification and reuse.
Typical tags include: requirement, analysis,
issue, and software module.
Encoded dependencies between related
paragraphs using cross-references.
Paragraphs were also tagged to communicate
type of information such as OC for output
constraints, and AS for assumptions.
Proved to be a powerful educational and
technology transfer mechanism.

5

On-line Repository

The repository is an ObjectStore database.
The paragraphs from the structured

documentations became objects for the repository.
There were tools to parse the documentation to

extract information.
Interactive tools navigated relationships which

included classifications, and IBIS like deliberation
networks.
Final stage of the evolution is the suite of RADIO
tools which is discussed later.

Example 1

Example 1(Cont.) Composition of Design Rationales
How do the changes in data representation from floating point binary affect system
performance?

6

Design Rationales

Rationales that are indirect:
Design history
Trace of deliberations and negotiations
Traces of work product developments

Formal Rationales
Basic principles, assumptions, and analytical

derivations.

Tool Environment

RADIO
An environment to access technology books.

Consists of
An object oriented database
User interface
A number of auxiliary support tools

75K lines of C++ custom code

The Master Repository

ObjectStore commercial object oriented
database
Data can be in arbitrarily complex forms
Accessed in a client-server architecture
ObjectStore provides transactions and
concurrency control
ObjectStore’s version control facility is
used

Modeling Language

Books contain semiformal information.
The formal portion structures knowledge.
The structured information is stored in objects defined in
DOLL.
DOLL allows designers to create and modify objects
interactively.
DOLL can also generate files from the technology books.
Informal information contain text, pictures, tables, and
equations.

Paragraphs attached to DOLL objects.

7

User Interface and Architecture

Helps the user navigate the technology book.
Helps the user add and extract information to
and from the book.
Designed in Motif.
The interface is Intelligent.
Includes a mail system
The RADIO architecture is open.
Portable Common Tool Environment (PCTE) or
Common Object Request Broker Architecture
(CORBA) will eventually be a common
substrate.

Further Analysis

Why is this system more effective than a
version management system?

Updating the History Graph Conclusions

Technology books are electronic design
notebooks.
However, they are domain specific not
product specific.
They are in effect a history graph.

8

Conclusions (Cont.)
The process has been applied to embedded software
development.
Engineering groups have applied the process for actual
product development.
Designers have found knowledge consolidation to be
intellectually challenging.
Reuse of consolidated knowledge has discovered at
least one product flaw.
The engineering groups have reported a reduction of
two-thirds the number of design iterations.
Technology books act as an effective means of
communication between marketing personnel and
design engineers.

Further Information

1. T. A. Standish. An essay on software reuse.
IEEE Transactions on Software Engineering.

2. Jahnke, Wadsack, Zundrof.A History Concept
for Design Recovery Tools. IEEE Computer
Society Press.

3. R. Prieto-Diaz and G. Arango, editors, Domain
Analysis and Software Systems Modeling.
IEEE Computer Society Press.

4. G. Arango and E. Schoen. Using product
models to compose rationales. In AAAI-92
Workshop on Design Rationale Capture and
Use.

Software Change
Through Design
Maintenance
Ira D. Baxter, Christopher W. Pidgeon

Presenter: Baykal Cakici

Overview
Conventional software engineering focuses on a
small part of the software life cycle

the design and implementation of a product.

The bulk of the lifetime cost is in the
maintenance phase

Very little theory and fewer tools to manage the
maintenance activity.
A fundamental cause of the difficulty is the failure to
preserve design information.

9

Overview
An alternative paradigm:

make the design the central focus of the construction
process

get code as a byproduct;
make the design the central focus of the maintenance
process

preserve revised designs and get code as a byproduct.

A transformational scheme for accomplishing
this, called Design Maintenance System, is
presented

Outline

Introduction
What’s in a Design?
Transformation Systems
Capturing a Transformational Design
Design Modification
An Example
Reverse Engineering
Supporting Technology
Implementation
Conclusion

Introduction
The average lifetime of software is about 10 years.

Most of the lifecycle costs for software occur during the so-called
maintenance phase.

Incomplete or nonexistent system documentation was ranked in the
top four problems

Two major obstacles:
understanding the program to be modified,
validating the modification while assuring that the remainder of the
program is not accidentally affected.

Introduction

Observation: Better processes for producing and
maintaining system documentation for generated
programs would reduce maintenance costs.

Recommendation: software development process
should treat the design as the major product, with the
implementation (code) being merely a useful byproduct.

10

Introduction
Informal designs are subject to wide interpretation.

Variability limits their value.
The burden of details to be managed makes this very hard.

Formal development methodology: Design Maintenance System
(DMS)

Transformationally constructs and records the design of software.
Design may be incrementally modified by the DMS to produce revised
versions of the software.

What’s in a Design?

Most design notations can be
considered as projections of
the completed artifact, under
which some chosen aspect of
the artifact is displayed.

call graphs (structure charts),
data flow diagrams, state
machines, interface
specifications, etc.

What’s in a Design?

The design process
consists of:

choosing sets of
projections that are
believed to be able to
construct the final artifact
acquiring construction hints
from those projections.

Questions about the
artifact are answered by
inspecting the
projections.

What’s in a Design?
The flaw with this notion of design is the absence of
rationale;

projections do not explain why the artifact organized the way
that it is.

Without such rationale, one can hardly hope to explain
the artifact.

One way to capture a rationale is to understand how the
artifact was constructed, and why the construction
works.

11

What’s in a Design?
DMS provides this information. It allows to capture the
design rationale as:

A specification of the desired task (both functionality and
performance)
A derivation of the implementation from the specification that
explains the final program
A justification of the derivation steps.

Transformation Systems
Transformation systems convert abstract program
specifications into concrete programs by applying
semantics-preserving transforms to produce new
specifications.

Each system usually has a large repertoire of available
transforms, and can choose which ones to use semi-
automatically.

e.g. Compilers are simply transformation systems with fixed
specification languages, predefined transform libraries and fully
automatic choice of transformations.

Transformation Systems

Transforms are functions from specifications to
specifications (t:S→S) .

Many transforms are actually optimizations, such as the
eliminate-additive-identity transform:

x+0→x

Transformation Systems

When a transform is applied at a particular location in a
specification, we obtain a transformation of the
specification.

The italicized names are parameters of the transform,
and are consistently substituted where the transform is
used.

12

Transformation Systems

The place where the transform has been applied is
called the locator.

The value of the locator depends on the underlying
representation of the specification, e.g., a path for a tree.

Example for paragraph shaped specifications:
@ line number:token number

Transformation Systems
Example:

eliminate-additive-identity @3:1
1 do j= 1 to10
2 s=s+0
3 p=p+0
4 end

Solution: change the specification by binding x to p and rewriting
p+0 as p.

1 do j= 1 to10
2 s=s+0
3 p=p
4 end

Transformation Systems
Full specification has two conceptual parts:

Functional specification (what the desired program should do),
Performance specification (how well it should do it).

Functional specifications may be written as abstract
programs, as input-output constraints, or in problem
domain specific notations.

Performance specifications are often stated in terms of
desired target languages, speed, complexity.

Transformation Systems
A program specification may be very abstract or describe
a very complex system,

where a large number of transformations may need to be applied
to implement the specification at the desired level of
performance.

Metaprograms are used to control the selection and
application of the transforms since manual application of
large numbers of transformations is impractical

If a metaprogram cannot decide locally what to do, then it may
backtrack to try alternatives.

13

Capturing a Transformational
Design

Theoretically, a specification of the artifact is sufficient to
provide a rationale.

It is possible to work forward from the specification to rediscover
the purpose of each part of the artifact.

However, we DO NOT want to effectively redesign it
each time we need an explanation.

Capturing a Transformational
Design

The assumption is that either the programmer or the
transformation system worked hard:

to discover which transforms to apply,
to determine exactly where to apply them,
to achieve the desired level of performance.

To explain a transformationally derived program, we only
need:

the derivation history,
the sequence of transformations applied to the functional
specification

Capturing a Transformational
Design

The choice of the individual transformations is explained by the
effect the individual transformation has on achieving the
performance specification.

So, if we record how the overall performance specification is broken
into subspecifications over smaller locales, we obtain a design
history.

This includes a derivation history - the complete explanation of how
the performance and functional specifications are met.

Capturing a Transformational
Design

Example: an abstract design
history.

The initial functional
specification, fo, was
transformed by application of
transformations c1, c2, etc. until
the final implementation, fG
was obtained.

The performance specification,
Grest was recursively
partitioned by choosing
methods that achieve
individual performance levels;

14

Capturing a Transformational
Design

At the end, low-level
methods apply particular
transformations.

Such a design history
provides a complete
explanation of the final
artifact, fG.

Design Modification

It is possible to incrementally
revise the design history to
produce a new one.

Gray boxes represent the
various kinds of changes ∆type
that can affect the final artifact.

Some changes affect the
functionality
Some changes affect the
performance

Design Modification
Each change can cause
complex ripples in the structure
of the design history.

The key to revising the
derivation history is to take
advantage of the ability to
change the order in which the
transformations were originally
applied.

Design Modification

Essentially, we wish to;
Preserve transformations
when possible
Remove transformations that
are no longer useful

Start the process with a
functionality delta
applicable to the initial
specification.

15

Design Modification
For each intermediate
specification (including the initial
spec), there is a transformation
leading to the next intermediate
specification, and a delta
describing the change required.

To determine if a transformation t
can be preserved in the face of a
delta, determine if

∆(t(spec))=t(∆‘(spec))

Design Modification
If true, then the implementation
step accomplished by the
transformation is not affected by
the change we wish to make.

If there is no effect, the
transformation can be preserved
and is copied to a new derivation
history.

Design Modification
If the implementation transform
lowers the abstraction level, the
delta may also shift levels, to
express the change at the lower
level of abstraction.

If we are unable to decide, then
we banish the transformation.

Banishment is accomplished by
commuting the offending
transformation with its immediate
follower in the derivation history.

Design Modification
DMS walks down the derivation
history, deciding whether it must
preserve or banish the
implementation transformation at
each intermediate specification.

When a transform is reached
that cannot be preserved, and
cannot be banished because the
rest of the transforms depend on
it, then no more transforms can
be preserved, and DMS stops.

16

Design Modification
The already-preserved
transformations form a legitimate
prefix of a complete derivation
for the revised specification.

DMS then switches over to a
more conventional
transformation implementation
style to complete the new
derivation.

An Example
Start with an initial program
that accumulates the total price
of a set of order records kept in
a file

Each order record contains an
item quantity and a price.

Final Result will be a practical
program in a BASIC-like
language

An Example
The abstract functional
specification for the original
problem is given.

Each box represents an
intermediate functional
specification derived from the
one above it
Each intermediate step has
exactly the same functionality
as the one preceding it.

An Example

Each downward arrow
connecting boxes represents
the application of a single
transformation (t1, t2, ...).

The nature of the
transformation corresponding
to the arrow immediately
above it is shown in italics at
the top each box.

The individual transformations
are justified by the
performance enhancement
each makes.

17

An Example An Example

An Example An Example

18

An Example An Example

An Example An Example

19

An Example
Now, a new need arises: our
manager wishes to keep order
quantities in separate files from
the price per item.

This is reflected by the revised
abstract functional specification in
the upper right box.

One way to handle such a change
request is to simply re-implement
the program.

However, we assumed that the
discovery of transformations used
in the original implementation was
hard;

An Example
We do not expect the
discovery to be any easier in a
new implementation.

DMS shows how and when
transformations used in a prior
implementation can be reused
in the new implementation,
avoiding the rediscovery costs.

An Example
The arrows crossing from left
to right show how formal deltas
tie the original and new
derivation histories together.

Manager provides ∆0;
order→price@1:17

An Example
The DMS determines that t1
can be reused as t1 ’, because
t1 does not affect anything
related to the order@1:17

The delta must change to
reflect the “movement” of the
code caused by implementing
the loop, giving ∆1.

20

An Example
Similarly, t2 and t3 can be
reused, changing the locators
on the delta, giving ∆2 and ∆3
respectively.

Transform t3’ has not really
changed;

t3’ is written with the variable
part bound to the entity @6:7
(price)

An Example
Now both t4 and t5, and their
dependent, t7 cannot be
preserved.

The DMS effectively
rearranges the order of the
original derivation history to
delay the application of the
failing transformations until
last.

This moves t6 and t8 upward

Reverse Engineering
Imagine we only have

the system code
some informal, inaccurate documentation
some understanding of the code distributed across the maintainers.

Consequently, the typical organization could not carry out this
method for maintenance by design modification directly.

Reverse Engineering
Reverse engineering is one means to recover lost design
information. Program understanding methods present one approach
by which reverse engineering may be accomplished.

Such methods use a library of program clichés, and match the
clichés against the code.

Where matches occur, the cliché abstraction becomes an explanation
for the code.

21

Reverse Engineering
It is assumed that with sufficient clichés, a complete tiling of the
code can be obtained.

There are a number of flaws to this approach:
1. ?
2. ?
3. ?
4. ?
5. ?
6. ?

Reverse Engineering
It is assumed that with sufficient clichés, a complete tiling of the
code can be obtained.

There are a number of flaws to this approach:

1. There is an assumption that one can get a complete set of widely
acceptable clichés.

2. There is the potential of huge computational demands if one attempts
to tile a large system at once.

Reverse Engineering

3. A complete tiling of the code only raises the abstraction level
somewhat.

For a large system, it would seem that one should tile the tiles
repeatedly to get to the highest level of abstraction possible.

4. The purpose of Reverse Engineering (RE) is generally to aid
informal understanding of the code.

RE usually results in the production of informal documents under
the implicit assumption that the code will be constant.

5. Since code maintenance always changes the code, the RE
activity must be repeated for each maintenance event.

Reverse Engineering
6. Implemented code has all kinds of optimizations that entangle

the implementation of abstractions, which disables recognition
of clichés.

One approach for obtaining a design history is to generalize cliché
recognition in a way that solves these problems.

The key observation is that every cliché is a <abstraction, code
template> pair,

can be treated as a transformation rule.

Then use the transformation engine to recognize clichés and
abstract them.

22

Supporting Technology
There are two challenges to implementing the DMS
vision.

One must have sufficient integrated infrastructure to carry out
the steps.
It must scale reasonably well.

Required infrastructure includes:

1. A means for representing the program to be maintained.

2. A graph rewrite engine to apply individual transformations to
the program representation

Supporting Technology
3. Tools to manage a database of notations, abstractions, and

transforms that might be used in the application.

4. Reverse-engineering tools, which use the rewrite engine to
recognize clichés taken from domains.

5. A domain-notation driven structure editor to allow
maintainers to inspect and point at portions of partially derived
applications in the appropriate domain notation.

Implementation
Scale management for DMS occurs at two levels:

The size of the application system
The number of engineers who maintain it.

DMS is more effective for systems with hundreds of thousands of
lines, but cannot be handled by individual maintainers.

DMS is implemented in a parallel processing language, Parlanse,
running on Windows NT multiprocessor workstations.

Implementation

DMS will not generate all 10 million lines of code when a change is
made, but it might have to inspect a significant fraction of the 10
million transformations it has stored as the design of that system.

It is not a requirement that DMS be able to automatically generate
and apply transformations by itself. However, DMS will have a built-
in implementation of a programmable Transformation Control
Language to provide some automation.

23

Conclusion
This paper shows a scheme for capturing the design of
transformationally synthesized code.

Given the design, incremental changes can be installed by use
of mechanical procedures and some additional transformational
synthesis.

Such capabilities should decrease the cost of
maintenance, and therefore significantly lower the cost
of software.

Suggestion: treat the design (rather than code) as the
primary product of the software process.

