Code-level Technigues

(to Explicitly Capture Design Intent in a Non-formal Way)

EE382V — Software Architecture and Design Intent

Engin Uzuncaova
Daryl Shannon

Outline

— General Picture

— What is “Design by Contract™?

— Eiffel

— Relation to Architecture and Intent

General Picture

Software Architecture;

The software architecture of a program or
computing system is the structure or
structures of the system, which comprise
software components, the externally visible
properties of those components, and the

relationships among them.

Design Intent:

Logical reasoning behind the mapping
from the requirements domain to the

architectural abstractions.

Implementation:

The process of constructing an actual
artifact from a design.

Implementation vs. Interaction

upper

main
split lower upper merge ||~ split
config i/o lib

(implementation description)

indicates what modules are present and to

what modules they refer

fails to capture architectural composition

lines represent programming language

relationships

merge

lower

(architectural description)

highlights architectural design
reflects abstract interactions

Problems..?

It limits the expressiveness of the architectural
description only to those defined by the implementation
language.

« Low-level entities used in the architecture makes it
harder to reason about the architectural design.

« Algorithmic aspects of the program interfere with the
architectural abstractions.

Bertrand Meyer. "Applying Design by Contract".
Computer, Vol. 25, No. 10, 1992, pp. 40-51.

Design by Contract

= What is Design by Contractrm ?

« A method of software construction that
designs the components of a system so that
they will cooperate on the basis of precisely
defined contracts

= How does DbC work ?

» For the execution of any routine

« DbC ensures that before execution begins, all
conditions required for correct execution are met.

« Upon completion, it ensures that the routine
actually has executed as expected.

« DbC ensures that the instance is in a valid state at
all critical times.

http://www.eiffel.com

Motivation

o Software failures are expensive
— Reliability
« Correctness - specification
e Robustness - ?

o Software itself Is expensive
— Reusability

An Example Contract

Party Crbligations

HBenefils

Chient Provide letter or package of no
maore than 5 kgs. each dimension
ne more than 2 meters.

Pav 1M francs.

Supplier Deliver package to recipient
in four hours or less.

Get package delivered to
recipient in four hours or
less. '

Mo need to deal with
deliveries too big, too

heavy, or unpaid. if new = Void then
i ... Take care of special case ...
else
... Take care of standard case ...
end

— — _——

routine_name (argument declarations) is
-- Header comment

require
Preronditinn
do) _
Routine body, i.e. instructions
ensure
Postcondition
end

put_child (nev: NODE) is
-- Add new to the children of current node
require
new J= Vaid
do
... Insertion algorithm ...
engure
new.parent = Current,
chitld_count = old child _count + 1

end -- pui_child

e —

—_——————

Software Contract

.. ™)
e Pre-condition

e Post-condition >~ Assertions

(result from bug; they
are not special cases)

—/

put_child (nev: NODE) is l
-- Add new to the children of current node
require
new J= Vaid
do
... Insertion algorithm ...
engure
new.parent = Current,
chitld_count = old child _count + 1
end -- pui_child

e —

—_——————

imvariamt
left I= Void implies (left.parent = Current),
right I= Void implies (right.parent = Current)

10

Four Key Benefits

Constructing correct programs
Automatic documentation
Debugging and testing
Exception handling
Reusabillity

11

Eiffel

 Eiffel development methodology
* Pure OO, focused on quality

 Eiffel programming language
 Eiffel compiler (to ANSI C and MSIL)

 Development environment
« EiffelStudio, Eiffel ENVisioN

12

Example @)

Class TIME_OF_DAY

Instances are valid times of day

e Accurate to the second
e In the range 00:00:00 - 23:59:59

13

Example
Class TIME_OF_DAY

e Queries
« hour: INTEGER
 minute: INTEGER
« second: INTEGER
* is before (other: TIME OF DAY): BOOLEAN

« Commands
* set hour (h: INTEGER)
* set minute (m: INTEGER)
* set second (s: INTEGER)

14

Example (3)

Decision: How to represent the time of
day in internal state within instances of
TIME_OF_DAY

. Keep three integer attributes:)
1. hour: INTEGER
2. minute: INTEGER

| 3. second: INTEGER

A 4

2. Keep one integer attibute:
1. seconds_since midnight: INTEGER

15

Example (@)

Decision: How to represent the time of
day in internal state within instances of
TIME_OF_DAY

1. Keep three integer attributes:
1. hour: INTEGER

2. minute: INTEGER
3. second: INTEGER

2. Keep one integer attribute:
1. seconds since midnight: INTEGER

16

Example (s
Implementation in TIME_OF_DAY:

set hour (h: INTEGER) is
-— Set the hour from h'
do
hour := h
end

Client code in some other class:

coffee time: TIME OF DAY
- - ‘(118)‘

coffee time.set hour (10)

17

Example ()

For any routine:

set hour (h: INTEGER)

State the conditions that must be true
before the routine can work correctly

O <= h and h <= 23

State the conditions that will be true
after execution, if the routine has
worked correctly

hour = h

18

Example)

set hour (h: INTEGER) is
~- Set the hour from "h'
require

valid h: 0 <= h and h <=
do

hour := h
ensure

hour set: hour = h

’hinute_unchanged: minute

'second_unchanged: second
end

23

old minute |
old second.

19

Benefits

Documentation
e automatic documentation of the contract

Reusabillity

e well-defined contracts

Correctness
 pre-/post-conditions, class invariants

Easier software development

20

What is the relation..?

e Design by contract
e Software architecture
e Design intent

Design by
Contract
S

Software Actual
Architecture Implementation

C
Design
Intent

21

Sarfraz Khurshid, Darko Marinov and Daniel
Jackson. "An Analyzable Annotation
Language". In Proceedings of the 17th ACM
Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
2002, pp. 231-245.

22

Alloy Annotation Language

e |nvariants
e Specifications
— Preconditions (requires)
— Postconditions (ensures)
 Method Behavior (does)

— built from specification
— built from code

23

Alloy

* First-order, declarative language
e Based on sets and relations
* Checks assertions within a set scope

24

Static Checking

Invariants

 The equals() method of the Java Object
class

25

Javadoc spec of equals

package java.lang;
Class Object {
[** The “equals” method implements an equivalence relation:
*) It is reflexive: for any reference value “0”,
“0.equals(0)” should return true.
*) It is symmetric: ...
*) It is transitive: ...

*/
boolean equals(Object o) {
return (this == 0);
}
}

26

AAL spec of equals

package java.lang;
Class Object {
/@ invariant {
1@ [l reflexive
//@ all o: Object - null | o.equals(0)
ll@ [l symmetric
//@ all o, 0’: Object - null | o.equals(o’) => o’.equals(0)
@ /I transitive
/@ allol, 02, 03: Object - null |
I/[@ ol.equals(02) && 02.equals(03) => ol.equals(03)
o }
boolean equals(Object 0) {
return (this == 0);

27

Overriding equals

Package java.awt;
class Dimension {
int width, height;

/@ does {

//@ \result = (obj instanceof Dimension
@) && this.width = obj.width
ey && this.height = obj.height)
e }

boolean equals(Object o) {
if (!(o instanceof Dimension))
return false;
Dimension d = (Dimension)o;
return (width == d.width) &&
(height == d.height);

class Dimension3D extends Dimension {
int depth;

I/@ does {

//@ \result = (obj instanceof Dimension3D
@ super..equals(obj) &&

@ this.depth = obj.depth)

o }

boolean equals(Object o) {
if (!(o instanceof Dimension3D))
return false;
Dimension3D d = (Dimension3D)o;
return super.equals(o) &&
(depth == d.depth);

28

Counterexample

O1: Dimension {width = 0, height = 1}
O2: Dimension3D {width = 0, height = 1, depth = 3}
Symmetry violated: ol.equals(o2) and not 02.equals(ol)

Package java.awt;

class Dimension { class Dimension3D extends Dimension {
int width, height; int depth;
//@ does { //@ does {
//@ \result = (obj instanceof Dimension //@ \result = (obj instanceof Dimension3D
@ && this.width = obj.width e super..equals(obj) &&
@) && this.height = obj.height) e this.depth = obj.depth)
e} @}
boolean equals(Object o) { boolean equals(Object o) {
} }
} }

29

Possible Fixes

Disable subclassing
final class Dimension {

Check concrete class
boolean Dimension.equals(Object 0) {
If (!(o.getClass() == this.getClass()))
return false;

30

Method Behavior

e annotations can come from one of two
sources
— Specification
— Code translation

* Therefore, we can check both the
specification and the code against
Invariants

31

Code Conformance

« Static Checking

 Dynamic Checking

32

Static Code Conformance

all s, s’: State |
valid(s) && pre(s) && body(s, s’)
=> valid(s’) && post(s, s’)

33

Dynamic Code Conformance

« Unit testing

— Alloy generates test inputs using invariants
and preconditions

— Execute each input
— Checks output against postcondition

* Runtime checking

34

35

	Code-level Techniques (to Explicitly Capture Design Intent in a Non-formal Way)
	Outline
	General Picture
	Implementation vs. Interaction
	Problems..?
	
	Design by Contract
	Motivation
	An Example Contract
	Software Contract
	Four Key Benefits
	Eiffel
	Example (1)
	Example (2)
	Example (3)
	Example (4)
	Example (5)
	Example (6)
	Example (7)
	Benefits
	What is the relation..?
	
	Alloy Annotation Language
	Alloy
	Static Checking
	javadoc spec of equals
	AAL spec of equals
	Overriding equals
	Counterexample
	Possible Fixes
	Method Behavior
	Code Conformance
	Static Code Conformance
	Dynamic Code Conformance
	

