
1

EE 382V

Paul S Grisham
grisham@mail.utexas.edu

April 27, 2006

Musings on Intent
in the

Design of Software

2

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

“The issue is not documentation,
the issue is understanding.”

- Jim Highsmith

Agile Software Development Ecosystems (2003)

3

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

An Anecdote
org $0800
cnt rmb 2

org $F000
main lds #$0C00

movb #$80, $0002
off bclr $0000,#$80
look ldd #4444

std cnt
loop ldaa $0000

anda #$7F
cmpa key
bne off
ldx cnt
dex
rpi
stx cnt
bne loop
bset $0000,#$80
bra look

key fcb %00100011
org $FFFE
fdb main

RPI instruction tells the
processor to

READ
PROGRAMMER
INTENT

Wouldn’t it be nice if the
computer could understand what
we are trying to do?

4

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

An Overly Simplified View of Intent

Abstract
Intent

Concrete
Intent Model

Coded
Instructions

Action

Does the action match what we intended?

Situation!

2

5

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Expressing Intent to a Computer
We have spent decades trying to build programming
systems for the purpose of telling a computer what
we want it to do.

Programming languages define operational behavior
Compilers translate intent into instructions
Contracts and assertions enforce correct behavior

Advanced programming systems:
Abstract away concepts specific to the platform
Allow for partitioning of sub-tasks and sub-goals
Restrict control and data flow
Create a virtual environment for problem-solving

Errors are behaviors where:
Intent is incorrectly expressed to the computer
Intent is incompletely understood by the programmer

6

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Modern Software Design
Primarily a structuring and abstraction problem

For functional intent we know:
Group into procedures, classes, modules, etc.
Coupling and cohesion affect:

Performance
Reliability – fewer unexpected or undefined interactions

For new functionality:
Low impact of change through good modularity

New interactions are limited in scope

Abstraction yields cognitive benefits
Fine-grain details are abstracted away
Large-scale design becomes possible
Abstracted designs can be inspected for design qualities
Complex systems can be generally understood quickly

7

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Design is for Humans
CLAIM: There are some technical benefits of certain
design strategies, but comprehensibility is the
primary objective of modern design and analysis.

Code elements are given “intentional” names
Organization makes “clear” the intent of a set of
instructions
Modularity (coupling, cohesion)

abstract complexity within an interface
The computer has no use for the programmer’s “intent”

Counter-example: Expert system?

CLAIM: Flexibility, elegance, testability,
adaptability, etc. are all aspects of comprehensibility

Spaghetti code executes nicely, thank you
Counter-example: Distributed or replicated enterprise app.

CLAIM: We have spent considerably less time
studying how to express intent to people

8

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

New
Situation!

An Overly Simplified View of Design Intent

Design
Intent

Design Model Implementation

Does the new design conform to the original intent?

Is the original intent still valid?

Original
Situation

Design Model’ Implementation’

3

9

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Problem Structuring
Well-Structured Problems:

Relationship between problem, solution methods, and criteria
Coding a well-defined algorithm

Ill-Structured Problems:
Not well-structured (i.e., no domain guidance on solution
methods or evaluation)

Deciding what to build (requirements selection)

Problem Structuring:
The act of turning ISPs into WSPs
Software Analysis and Design:

Select requirements to implement
Given a requirement, decompose into a set of goals
Transform goal into a detailed design
Treat design as a WSP, and abstract its complexity, and use to
solve another goal

10

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Software Design Decisions
What is a design decision?

Separating functional units into procedures (methods)
Defining interfaces for procedures
Grouping procedures into classes / modules
Defining interfaces for modules
Etc.

Prescriptive approaches provide strategies or methods
for problem structuring

Top-down, Bottom-up, Stepwise refinement
OOAD
CBSP

11

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

How Do Software Designers Think?
Opportunistic Decision Making

Decisions made with partial knowledge influence later decisions
as fact

Emergent knowledge and partial solutions
Discovery of partial WSPs from domain knowledge

Emergent requirements need attention
Immediate Structuring ISP into WSP

Drifting
Explore dependencies and assumptions

Scenario exploration
Make ill-structured requirements concrete
Verify partial solutions
Confirm inferred requirements

Early design activities are opportunistic, rather than
prescriptive

12

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Rational Decision Making
A decision is made based on criteria and rationale
Consequential choice of an alternative

Possible actions and outcomes
Utility function assigns value to options
Probabilities of outcomes

Assumptions behind Rational Decision Making
Set of possible options are known
Probabilities of outcomes are known
Optimality is desirable
Cost of decision process is not a concern or is less than the
cost of a sub-optimal decision

Useful for WSPs

4

13

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Naturalistic Decision Making
Situational decisions

Made on partial knowledge + personal expertise
Preserved until they are invalidated

Characteristics of Naturalistic Decision Making
Dynamic or volatile situations
Incomplete knowledge and ill-defined tasks and goals
Knowledgeable and experienced decision makers
Situational assessment over consequential choice
Alternatives not considered until rejection
Satisficing solutions

Useful for ISPs

14

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Problem Structuring and Decision Making
Software design is a combination of:

Well-structured and Ill-structured problems
Opportunistic and Prescriptive structuring methods
Rational and Naturalistic decision making

Structuring Methods:
Personal Experience
Opinion, Ideas
Domain Knowledge
Group Interactions
External Influences
Existing Models of the Problem
Existing Processes
Preferred Evaluation Criteria

15

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Decision-Making Cycle

16

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

What Were We Trying To Do?
So, in the life of a piece of software

Some decisions were rational
Some decisions were naturalistic
Some decisions were arbitrary
Some decisions were deferred

Over time:
As rationale is lost, distinction between decision types is lost

Rational decisions relate to well-structuredness and optimality
Naturalistic decisions were situationally satisficing based on
partial solutions and incomplete knowledge

Assumptions and Dependencies are forgotten or ignored

5

17

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

What Are We Trying to Do?
The software understanding problem is an attempt to
reconstruct:

The rationale for rational decisions
The situational context and expert knowledge for naturalistic
decisions

We want to:
Evolve software
Maintain software
Reuse software
Reuse and transfer design knowledge and expertise

We have spent the semester looking at ways to:
Record design intent and rationale
Design for comprehensibility
Use design knowledge to recover or infer intent

18

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

General-Purpose Rationale Systems
QOC, IBIS/PHI, DRL, etc.
Rationale systems have their roots in argumentation

Two or more sides (alternatives)
Supporting and objecting arguments

Motivation:
Support decision making through visualization
Representation in semi-formal notation facilitates computer
support

Two ways to use rationale system:
Prescriptive: capture evolving arguments and use utility
function on criteria to select among alternatives
Descriptive: justify a made decision by recording considered
alternatives and criteria

19

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Problems with General Rationale Systems
Software design decisions are:

Non-rational
Opportunistic
Ill-structured
At different levels of abstraction

Cognitive complexity of argumentation systems
occludes opportunistic thought

No prescriptive value to software domain
Documenting rationale provides little upstream value

Descriptive value only benefits later designers
General systems fail to leverage inherent structure
of software design decisions

20

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Fake It!
Because there is something satisfying about rational
decisions, treat all decisions as rational

In mature engineering professions, many tasks are WSP
We want to believe that Software Engineering is an
engineering profession
Express SE problems as WSP with well-defined goals and
decision processes (i.e., that it is rational)
Emphasis on prescriptive methods of design

“We will never find a process that allows us to design
software in a perfectly rational way… [but] we can
present our system to others as if we had been rational
designers and it pays to pretend do so during
development and maintenance.”

6

21

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Problems with Faking Design Rationale
Naturalistic decisions are situational

Difficult to differentiate between essential domain criteria
and dynamic or volatile criteria

Faked rationale tends to be uniform
What level of abstraction / granularity to use?

Does not necessarily reflect real alternatives
How many alternative solutions should be faked?
Are these alternatives realistic or practical?

Bad or failed solutions are interesting
Faked rationale describes successful designs
“The best prototype is a failed project” (Curtis, et.al.)

Faked rationale uses “timeless” inferential reasoning
See Potts & Bruns – infer rationale from an existing design,
process description, and natural language documentation
If you can infer rationale, why document faked rationale?

22

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Hybrid Software Rationale Systems
General rationale systems are semi-formal

Content of nodes is informal
Link structure is formal

Use SE design domain knowledge structure nodes
Scope definition of a design “decision”
Scope abstraction
Define domain-specific criteria and metrics
Associate decisions with design artifacts

Associate with a prescriptive problem structuring
process

Potts & Bruns
Archium
SEURat

Provide upstream and downstream value

23

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Potts & Bruns (1988)
Argumentative rationale with design process

Modified IBIS
Liskov and Guttag (proto-OOAD abstract data type design)

Incorporates design artifacts into rationale model

24

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Rationale Structure (P&B)
Relationships between
artifacts are defined
Decisions are classified by
type as issues

Issues correspond to specific
steps in L&G process

Node elements are structured
with a semi-formal schema

Specific explanations are
natural language

7

25

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Problems with Potts & Bruns
They fake it

Sample problem is taken from L&G book and rationale
inferred from descriptive text and process knowledge
Do not evaluate cost of documenting process

Prototype hypertext tool for supporting the process
Problem definition does not allow exploring alternatives

Who will use it?
They do not demonstrate the upstream design value of this
form of design visualization
They do not demonstrate the queries downstream users
might desire

Many of the same usability problems as general IBIS

26

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Archium
Seems promising
Incorporates design visualization with argumentation
visualization

Architecture elements are first class entities with rationale
Explicitly supports design fragments and design evolution

Still a ways to go
Empirical case studies
Tool support
Need to prove it can provide downstream value

27

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

SEURat
Argumentation + SE decision ontology

Integration of knowledge base with IDE
Code elements can be associated with rationale elements

Core schemas use generalized argumentation concepts
Decision, alternative, claim, assumption, etc.

Support for some SE concepts
Change request, requirement, etc.

Rules describe common SE criteria and allow for inferencing
Adaptability, Dependability, Maintainability, Performance, etc.

Expert system identifies deficiencies in rationale
Assumes expert approaches problem rationally

28

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Prescriptive Design Methods
Designs and design processes are non-rational

Naturalistic decision making uses incomplete knowledge and
relies on the reuse of expertise

Goal: methodical, prescriptive approach that relates
domain, design, and constraints, reusing design
knowledge

For a set of known inputs, structure them in some
methodical way
Evaluate against a criteria, and either iterate or terminate

Observation:
Design rationale is “because the method told me so”
Documentation is:

Process model (a priori)
Input knowledge (method by-product)
Intermediate and final models (method by-product)
Justification for overriding method where appropriate

8

29

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Goal-Oriented KAOS
Systematic process for refinement and
transformation

Each step has defined entry and exit criteria
Each step is an ISP with guidance on how to begin and solve
common problems

Intermediate models are used for partial reasoning
and evaluation
Non-Functional goals constrain solutions and are used
as evaluation criteria
Research Question: What kinds of information would
need to be stored to justify intuitive leaps?

30

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

CBSP Revisited
Transform requirements into architectural elements

Refining requirements into allocatable properties is an ISP
How can we prescribe requirements refinement?

Is there a manageable set of heuristics for each
transformation step?
Can we document those changes with pseudo-rationale?

What information would we need to store with our
design to capture our design decisions?

Input requirements
Refined requirements
Voting results
Dimensions Properties table

Additional upstream value
Task prioritization
Traceability from arch. elements to requirements and back

31

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Design Maintenance Systems
Given a specification, apply transformations to yield
a program

Transformation trace and stepwise justifications form
rationale
Functional specification defines functional intent
Performance specifications define design constraints

Upstream value of this process is limited
Cost to implement for trivial problems is high
Might not scale

However, process prescriptively handles evolving
functional specification

And provides change rationale associated with the original
derivation

32

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Reusing Design Knowledge
Much of design involves solving the same problems
over and over again
Styles, patterns, idioms, cliches represent solutions
to these recurrent patterns

They have been selected and refined over time by experts
They standardize solution vocabulary

Solution patterns can be abstracted to meaningful terms
Documentation can be recorded centrally and referred to

Identify relationships with other participating elements
Can’t identify pattern’s role in larger problem
Can express the problem domain in terms of patterns

Patterns rarely appear unmodified in code, or may be
named for domain concepts

SPQR—decompose patterns into elemental design patterns
and identify patterns by observing localized EDPs in code
Identifying cliches through reverse engineering

9

33

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Reusing Process By-Products
Relate process by-products to the design context

Evolutionary annotations
Associate project communications to change logs

Technology books
Bind code and domain documentation
Difficult to query, but creates contextual relationship
No need to compile and maintain separate documentation

Code analysis techniques to infer intent
Lackwit: static type inference to understand variable usage
Dependency Structure Matrix

Can be used to analyze a design’s modularity
Or understand modularity in an existing program

34

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Explicit Models of Intent
Code is complex, and inadequate for effectively
expressing functional intent

Code is a sequence of low-level imperative commands
Contracts and specifications are descriptive
statements of functional intent

You would have to read code to find the error conditions
that could be easily stated in a single logic sentence
Obligations are not local to the code the requires them

Inscape extends contract-based specifications with obligations
and a logic for reasoning over semantic interconnections

Intentional programming and Domain languages
expresses domain concepts in domain terms and lets
the programming system transform intent into the
imperative code that implements it

35

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Back Where We Started
We have a variety of methods for expressing intent
(design and functional) to human designers
How do we express intent to a computer so it can do
what we want it to do?

Define functional and design intent in formal terms
Associate intent to architectural elements
Systems can be dynamically reconfigurable on the basis of
changing requirements and environment

Express new requirement to self-managing system and let it
choose a configuration to meet the new needs

Software design becomes a problem of the effective
expression of intent to a configuration system

WSP?

36

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Summary
We’ve looked at the major issues covered this
semester in the context of:

Problem structuring
Prescriptive vs. descriptive modeling
Opportunistic problem solving
Rational vs. naturalistic decision making

Software design is not mature enough to be rational
Reliance on designer experience and knowledge
Prescriptive methods in limited use (WHY?)
We should consider upstream and downstream value
SE domain has a limited number of design transformations
and justifications for them – general systems too complex
Faking rationality occludes actual design justification
Rationality is overrated

“The road to Hell is paved with bad intent.”

10

37

Architecture and Design Intent Lecture 25

© 2006, Paul S Grisham EE 382V

Credits
C. Zannier and F. Maurer. Decisions in Agile Design.
(Submitted to FSE’06)
R. Guindon. Designing the Design Process: Exploiting
Opportunistic Thoughts.
C. Potts and G. Bruns. Recording the Reasons for
Design Decisions.
D. Parnas and P. Clements. A Rational Design
Process: How and Why to Fake it
J. Grudin. Evaluating Opportunities for Design
Capture
Everybody’s very fine presentations and
All the other papers we’ve covered this semester!

