
Code-level Techniques
(to Explicitly Capture Design Intent in a Non-formal Way)

EE382V – Software Architecture and Design Intent

Engin Uzuncaova
Daryl Shannon

Outline

– General Picture
– What is “Design by Contract”?
– Eiffel
– Relation to Architecture and Intent

2

General Picture
Software Architecture:
The software architecture of a program or
computing system is the structure or
structures of the system, which comprise
software components, the externally visible
properties of those components, and the
relationships among them. Design Intent:

Logical reasoning behind the mapping
from the requirements domain to the
architectural abstractions.

Implementation:
The process of constructing an actual
artifact from a design.

3

Implementation vs. Interaction

4

• indicates what modules are present and to
what modules they refer

• fails to capture architectural composition
• lines represent programming language

relationships

main

split lower upper

upper

merge

config

split merge

lower
i/o lib

(implementation description) (architectural description)

• highlights architectural design
• reflects abstract interactions

Problems..?
• It limits the expressiveness of the architectural

description only to those defined by the implementation
language.

• Low-level entities used in the architecture makes it
harder to reason about the architectural design.

• Algorithmic aspects of the program interfere with the
architectural abstractions.

5

Bertrand Meyer. "Applying Design by Contract".
Computer, Vol. 25, No. 10, 1992, pp. 40-51.

6

Design by Contract

http://www.eiffel.com 7

Motivation

• Software failures are expensive
– Reliability

• Correctness - specification
• Robustness - ?

• Software itself is expensive
– Reusability

8

An Example Contract

9

Software Contract

• Pre-condition
• Post-condition Assertions
• Class invariant

(result from bug; they
are not special cases)

10

Four Key Benefits

• Constructing correct programs
• Automatic documentation
• Debugging and testing
• Exception handling
• Reusability

11

Eiffel

• Eiffel development methodology
• Pure OO, focused on quality

• Eiffel programming language
• Eiffel compiler (to ANSI C and MSIL)

• Development environment
• EiffelStudio, Eiffel ENVisioN

12

Example (1)

13

Example (2)

14

Example (3)

15

Example (4)

16

Example (5)

17

Example (6)

18

Example (7)

19

Benefits

• Documentation
• automatic documentation of the contract

• Reusability
• well-defined contracts

• Correctness
• pre-/post-conditions, class invariants

• Easier software development

20

What is the relation..?

• Design by contract
• Software architecture
• Design intent

Actual
Implementation

Design by
Contract

Software
Architecture

Design
Intent 21

Sarfraz Khurshid, Darko Marinov and Daniel
Jackson. "An Analyzable Annotation

Language". In Proceedings of the 17th ACM
Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA),
2002, pp. 231-245.

22

Alloy Annotation Language

• Invariants
• Specifications

– Preconditions (requires)
– Postconditions (ensures)

• Method Behavior (does)
– built from specification
– built from code

23

Alloy

• First-order, declarative language
• Based on sets and relations
• Checks assertions within a set scope

24

Static Checking

Invariants

• The equals() method of the Java Object
class

25

javadoc spec of equals
package java.lang;
Class Object {
/** The “equals” method implements an equivalence relation:

*) It is reflexive: for any reference value “o”,
“o.equals(o)” should return true.

*) It is symmetric: …
*) It is transitive: …
…

*/
boolean equals(Object o) {

return (this == 0);
}

}

26

AAL spec of equals
package java.lang;
Class Object {

//@ invariant {
//@ // reflexive
//@ all o: Object - null | o.equals(o)
//@ // symmetric
//@ all o, o’: Object - null | o.equals(o’) => o’.equals(o)
//@ // transitive
//@ all o1, o2, o3: Object - null |
//@ o1.equals(o2) && o2.equals(o3) => o1.equals(o3)
//@ }
boolean equals(Object o) {

return (this == 0);
}

}

27

Overriding equals
Package java.awt;
class Dimension {
int width, height;

//@ does {
//@ \result = (obj instanceof Dimension
//@ && this.width = obj.width
//@ && this.height = obj.height)
//@ }
boolean equals(Object o) {

if (!(o instanceof Dimension))
return false;

Dimension d = (Dimension)o;
return (width == d.width) &&

(height == d.height);
}

}

class Dimension3D extends Dimension {
int depth;

//@ does {
//@ \result = (obj instanceof Dimension3D
//@ super..equals(obj) &&
//@ this.depth = obj.depth)
//@ }

boolean equals(Object o) {
if (!(o instanceof Dimension3D))

return false;
Dimension3D d = (Dimension3D)o;
return super.equals(o) &&

(depth == d.depth);
}

}

28

Counterexample

Package java.awt;
class Dimension {
int width, height;

//@ does {
//@ \result = (obj instanceof Dimension
//@ && this.width = obj.width
//@ && this.height = obj.height)
//@ }
boolean equals(Object o) {

...
}

}

class Dimension3D extends Dimension {
int depth;

//@ does {
//@ \result = (obj instanceof Dimension3D
//@ super..equals(obj) &&
//@ this.depth = obj.depth)
//@ }

boolean equals(Object o) {
…

}
}

O1: Dimension {width = 0, height = 1}
O2: Dimension3D {width = 0, height = 1, depth = 3}
Symmetry violated: o1.equals(o2) and not o2.equals(o1)

29

Possible Fixes
• Disable subclassing

final class Dimension {
…

}

• Check concrete class
boolean Dimension.equals(Object o) {
if (!(o.getClass() == this.getClass()))
return false;

…
}

30

Method Behavior

• annotations can come from one of two
sources
– Specification
– Code translation

• Therefore, we can check both the
specification and the code against
invariants

31

Code Conformance

• Static Checking

• Dynamic Checking

32

Static Code Conformance

all s, s’: State |
valid(s) && pre(s) && body(s, s’)
=> valid(s’) && post(s, s’)

33

Dynamic Code Conformance

• Unit testing
– Alloy generates test inputs using invariants

and preconditions
– Execute each input
– Checks output against postcondition

• Runtime checking

34

35

	Code-level Techniques (to Explicitly Capture Design Intent in a Non-formal Way)
	Outline
	General Picture
	Implementation vs. Interaction
	Problems..?
	
	Design by Contract
	Motivation
	An Example Contract
	Software Contract
	Four Key Benefits
	Eiffel
	Example (1)
	Example (2)
	Example (3)
	Example (4)
	Example (5)
	Example (6)
	Example (7)
	Benefits
	What is the relation..?
	
	Alloy Annotation Language
	Alloy
	Static Checking
	javadoc spec of equals
	AAL spec of equals
	Overriding equals
	Counterexample
	Possible Fixes
	Method Behavior
	Code Conformance
	Static Code Conformance
	Dynamic Code Conformance
	

