

# • • • Introduction

- Paper 1: Design Rationale (DR) Systems research paper
- Paper 2: Integrating DR with Process Model research paper
- Conclusion
- Questions

















# ••• Issue 1: Learning Support

- DR helps both people and system learn mutually
- Ex: Janus has "critics" which provides designer with appropriate recommendation if it encounters a sub-optimal decision

14



### The What

- 1. What Services to Provide
- 2. What to Represent Explicitly
- 3. How to Represent Rationales
- 4. How to Produce Rationales
- 5. How to Access Rationales
- 6. How to Integrate the system
- How to Manage Rationales Cost-Effectively









### • • • Issue 2: Generic Structure

### **Design Intent Layer**

- Represents info behind design decisions:
  - Intents, strategies, goals and requirements
- Allows system to reason about the goal or intent
  - Ex: using the goals, system can derive criteria for evaluating alternatives





# • • • The What

- 1. What Services to Provide
- 2. What to Represent Explicitly
- 3. How to Represent Rationales
- 4. How to Produce Rationales
- 5. How to Access Rationales
- 6. How to Integrate the system
- How to Manage Rationales Cost-Effectively

26



# • • • Issue 4: How to Produce

- Reconstruction
  - Produce DR without system
  - Allows more careful reflection on representation
  - Has very high cost to produce



# • • • Issue 4: How to Produce

• Methodological byproduct

30

- Naturally emerges from the design process method
- The steps of the method help capture the rationale
- Ex: EES : developers follow a certain series of steps that EES supports

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>





# • • • Issue 5: How to Access

### o User-initiative system

- User decides what parts of DR to look at and when and how.
- o System-initiative system
  - System decide what parts and when and how
  - Must have knowledge to make intelligent decisions
  - Must present in an unobtrusive method
  - Ex: Janus critic



# • • • Issue 6: How to Integrate

- Among users
- o Among multimedia objects
- With Design Modules

36



# • • • Issue 6: How to Integrate

- o Among multimedia objects
  - How to integrate different multimedia artifacts: notebooks, sketchbooks, phone conversations, email...
  - Ex: Phidias addresses this problem by having hypertext links to a hypermedia database

38

• • •



### The What

- 1. What Services to Provide
- 2. What to Represent Explicitly
- 3. How to Represent Rationales
- 4. How to Produce Rationales
- 5. How to Access Rationales
- 6. How to Integrate the system
- 7. How to Manage Rationales Cost-Effectively



# Issue 7: Cost vs. Benefit DR system not productive if cost outweighs benefits Benefits: Services the system provides Cost: Resources used in producing/capturing rationales Fixed cost: Cost incurred when building a new system or initial knowledge base OK if cumulative benefits from system's use outweigh it. Bigger Question: Who will bear the cost for producing DR for a particular artifact and WHY?



# • • • Issue 7: Cost Bearer? (Cont)

- Jonathan Grudin of the University of California, Irvine points out that many groupware systems fail exactly because of this mismatch
- Example: Most online meeting schedulers fail because
  - Cost: It requires ALL people to maintain their local calendars online
  - Beneficiaries: Only those who schedule the meetings
- Solution: Grudin suggests a process along with the technology that delivers some benefit to the contributor (system allows designer to send compliments to contributor)

44



- Not all the Issues have been explored at a sufficient depth
- Designing Cost effective system is one of the most urgent issues design rationale researchers face
- If not cost-effective → may not be used or be counterproductive
- Management not beyond research concern
- Eventual goal should be to have a practical system
- Urgent Need for methods to produce formal design rationales at less cost
- Integration is an important issue

45

• These neglected areas, once addressed, will enable design rationale systems to contribute more to design research.

# ••• Research Paper II

J.E. Burge, D.C. Brown "Integrating Design Rationale with a Process Model". Workshop on Design Process Modeling, Artificial Intelligence in Design '02, 2002

46



# ••• What is a Process Model?

- A model that encapsulates the set of steps and activities that take place in achieving design goals/objectives
- Different process models for different types of design domains
- Serves as a **prescription** of how the design should be done
- Captures design process alternatives and their rationale explicitly
- Not only guides decisions, but provides design knowledge to help in those decisions







### Impact of Process Model on DR

- DR with a process model is richer in content
  - Rationale for both design decisions AND process model
- DR follows process model structure since design is based on process model
- Process model makes design modification easy to comprehend
  - Rationale and process model coherent
- Disadvantage: If process model produces DR, queries for DR may not be in natural language



# How Does Rationale Fit in HPS&R?

• Each plan step defines a value for a design attribute

| R <sub>ds</sub> | Alternatives and reasons for rejecting them are both encoded                                                                 |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------|--|
| R <sub>dt</sub> | In case of system failure - rationale behind steps taken to make the correction in temporal order                            |  |
| R <sub>dd</sub> | In case of system failure - reasons for failure,<br>cause of failure and rationale behind process<br>taken to find the cause |  |
| 54              |                                                                                                                              |  |



# • • • Unified Process Model

- HPS&R is specific for a well-studied design problem
- Unified Process model is used for generic software design (not automated)
- Large and complex

- Not all of it is appropriate for every design task
- Developers can use  ${\sf R}_{\sf dp}$  to hand pick parts of the process specific to their design needs
- R<sub>ds</sub> contains many options/alternatives
- Gives developers access to readily available information and avoids fixating on first option chosen







| <ul> <li>How Does Rationale Fit in</li> <li>Unified Process (cont)</li> </ul> |                 |                                                                                                                                                                                      |  |
|-------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                               | R <sub>dp</sub> | Since some tasks might not be needed,<br>rationale can be generated for which tasks are<br>necessary and what order should they be<br>performed.                                     |  |
|                                                                               | R <sub>ds</sub> | Rationale for what steps and information<br>needed to complete the task. Also for<br>frequently considered alternatives (different<br>network configurations in distributed systems) |  |
| 60                                                                            |                 |                                                                                                                                                                                      |  |



- Each model is useful for different design domains
- HPS&R (specific): Rationale is generated automatically for a well-studied parametric design
- Unified process model (generic): Generic and especially used for software development
- Author mentions a lot more research is required toward Unified process model
  - Determine where each type of rationale fit to assist in software development and process definition

61

# Conclusions

- Issue 1: Provided services to everyone
- Issue 2: What to represent was left open to implementation
- Issue 3: How to represent rationale was open to implementation
  - Author seems to indicate that it would have to be formal
- Issue 4: How to produce rationale was left open to implementation
  - One example of complete automation



