
1

1

Design Patterns

Sungeun Byun and Derek Choi
13 Apr 2006

EE 382V - Software Architecture and Design Rationale

13 Apr 2006 EE 382V 2

Outline
Design Patterns

Using catalogued operational semantics of object interaction
as an implicit representation of design intent

Introduction
Metaphor and Metonymy in Object-Oriented Design
Patterns
Augmenting Design Patterns with Design Rationale
Design Patterns as Language Constructs
Industrial Experience with Design Patterns
Conclusion

Analysis/Commentary/Questions/Discussion

13 Apr 2006 EE 382V 3

Introduction
Strong tendency to reuse designs
More experience -> more proficient
Restricted to personal experience
Little sharing of design knowledge
Design pattern is a particular form of recording
design information such that designs which have
worked well in particular situations can be applied
again in similar situations in the future by others
Ward Cunningham and Kent Beck developed a set of
patterns for developing user interfaces in Smalltalk
Jim Coplien was developing a catalog of language-
specific C++ patterns called idioms

13 Apr 2006 EE 382V 4

Introduction
Erich Gamma recognized the value of explicitly
recording recurring design structures while working
on his doctoral dissertation on object-oriented
software development
These people and others met and intensified their
discussions on patterns
Influenced by the works of Christopher Alexander
Pattern : to encode knowledge of the design and
construction of communities and buildings
More meaning than the usual dictionary definition
Description of a recurring pattern of architectural
elements and a rule for how and when to create that
pattern

2

13 Apr 2006 EE 382V 5

Introduction
Recurring decisions made by experts, written so that those less
skilled can use them
Describe more of the "why" of design than a simple description
of a set of relationships between objects
“Descriptions of communicating objects and classes that are
customized to solve a general design problem in a particular
context” Gamma et al.
Presented a catalogue of 23 design patterns, organized in three
categories depending on the pattern’s purpose
Creational patterns : concerned with object creation
Structural patterns : the composition of classes and objects
Behavioral patterns : concerned with the ways in which classes
or objects interact and distribute responsibility

13 Apr 2006 EE 382V 6

Introduction

Classification of design patterns by Gamma et al.

13 Apr 2006 EE 382V 7

Introduction
The software engineer makes use of a paradigm, i.e. a set of
related concepts such as object, class, method, inheritance, etc.
Inexperienced engineer : a small concept set, consisting of the
concepts represented in the used programming language
Experienced software engineers : access to larger concept sets,
(typical data structures and algorithms course)
Only way to get access to more advanced concepts is through
personal, hands-on experience
Ability to capture such implicit experience and make it shared by
the (object-oriented) software engineering community
Paradigm : to make a complex work understandable by
organizing it into separable parts
Patterns : try to describe relationships within and between the
parts, not just the parts themselves
Patterns are truly an architectural technique, not just a divide-
and-conquer technique

13 Apr 2006 EE 382V 8

Metaphor and Metonymy in Object-Oriented
Design Patterns

James Noble, Robert Biddle, and Ewan
Tempero

Victoria University of Wellington 2001

3

13 Apr 2006 EE 382V 9

Overview
Why do we need this classification?
What is the Metaphor and Metonymy?
What is the Direct Metaphorical Design?
What is the Indirect Metaphorical Design?
What is the Programmatic Patterns?
Result of classification of patterns

13 Apr 2006 EE 382V 10

Why do we need this classification?
“A program execution is regarded as a physical model,
simulating the behavior of either a real or imaginary part of the
world” Lehrmann Madsen et. al.
Core principle : an object-oriented program simulates the world
Object-oriented is the "natural" way to program or to design
Some kind of external "reality" to which the program can refer
Many programs have no reference to objective reality
-> modeling an "imagined reality" that does not exist, but still
constitutes an external referent for the program
Alternatively, perhaps we create that world in the process of
modeling it
There are no reality, even imaginary ones, until they are
modeled in the process of systems development and the
process of systems development calls them into being

13 Apr 2006 EE 382V 11

A Picture of farm animals, and the corresponding UML

Pigs, sheep, and cattle live in fields-> Grazing-Area
class, one instance per field, and associate each
Farm-Animal with one Grazing-Area, and so on

Diagram shows how a farm system can be seen as a
model for the real world

Why do we need this classification?

13 Apr 2006 EE 382V 12

Why do we need this classification?
A common fallacy : the "objects" in the world is the same kind
of objects as the objects used in object-oriented programming
Do all objects in the real world have encapsulation?
Do they have interfaces?
Polymorphism?, Constructors?
What about "objects" in the real world such as "sunshine",
"credit ratings", or "gravity" which do not seem to be the same
kinds of objects as "cows" or "sheep“
How can we characterize the relationship between the classes
and objects in the program and the classes and objects in the
(real or imaginary) external world?
This is the reason why we need the Metaphor / Metonymy
classification in Object-Oriented Design Patterns

4

13 Apr 2006 EE 382V 13

What is the Metaphor and Metonymy?

Metaphor
Metaphor : Greek word for "transfer“

Transfer meaning from one thing to another

The Figure shows how metaphor functions in speech. In phrases such
as "he's a lion!" or "she's a lamb!" we use words (signifiers) "lion" or
"lamb" as metaphors for a person to signify that that person is brave or
docile

13 Apr 2006 EE 382V 14

What is the Metaphor and Metonymy?

Metonymy
“Metaphor is a figure of speech based on similarity, whereas
metonymy is based on contiguity. In metaphor you substitute
something like the thing you mean for the thing itself, whereas
in metonymy you substitute some attribute or cause or effect of
the thing for the thing itself” (Martin Secker & Waxburg)

The signifiers "crown" or "law" applied to a person to signify
"king" and "police officer" respectively

13 Apr 2006 EE 382V 15

What is the Direct Metaphorical Design?

Objects in a program can model objects in the real world. It is
important to realize what "modeled by" means
Clearly it does not mean the Bovine objects in the program
physically eat grass, produce cowpats into which one can step,
and contribute large volumes of methane and other gases to
warming the biosphere
The traditional way to describe this relationship is to say that
the objects in the program are "abstractions" of the real objects
For example, a stack is an abstraction that might be
implemented by an array, a pointer, and some executable code

The stack is an abstraction because it elides many of the details of
actual implementation

Is Bovine object in the program an "abstraction" of a real cow?
Is the object in the program "implemented" by a cow in reality?
Are the objects in the program special kinds of cows which do
not eat, excrete, or expire?

13 Apr 2006 EE 382V 16

What is the Direct Metaphorical Design?

Metaphor between programmatic object and external object
Different description of the relationship between programmatic object
and external object
This kind of relationship can be seen as metaphor
An object in the program is a metaphor for an object in reality, and
part of the meaning of the object in reality is transferred to the object
in the program
Thus, while our Bovine objects do not eat grass, they may have an
identity number, age, and weight attributes that model some features
of the corresponding real cow
Metaphorical because it is based on metaphor, and direct because the
metaphors are being represented directly, using the constructs from
most object-oriented programming languages or modeling notations

5

13 Apr 2006 EE 382V 17

What is the Direct Metaphorical Design?

Direct metaphorical design is the most
common and most basic kind of object-
oriented design
Accounting system : one object per account
Game : one object per demon, dragon
Where direct metaphorical designs work, they
are easy to produce, implement, understand,
and modify
One simply identifies the objects of interest in
the real world and creates corresponding
objects in the design model

13 Apr 2006 EE 382V 18

What is the Indirect Metaphorical Design?

Objects that are common in the worlds we wish to model, but that
cannot be translated directly into object-oriented designs
Objects in the real world are often created recursively from parts
and wholes
Large organizations are made up of smaller organizational units,
and these units are composed of smaller units, in turn composed of
still smaller ones
Most programming languages and modeling notations don’t
support this kind of composite object, so these structures need to
be encoded using the features of the available languages and
notations
Designers incorporate patterns into their program to address
general problems in the structure of their programs' designs, in a
similar way that algorithms or data structures are incorporated into
programs to solve particular problems
These patterns are often not intuitive to novice designers and
programmers, although experienced ones may find them quite
obvious

13 Apr 2006 EE 382V 19

What is the Indirect Metaphorical Design?

The structure of the Composite pattern

Composite pattern supports the organization of objects into part-whole hierarchies
The resulting objects present a uniform interface to clients, whether the object is an
individual object or a composition of objects
Classes representing the whole composition are subclasses of classes representing
the part ("Component")
The most important class in this structure is the class representing the part, not the
whole
Recursive relationship appears as a many-to-one aggregation from a subclass
Composite to a superclass Component
To novices, this link appears backwards, going up the tree rather than down, from
whole to parts, and the aggregation within an inheritance hierarchy appears
completely arbitrary

13 Apr 2006 EE 382V 20

What is the Indirect Metaphorical Design?

The objects created by the Composite pattern
Although the class diagram looks strange, the result structure of the objects is
straightforward
Indirect metaphorical designs. metaphorical because the relationship between
the resulting objects in the program and the objects in the world is metaphorical
for objects in the world, indirect because the program or modeling language
(class) structures are not obvious
The difference between direct and indirect metaphorical designs lies in the
features of the languages used to express them
Some languages lack sufficient features to express required metaphors directly,
so they must be encoded indirectly, such as by a design pattern
Translating between languages can change an indirect metaphoric design into a
direct metaphoric design, and vice versa

6

13 Apr 2006 EE 382V 21

What is the Metonymic Design?

The structure of the State pattern
Some design patterns don't make sense considered as
metaphors. Let’s consider the State pattern, one of the simple
patterns
The State pattern is used in situations where the behavior of the
object depends on the internal state of the object
Thus, state pattern allows an object (the Context) to alter its
behavior when its internal state changes, causing the Context
object to appear to change its class

13 Apr 2006 EE 382V 22

What is the Metonymic Design?
The State pattern introduces an internal state object aggregated
inside the context, and delegates some requests to it
The internal state object is an instance of a ConcreteState class
(where the ConcreteState classes all inherit from a common
abstract State class)
The behavior which the context object receives when delegating
requests to the state object will change according to the
ConcreteState object that is installed at any time, so by
changing state objects dynamically the whole context object can
provide different behavior
The State pattern to record the changing state of a sheep from
newborn lamb, dipping, crutching, dagging, hogget, breeding
ram, and finally to mutton

13 Apr 2006 EE 382V 23

What is the Metonymic Design?
The implementation of the State pattern is quite straightforward, Just
add an extra object and class hierarchy to design, and then change
internal state objects to change context objects' behavior
The State pattern raises an important question regarding the design or
analysis of the program
What object in reality does the state object represent?
In the farm example, the state object certainly doesn't model a
subordinate physical object that is attached to a sheep and that
changes throughout the sheep's lifecycle
There may be no physical change at all between a sheep considered a
newborn lamb one day, a yearling the next, and a prime export
candidate the day after
State objects do not represent objects from the real world. They are
not metaphorical, either directly or indirectly
Rather, these objects and design patterns are exemplars of metonymic
designs

13 Apr 2006 EE 382V 24

What is the Metonymic Design?

Metonymy between programmatic object and external object
The states of the sheep are not metaphors for "real" objects, they
signify attributes of sheep
Figure shows how an object in a program can be a signifier for some
referent in the world
One intuitive way to determine whether a pattern is metaphor or
metonymy is to ask how hard the pattern is to explain
Easy patterns that involve just one object tend to be metaphor (this is
a composite object, this is a prototype which can be cloned)
While the complex patterns involving multiple objects tend to be
metonymy (this is part of the internal state of another object)

7

13 Apr 2006 EE 382V 25

What is the Programmatic Patterns?

The Facade pattern
There are some patterns that are neither metaphor nor metonymy
The Facade design pattern is used to provide a single, integrated
interface to a set of interfaces in a subsystem
Facade defines a higher-level interface that simplifies the use of the
subsystem, inserts an extra interface into a program to encapsulate a
set of objects forming a subsystem
Extra interface is typically nothing to do with any external reality,
rather, it is purely about the internal structure of the software
These kinds of patterns are programmatic, because they are about
programs' internal structure rather than their relation to an external
reality

13 Apr 2006 EE 382V 26

Result of classification of patterns
Design Patterns by Gamma et al. categorized patterns into three types
Creational patterns are about creating objects, structural patterns
about program structure, and behavioral patterns about program
behavior
This categorization seems orthogonal to our classification of patterns
according to metaphor and metonymy
Object-oriented design is primarily metaphorical
Metaphorical designs that cannot be implemented directly in a
programming or design language give rise to patterns (such as
Composite) corresponding to indirect implementations of these
metaphorical designs
Modeling attributes, causes, and effects (rather than real world
objects) produces metonymic designs and more advanced patterns
Designs that improve the internal structure of the program without
reference to an external reality give rise to programmatic patterns

13 Apr 2006 EE 382V 27

Result of classification of patterns

Classification of Patterns by Gamma et al. and James Noble et al.

13 Apr 2006 EE 382V 28

Augmenting Design Patterns
with Design Rationale

Feniosky Peña-Mora
and Sanjeev Vadhavkar

MIT 1997

8

13 Apr 2006 EE 382V 29

Software Engineering

Requirements
Operating Platforms

Heterogeneous Hardware/Software Systems

Topology
Distributed Systems

Evolutionary
Rapidly Changing Constraints

13 Apr 2006 EE 382V 30

Software Engineering (cont’d)

Code Reuse
Domain/Context Knowledge
Development Experience
Design Decisions
Design History
Code and Documentation

Time and Cost Savings

13 Apr 2006 EE 382V 31

Motivation for Design Patterns

Another Tool to Speed System
Development
Design Pattern:

Architecture: Communicating Objects and
Classes (Components/Connectors)
Customization: Solve a General Design
Problem in a Particular Context

13 Apr 2006 EE 382V 32

Motivation for Design Rationale

Software Development
70% Life Cycle Costs in Maintenance
Up to Half of System Maintainers’
Resources Are for Reverse Engineering to
Make Changes

Only Implicit Design Decisions Kept
Obscure Design Notebooks
Minutes of Design Reviews
Designers’ Memory

9

13 Apr 2006 EE 382V 33

Combining Patterns and Rationale

Synthesizing Reusable Code via Design
Patterns

Easy to Browse, Well-Cataloged
Convenient Software Components

Creating Models that Capture and
Retrieve Relevant Design Rationale

Facilitate Making Changes and Combining
Parts of Code to Form Libraries

13 Apr 2006 EE 382V 34

Research Goal
Explore Role of Design Rationale in Intelligent
Software Classification and Retrieval for Reuse
Purpose

To Use an Object Model Integrating Reusable
Software Libraries With Explicit Schemes of Design
Rationale Capture and Retrieval

To Develop Prototype Using That Object Model as Its
Base

Test in an Industrial Setting for Use as an Integrated
Design Tool for Software Developers Working in
Reusable Software Engineering

13 Apr 2006 EE 382V 35

Case Study

Integrating Design Rationale and
Reusability Requires Information Record

Why Design Decisions Are Made
Why Particular Solutions Were Not
Undertaken
Why Some Solutions Are Accepted Given
Certain Constraints

Case Studies to Examine This Capture

13 Apr 2006 EE 382V 36

Capturing Rationale for Reusability

10

13 Apr 2006 EE 382V 37

Areas of Study
Single Designer – Passive Computer Support for Design
Rationale

Designer Notebook, etc.
Multiple Designers – Passive Computer Support for Design
Rationale

IBIS, gIBIS, CAD
Multiple Designer – Passive Computer Support for Design
Rationale – Passive Computer Support for Design Reuse

KIDS, ORCA, AMHYRST
Multiple Designers – Passive Design Rationale Capture – Active
Computer Support for Reuse

CAPS
Multiple Designers – Active Design Rationale Capture – Active
Computer Support for Reuse

13 Apr 2006 EE 382V 38

Overview of Building Objects

Design Recommendation and Intent
Model

Allows Design Rationale from Multiple
Designers to be Partially Generated,
Stored, and Later Retrieved by a Computer
System

To Capture Design Rationale, It Uses:
Domain Knowledge
Design Experiences from Past
Interaction With Designers

13 Apr 2006 EE 382V 39

DRIM

13 Apr 2006 EE 382V 40

Overview of Design Patterns
1. Identify Good Design That Maps Solution to
Implementation

2. Explicitly Specify How Reusable Classes Relate to
the Design

3. Define Context in Which Design Patterns Are Valid

4. Explicitly Specify Key Issues, Assumptions,
Constraints, and Dependencies in Prior Designs

11

13 Apr 2006 EE 382V 41

Using DRIM for Software
Reusability

Design Recommendation and Intent
Model Extended to Reusability
(DRIMER)

Combined Approach -> “Patterns-by-
Intent”

Software Designer
Proposal = Recommendation/Justification
Components
Design Patterns
(Creational/Structural/Behavioral Patterns)

13 Apr 2006 EE 382V 42

13 Apr 2006 EE 382V 43

Design Patterns as Language
Constructs

Jan Bosch
Sweden 1998

13 Apr 2006 EE 382V 44

Layered Object Model

12

13 Apr 2006 EE 382V 45

Types of Layers

Structural Relation Layers
Define Structure of an Application
Extends Class Behavior

Behavioral Relation Layers
Relation Types Between Objects and Its Clients
Constrain Access of Clients and Behavior of Object

Application Domain Relations
E.g. Controls

13 Apr 2006 EE 382V 46

Types of Design Patterns

Structural Design Patterns
Adapter – convert interfaces
Bridge – decouples abstraction/implementation
Composite – supports part-whole hierarchies
Façade – single, integrated interface

Behavioral Design Patterns
State – object behavior depends on internal state
Observer – objects depend on state changes
Strategy – models algorithm/behavior as object
Mediator – encapsulates interaction of objects

13 Apr 2006 EE 382V 47

Industrial Experience with Design
Patterns

Kent Beck, James Coplien, Ron Crocker, Lutz
Dominick, Gerard Meszaros, Frances Paulish, and

John Vlissides

Various Large Industrial Complexes™ 1996

13 Apr 2006 EE 382V 48

Industrial Experience with Design Patterns

A design pattern is a particular prose form of recording design
information such that designs which have worked well in the
past can be applied again in similar situations in the future
The availability of a collection of design patterns can help both
the experienced and the novice designer recognize situations in
which design reuse could or should occur
In the industrial experience, design patterns provide

- effective “shorthand” for communicating complex concepts
effectively between designers
- can be used to record and encourage the reuse of “best
practices”
- capture the essential parts of a design in compact form, e.g.
for documentation of existing software architectures

13

13 Apr 2006 EE 382V 49

AT&T
AT&T has several core competencies that are
fundamental to quality customer service
High-availability system design and fault-tolerant
software are among these core competencies
Many of these core competencies can be captured as
patterns since they solve a wide variety of reliability
and availability problems that arise during
architecture and design
AT&T uses the fault-tolerance and high-availability
patterns in architectural training
Pattern training is largely for organizations that are
“pattern consumers”
These organizations are building new projects, using
patterns as audits and drivers for design

13 Apr 2006 EE 382V 50

AT&T
Most of these courses are conducted as workshops that are
highly participatory, with design exercises and pattern-writing
exercises
The training is effective on many levels

Attendees deepen their understanding of patterns in general and of
specific core competency patterns
They deepen their appreciation for architecture and
telecommunications foundations

AT&T has patterns at all levels, from architectural frameworks
down to design patterns and idioms
The number of total patterns numbers in the hundreds
Scale is a major obstacle to systematic and effective patterns
usage
AT&T is evaluating pattern organizing schemes, indexing
schemes, and other attacks on the scale of the pattern
knowledge base

13 Apr 2006 EE 382V 51

Northern Telecom
Northern Telecom has used the “pattern” and similar forms to
capture project knowledge in a number of areas
As part of developing a new architecture to allow rapid
development and delivery of telecommunications services,
Northern Telecom realized that service developers would require
guidance in using the architecture and began to develop a
“service design” methodology
Many of these patterns were “prescriptive” in that they
described how to get from one model to another
As an example, a number of the patterns describe how to find
and identify similar concepts in different requirements
documents and capture the common concepts in the domain
model of a service
These patterns effectively are a “recipe” for doing abstraction
for people to whom this does not come naturally

13 Apr 2006 EE 382V 52

Northern Telecom
Northern Telecom had discovered a number of recurring
patterns in the design of telephone services
Northern Telecom had coined terms for many of these, such as
modifier service (service which observes another service and
adds additional behavior at appropriate points)
Northern Telecom quickly found themselves expressing their
designs in terms of these patterns

They gave them a precise yet concise way of synchronizing their
thoughts which saved a lot of effort
They no longer had to describe a key portion of the design since
they had a common understanding of what was meant by “this
object is using the Observer Pattern to monitor this other object”

Northern Telecom has found patterns to be particularly useful
for defining and describing software architectures
Many patterns (Observer, Strategy, and Composite) are
particularly useful when defining the architecture of a system
because they encapsulate potential changes to the system

14

13 Apr 2006 EE 382V 53

Comment from Northern Telecom
“Using patterns written by others only takes an open mind. But,
writing patterns takes a special mind! Most people whom we
have exposed to the concept of patterns can quickly become
proficient at using the common ones. But we have found that
only a small percentage of people can write patterns. With
respect to patterns, there are three kinds of people. Those who
see patterns everywhere and can describe them, those who can
recognize patterns but can not describe them easily, and those
who are oblivious to the pattern surrounding them. This
difference seems to stem from a basic orientation of people to
focus on similarities as opposed to differences between things.”

“We have not attempted to measure the impact of patterns on
productivity but we have noticed that communication between
people with a “shared space” of patterns is quicker, more
complete, and less likely to be misunderstood. At the
programming level, we have had people design what might be
rather complex designs much more quickly than expected by
using one or more design patterns.”

13 Apr 2006 EE 382V 54

Conclusion

Analysis and Observations
Metonymy

Justification for Reality Objects Vague?
Abstract – Metaphor/Metonymy in Design
Patterns/OOP => accurate, flexible, better
understood designs?

Augmenting with Design Rationale
Emphasis on Reuse => Software Flexibility?

Language Constructs
Case Studies

13 Apr 2006 EE 382V 55

Conclusion

Engineers’ Desire to Implement Reuse
Software Engineering as Both
Theoretical and Empirical
Architecting vs. Designing
Foundation and Models
Types and Examples
Industrial Applications

13 Apr 2006 EE 382V 56

Further Reading
“Software Design Patterns: Common Questions and
Answers”

James Coplien
AT&T ‘94

“Patterns Generate Architectures”
Kent Beck and Ralph Johnson
ECOOP ’94

“Design Patterns for Object-Oriented Software
Development”

Wolfgang Pree and Hermann Sikora
ICSE ’97

15

13 Apr 2006 EE 382V 57

Questions?

